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ABSTRACT 
 
Siemens Building Technologies Landis & Staefa Division in Zug, Switzerland developed 
a predictive control algorithm that was first tested with simulations using historical 
weather data and then has been implemented in field tests that are currently running. The 
control algorithm makes use of numerical optimization technique for a linear dynamic 
model with input, rate of input change and state constraints. The algorithm computes 
periodically (every 20 minutes) the set point of the flow temperature control loop of the 
hot water heating system in such a way that the comfort temperature in the rooms can be 
maintained over a moving optimization horizon of fixed length (3 days) with minimum 
energy (receding horizon strategy). In order to achieve this goal, the control algorithm 
uses predictions of the behavior of the disturbances that act during the optimization 
horizon on the rooms under control. These predictions are generated using either past 
information or forecast information from an external weather forecast service or both.  
The algorithm is an alternative to the classic outside temperature compensated control of 
heating systems with a heating curve, an optimum start stop control (OSSC) and a heat 
release algorithm, taking into account the dynamics and the practical limitations in a 
more natural way. Benefits of the algorithm are: comfort with minimum energy, easy to 
tune, easy to understand and possibility of straightforward extensions to other applica-
tions. Experiences with the algorithm in real buildings were very promising. The program 
runs currently on a PC that is connected to a Siemens Building Energy Management 
System. It is written in MATLAB and C.  
The paper describes the algorithm and shows some results of simulations and of field 
tests 
 
1. INTRODUCTION 
 
Predictive controllers are controllers that somehow account for future behavior. The 
predictive controller considered in this paper belongs to a specific class of predictive 
controllers that are based on optimal control in a deterministic sense. A controller of this 
class continually, periodically, or at selected time points, looks ahead for a specific time 
horizon, predicts the disturbances over the time horizon, determines the control variable's 
optimal behavior during this time horizon, and applies the determined behavior until the 
next time point is reached when the controller again looks ahead. Although the evolution 
of the unknown disturbances is random, the controllers assume that the predicted distur-
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bance is true, and therefore deterministic optimal control methods can be applied for the 
determination of the control’s variable optimal behavior   (certainty equivalence control). 
It helps the understanding, to think of the behavior of the control or other variable over 
the mentioned time horizon as a “profile” of the variable. The time horizon is called the 
prediction or optimization horizon. The different controllers of this class differ in the 
predictors, the models (state space models or input/output models) and the performance 
indices (choice of norms and of variables to be optimized) that are used. 
Many predictive controllers belong to this class: the general predictive control (GPC) and 
model based predictive control (MBPC) methods [T.J.J.van den Boom 1996, H. 
Demircioglu et al. 2000]. Furthermore the following special purpose predictive control-
lers belong also to this class: all the predicted controllers presented at the CLIMA 2000 
Conference in Brussels [J.Tödtli 1997], the GPC approach with a linear system model in 
[H.Erker 1992] and the NEUROBAT controller [NEUROBAT 1998]. The NEUROBAT 
controller solves the deterministic optimization problem by applying the deterministic 
dynamic programming method with the argument that a nonlinear neural net based 
system model and a nonlinear, not quadratic objective function was used.  
 A different approach to the certainty equivalence based controllers is possible if for the 
optimization one takes the uncertainty of the predicted disturbances explicitly into 
account. Probabilistic models of the disturbances are needed for this approach. This leads 
to stochastic optimization methods where probabilistic quantities influence the control 
action [D. Bertsekas 1987, J.Tödtli 2000]. 
We concentrate us here on one control application: the outside temperature compensated 
control of heating systems with a heating curve, an optimum start stop control (OSSC) 
and a heat release algorithm. The new algorithm was developed for two cases and are 
alternatives for the following classical solutions:  
1. We assume that in a multi-room building one north oriented room (little heat gains) is 

used as a reference room and is equipped with a room temperature sensor that at least 
is used for the adaptation of one of the room models. All the other rooms are 
equipped with thermostatic valves and fed with hot water from the same heating 
circuit. The flow temperature set point is mainly determined by a feed forward control 
of the outdoor air temperature via the heating curve 

2. The situation is the same as in 1) except for the fact that no room temperature sensor 
is available for the control. Therefore no automatic adaptation of a room model is 
possible.  

In this paper we will only consider case 1). Instead of determining the flow temperature 
set point via the heating curve, it will be found by the predictive controller. 
The goals that can be achieved by the predictive control method presented in this paper 
are at least threefold: 
1. Current advanced devices for outside temperature compensated control of heating 

plants have integrated among other functions three specific functions that either rely 
on predictions of future behavior and/or use some kind of room (building) model. 
These three functions are: 
• Flow temperature control by outdoor temperature feed forward control via heating 

curve. This method uses a static model (heating curve) of the room expanded by a 
dynamic model for capturing the delay caused by the outside wall. 
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• Optimum start- stop control (OSSC) for reaching the indoor temperature set point 
profile in an economic way. This method uses a dynamic model for the prediction 
of the indoor temperature. 

• The heat release algorithm (the algorithm that switches the heating plant on and 
off) uses a different dynamic model of the building. 

The predictive control method has the capability to replace the three above algorithms 
by one function. This function uses one model with one set of parameters. It is 
expected that this fact makes the tuning of the parameters easier and the general 
concept easy to explain. 

2. The predictive controller controls the heating plant such that the required comfort is 
achieved with minimum energy. Energy savings are achieved by minimization of an 
objective function that penalizes the energy consumption. The objective function is 
linear in the energy consumption. The comfort is not part of the objective function. Its 
specifications are formulated as inequality constraints as will be seen later.  

3. The new method opens up opportunities for straightforward extensions of the algo-
rithm to new applications. These are for instance: 
• The influence of the user behavior on comfort and energy use can be estimated by 

model based predictive computation 
• Warnings based on predicted calculations can be generated, for instance for frost 

alert. 
• Display of different quantities like estimated heat gains and heating curve 

parameters are possible. 
• If all rooms that are supplied by water with the same flow temperature are 

influenced by solar gains (single family homes, one heating circuit for south 
oriented rooms in office buildings) and a solar sensor is available, the weather 
forecast block can be extended by solar gain prediction. 

• For systems with heat storage, general heat storage and energy management 
methods combined with different pricing policies can be treated similarly. 

 
2. BASIC CONTROL CONCEPT  
 
The basic control concept is shown in Figure 1. The system to be controlled consists of 
the flow temperature control loop including the room to be controlled. The control input 
to this system is the set point of the flow temperature and the output is the room 
temperature. An additional control input is the pump control signal that is activated by a 
control logic. Disturbances to this system are typically the outdoor air temperature, and 
solar and internal heat gains. It is assumed that this system can be described by a set of 
differential and algebraic equations. For many heating applications, the room temperature 
set point is a function of time that can be presented by a room temperature set point 
profile over time. It is assumed that at a given time this profile is known in advance at 
least for a time period of fixed length L. The predictive controller works now as follows: 
at a given time t=kT, where T is the sampling time, the following steps are carried out: 
1) A profile of predicted disturbances (here outdoor air temperature) over the optimiza-

tion horizon of length L is computed in the forecast block by using measured 
disturbance data up to kT and possible forecast information from an external weather 
forecast service (supplied over the Internet). 
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2) The room temperature set point profile is generated by using for instance information 
from the occupancy scheduler.  

3) The elements of the state of the system to be controlled have to be measured or 
determined by an observer mechanism if not all are measured. 

4) The controller, after having obtained these three different input vectors – the two 
profiles and the state - by performing step 1), 2) and 3) at time kT, will compute in 
step 5) the future behavior of the output of the controlled system over the time 
horizon of length L. To do that the predictive controller needs a model of the system 
to be controlled. If the parameters of this model are not known, an adaptive mecha-
nism is used to estimate these parameters. 
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Figure 1: basic control concept 

5) The predictive controller computes the future flow temperature set point profile such 
that the predicted room temperature profile fulfills the desired conditions with 
minimum energy. In order to do that the objective function is minimized. Additional 
inequality constraints on the flow temperature set point due to practical limitations 
have to be met too. An additional output of the control algorithm is a profile of the 
state over the horizon. 

6) The control profile that is computed in step 5) is an open loop control profile under 
the assumption that everything that influences the system in the time interval [kT, kT 
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+ L] is known at time t=kT. As there are uncertainties in the disturbances and the 
modeling, the computed profile is not perfect and therefore is corrected periodically. 
This leads to a closed loop control structure, where the actual state is fed back pe-
riodically, the current value of the proposed future control signal is applied and the 
rest is discarded.  

7) All the above steps are carried out at every sample instant, which is known as the 
receding horizon strategy.  

The chosen control algorithm has the following additional features: 
• The room model chosen is a linear second order model capturing the most important 

features of the room needed for fulfilling the given task. A linear model allows the 
use of fast optimization methods. It is also assumed that the flow temperature is 
controlled by a PI controller such that the set point is perfectly met. 

• Linear programming technique has been chosen as optimization technique. With this 
technique all kind of equality and inequality constraints can be easily incorporated. 
Additionally, the objective function to be minimized is linear in the variables to be 
optimized. 

• The receding optimization horizon can be extended to up to three days that allows to 
anticipate weekend room temperature setbacks and the ¨Monday morning¨ effect. 

• The prediction can be evaluated for two (or three) different intervals in series, one 
with a short sampling time and one with a longer sampling time. This feature takes 
into account that for temperature control applications events in the distant future have 
less influence on the immediate behavior than events in the near future.  

• An adaptive algorithm has been implemented which can adapt the linear process mo-
del continuously. The identification can be done by a linear least square method 
because the discrete model is linear in the discrete parameters. 

• The measured room temperature can be filtered with the observer used for the 
estimation of the non-measured elements of the state in order to smooth oscillatory 
behavior due to differences between the real room and the used model in the 
controller. 

• Major nonlinearities are reduced by underlying control loops, justifying the use of a 
linear model 

The algorithm is described in greater detail in [Gruber et al. 1999] 
 
3. WEATHER FORECAST 
   
The weather forecast is only done for the outdoor temperature. It can be extended to solar 
gains depending on the applications. In the literature several sophisticated methods like 
ARX models or neural networks have been used [NEUROBAT 1998].  
We used here a variation of the simple persistency method: from the temperature profile 
of the last 24 hours the next 24 hours are calculated by just copying the profile and make 
a linear correction over the next 6 hours by taking the measured actual outdoor air tempe-
rature into account. This is repeated at every new sampling time (e.g. 20 minutes).  
The persistency method has been evaluated on long time series of historical data and 
showed a performance in terms of standard deviation from the correct values from 2.5 up 
to 4 degrees Celsius for a one day up to a three-day prediction. The method was also 
compared with forecast methods where the forecasted values of the minimum and 
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maximum daily temperature are supplied from an external weather forecast service. For 
these methods different kind of interpolation functions [ASHRAE 1993] were used for 
the profile generation. With this approach a standard deviation of 1.7 up to 2.2 were 
achieved [in ‘t Groen 2000]. The influence of inaccurate temperature predictions on the 
control performance is considerably smaller than the standard deviations obtained above. 
Solar gain prediction would be more difficult to predict [NEUROBAT 1998]. Extensions 
of the presented method will investigate how the solar influence can be built in usefully.   
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Figure 2: weather prediction 

 
4. ROOM MODEL  
 
4.1 Continuous model 
The controller uses a linear room model of second order for the optimization. The 
physical representation is shown in Fig 3. The two heat storages with its heat capacities 
are 1) the room air and inner light construction and 2) the outside wall. On the first node 
act the heating power and the heat gains directly. Across the two overall thermal 
conductances GID of the outside wall an indirect heat exchange between inside and 
outside is possible via the outside wall node. Across the thermal conductance GD, 
representing the thermal conductance of the windows and the air exchange rate, a direct 
heat exchange between inside and outside is possible. A continuous state space model can 
then be derived with the following equations: 
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Figure 3: room model 
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QF: heat gains 
PH: heating power 
TI: temperature of room air and inner light construction 
TOW: temperature of the outside wall 
GD: overall direct thermal conductance between TI  and TOW  
GID: half of the thermal conductance of outside wall 
CIB&RL: heat capacity of room air and inner light construction  
COW: heat capacity of outside wall 
kFf(v): modified thermal conductance of radiator 
TF: flow temperature, equal to TF_SP (ideally PI controlled) 
 
4.2 Discrete model 
From the set of equation (1) the following discrete time model can be derived: 
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The parameters of the matrices F and G are complicated functions of the parameters of 
the continuous matrices A and B and the sampling time T. The difference equation for the 
output variable yk corresponding to TI,k is: 
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As no predictions are available for the gain q, the terms with qk-1 and qk-2 are treated as 
one unknown coefficient p7. The difference equation can  therefore be written as:  
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4.3 Adaptation of the model parameters 
Generally the parameters of the discrete model have to be identified and eventually 
adapted. Consecutive measurements of the outdoor air, flow and room temperature are 
used in the adaptation method. If one looks at the seven parameters p1,.., p7 in equation 
(3), one can distinguish for different kind of parameters: 
p1 and p2 represent the dynamic of the room 
p3 and p4 represent the coupling of the flow temperature to the room 
p5 and p6 represent the coupling of the outdoor air temperature to the room 
and p7 represents the internal and external gains. 
The parameter update is done by a recursive estimation scheme with a bounded gain 
forgetting factor [Ljung, 1987]. 
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The measurement vector is ϕk = [yk-1 yk-2 uk-1 uk-2 wk-1 wk-2 1]T and the norm of the 
covariance matrix Pk of the estimation error of  kp̂ is the Frobenius norm: 
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λmin and pmax are chosen as 0.99 and 0.2. Initialization of P is a diagonal matrix with 
elements of value 0.001 and the initialization of the parameter vector is done by a crude 
approximation. The experiences that were made during the field tests showed that the 
initialization is not critical. The controlling of the forgetting factor is done by the 
equation (4) given above. Arguments for this equation can be found in [Kraus 1986].  
 
4.4 Observer 
The predictive controller needs an estimate of the complete state of the system. In the 
difference equation form (equation (3)), the state corresponds to two consecutive 
measurements yk and yk-1 of the indoor temperature. Because the model does not 
correspond fully to the reality, differences cause unwanted oscillatory behavior. This 
could be observed in simulations where the simulated room was not identical to the room 
model used in the controller and also in the field tests. The second order linear observer 
that was implemented reduced this effect: it acts as a smoothing filter of the system state. 
The advantage to a simple low pass filtering of the output is, that the filtering function of 
the observer could be realized with shorter delays. 
  
5. OPTIMIZATION  
 
5.1 Equality constraints  
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The previous paragraph derived the model that is used in the predictive controller for 
computing future outputs. In the optimization scheme the model equation leads to an 
equality constraint for each future point in time which is computed.  Let us denote the 
number of predicted values by n. To complete the formulation of the optimization 
problem, the objective function and the inequality constraints must be formulated. 
 
5.2 Inequality constraints 
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Figure 4: constraints for the predicted profiles 

Figure 4 illustrates the main constraints that have to be taken into account. Four profiles 
are displayed: on upper left side the predicted outdoor air temperature and on the lower 
left side the occupancy profile. From that profile the room temperature set point profile is 
deduced, that is visible on the upper right side picture. In the occupied mode the set point 
is set to Tcomfort and in the non-occupied mode to the set back temperature Tmin. This room 
temperature set point profile acts as a lower bound for the room temperature; that means 
at each calculated point in time of the horizon the following inequality constraints is 
formulated: 

(5)          ,..1     mode) occupied(or  mode) occupiednon (min, njTTT comfortjkI =!+  

A typical profile of the room temperature is also shown in the upper right side picture. In 
the lower right side picture a profile of the predicted flow temperature is shown. This pro-
file is squeezed in between the upper and lower bound for the flow temperature. The up-
per bound is here assumed to be constant. A generalization with a time dependent bound 
is possible. The lower bound is either also constant or can be made dependent on the 
room temperature. These constraints lead then to the following inequalities 

(6)                                                  ,..,1                      max,, njTTT FjkFjkI =!! ++  

Additional to these constraints, the upward and downward change in the flow temperature 
from one sampling time to the next one is also formulated constraints: 

(7)                                        ,..,1      _1,,_ njTTTT upFjkFjkFdownF =!"#"!# #++  
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The total number of equality constraints is n and of inequality constraints is 4n. By a  
transformation of the variables, the number of inequality constraints can be halved: 

min_max

~
                   

~
IIIFFF
TTTTTT !=!=  

where TI_min is either Tmin or Tcomfort. With this transformation new inequality constraints 
of the form  

0
~

        and          0
~

!!
IF
TT  

are introduced. These inequalities are easier treated by the linear programming methods 
than the former ones. 
 
5.3 Objective function 
In order to formulate the objective function it is useful to look closer at the division of the 
optimization horizon into the different time steps. As was mentioned before, the horizon 
of lenght L is split into two intervals L1 and L2 such that L= L1 + L2. The first interval is 
divided into n1 small intervalls of length T, and the second interval into n2 intervalls of 
length 4T. The restriction to n1 and n2 is: 

LTnn =+ )4( 21  
Figure 5 illustrates this partitioning of the optimization horizon. With two different 
sampling times T and 4T the difference equation (3) must be formulated twice leading to 
two sets of p parameters. A specific difficulty arises when the sampling switches from T 
to 4T. For this step a special set of p parameters has to be derived.  
The partitioning of the horizon is not limited to two intervals and the relation between 
fast and slow sampling can be also another integer ratio. The reason for this partitioning 
(apart from the reason given in section 2 of this paper) lies also in the fact that the 
dimension of the optimization poblem is quadratically dependent on the number of points 
in the optimization horizon. 

end of horizonpresent
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Figure 5: partitioning of the horizon 

The objective function in the case of linear programming can now be formulated in this 
way: 

(8)                                                           ),( )1(
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The elements of u and y are the flow temperatures and room temperatures (or the trans-
formed variables) at t=kT+iT, i=1,..n1, and t=kT+i4T, i=n1+1,..n. The vector f is a 
weighting vector for the variables. The objective function, as already mentioned in sec-
tion 1) and 2), is used to minimize the energy consumption. This is achieved by mini-
mizing the integral of the profile of the flow temperature set point. Therefore the 
elements of the vector f are now chosen as follows. The first n weights are set to zero. 
The second n weights of f for the flow temperature that are related to the energy 
consumption, have to be divided into two separate values. Due to the different lengths of 
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the time intervals in the time horizon the flow temperatures have to be weighted with the 
corresponding weights in order that the energy is weighted equally. For the factor 4 
between fast and slow sampling time the following weighting vector results: 

[ ]Tf 4....4  4  4  1....1  1  1  ...00.........  0  0=  
It must be emphasized that in the optimization procedure the constraints are more 
important than the objective function. First the constraints must be satisfied and then the 
objective function is minimized. 
The optimization is not restricted to the linear programming case, but can also be 
formulated for a quadratic objective function. In that case the weighting terms for the 
indoor temperatures cannot be set to zero and the lower limit of the indoor temperatures 
must be redefined. 
 
5.4 Optimization algorithm 
Two algorithms were used for solving the above problem. Both solve the standard linear 
programming problem [Gill & al. 1991]. The first algorithm is a projection method or 
active set method as it is included in the optimization toolbox of MATLAB [Branch 
1996]. The second algorithm is a C-coded version of the simplex algorithm [Press 1992] 
that was used in the prototype implementation. 
  
6. SIMULATIONS  
 
The algorithm has been developed and tested in the MATLAB/SIMULINK environment. 
Extensive simulations with yearly data have also been done with this tool. The influence 
of several parameters of the algorithm has been investigated by simulations in order to 
find good default values. The main parameters of the algorithm are: 
• fast sampling time T (10min,...,30min) 
• number n1 of fast sampling times (16,....48). 
• horizon length L (24-72h) 
• forgetting factor parameters pmax and λmax. 
• observer design parameters 
The testing of the algorithm was carried out in four steps. These steps were: 
1) Assuming a perfect forecast of the disturbances and using the same second order mo-
del for the simulated room as is used in the predictive controller, an ideal situation is 
generated which cannot be realized. It serves as performance bound for realizable 
controllers and as test of the software. That means that the set point profile for the room 
temperature in the occupied mode can be fulfilled perfectly with minimum energy. After 
setback the room temperature reaches the comfort temperature at exactly the right time 
and remains perfectly on it. Fig. 6 displays three set of a pair of curves, room temperature 
and flow temperature set point. The first two curves on Fig. 6 show the room temperature 
and the corresponding flow temperature set point. The flow temperature set point exhibits 
a nearly periodic behavior with an early morning boost and then an exponentially 
decreasing function during the occupied period.  
2) In a second step the second order model for the simulated room is replaced by a 
complicated sixth order model that no longer can be matched by the identified second 
order model in the controller. The result is shown in the third and fourth picture of Fig.6. 
Clearly the comfort temperature cannot be maintained all the time. The tendency to be 
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noted is that the control acts always a little too late. This indicates that the parameter of 
the second order model may not yet have been fully adjusted or that the model cannot be 
better adjusted to the simulated room. Also the flow set point shows a less smooth 
behavior. 

 
Figure 6: Three simulation results ( pair of two curves each) with different kind of simulated room 
model and forecast information 
 
3) In the next step the predicted outdoor air temperature is used instead of the perfect 
weather information. The result is shown in the two lower pictures of Fig.6. The diffe-
rence to the two previous curves is rather small. This suggests that the way how the 
predicted weather is computed does not decrease the performance significantly.  
4) In a final step the algorithm is tested on real buildings. Experiences with the prototype 
installations are given in part 7. 
 
7. PROTOTYPE INSTALLATIONS AND RESULTS OF FIELD 
    TESTS  
For the on-line version only MATLAB code was used with no special functions from 
various toolboxes (control and optimization toolboxes).  The algorithm has been tested on 
two office buildings in Zug, Switzerland. Both buildings were office buildings where one 
heating circuit serves several rooms. In both situations the algorithm was implemented 
with the same default values and installed on a separate PC that was hooked up to the 
building energy management station (BEMS). The algorithm ran with and without 
forecast information from an external weather forecast service. A special communication 
software transmitted data from the BEMS to the PC and vice versa. As the sampling time 
T was chosen as 20 minutes, the transmission and the control calculation in MATLAB 
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had to be done only at this low rate. The task was started periodically by an auto-task 
program.  On one site the algorithm runs for one and a half years, on the other side 
roughly one year. In the Fig. 7 and 8 only the reference room is shown, recorded were 
also other room temperatures. The flow temperature could only vary between room 
temperature and maximal 60°. The upward rate of change of the flow temperature was set 
to 10° per sampling time T, the downward to 7.5°. The pump was switched on and off 
over a hysteresis that compares the flow temperature set point and room temperature.  
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Figure 7 Real measurements during weekdays Dec.5-Dec.8 2000 

The results obtained have been very promising. We look at two recorded time periods for 
one building, one is a period of working days (Fig.7) and one a weekend period with 
longer setback (Fig.8). On the two graphs the following curves are shown: 
- pump signal, that is either off (0) or on (10) 
- outdoor air temperature varying between 0° and 10° 
- room temperature set point, that is either 14° or 21.5° 
- room temperature (white line) 
- water supply temperature (going up to 80°) 
- flow temperature set point (between room temperature and 60°) 
- flow temperature that is tracking the set point 
A speciality of that site is that the water supply temperature is following a fixed time 
pattern during the day.  
The first measurements (Fig.7) show the weekday situation. As the outdoor air 
temperature was relatively warm, the room temperature during the night drops very little. 
During the occupied period the set point is met very well. The set point of the flow 
temperature that is computed by the predictive control algorithm shows some interesting 
features, if one compares it to the simulations of Fig.6. The early morning boost is clearly 
visible with a rather smooth shape. During the day the controller acts more oscillatory 
(two bumps per day), that might be explained by the modeling error and especially by the 
disturbances. Also visible is that during the setback periods, the flow temperature cannot 
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follow its set point because the model in the controller takes not into account that the 
flow temperature is cooled down only slowly. 
The second measurements (Fig.8) show the weekend situation. Similar explanations can 
be given as before. It is clearly visible that on Sunday the heating switches on rather early 
(around 16:00) resulting in a long boost with maximal flow temperature set point. Still 
the room set point cannot be met exactly on Monday morning. The reason for this is that 
in the beginning of the heating phase, the flow temperature set point (60°) is higher than 
the water supply temperature (55°). For the optimization it is assumed that the set point 
can reach 60°. If one knows the water supply restrictions beforehand, this can be included 
in the optimization as well. If this function is not known one can avoid the above 
situation by setting the upper bound of the flow temperature more conservatively. The 
oscillatory behavior of the set point is less dominant in these measurements.  
Overall it can be said, that the algorithm fulfills all its expectations. For the operator the 
way how the predictive controller works is very appealing because the practical 
limitations are taken into account. No specific complaints came also from the office 
people working in the building.   

0

10

20

30

40

50

60

70

80

9.12.00 0:00 9.12.00 8:00 9.12.00 16:00 10.12.00 0:00 10.12.00 8:00 10.12.00 16:00 11.12.00 0:00 11.12.00 8:00 11.12.00 16:00 12.12.00 0:00 12.12.00 8:00 12.12.00 16:00

pump outdoor air temp. room temp flow  temp. flow  temp set_point w ater supply temp room set_point

 
Figure 8: real measurements during weekend setback period Dec.9. until Dec.12, 2000 

 
8. CONCLUSIONS  
 
The algorithm proved to be very successful. It met the goals that were given in the 
beginning. The comfort could be maintained, the tuning was very simple and the 
acceptance was good. For the operators it was especially pleasing that the method could 
be understood with little effort and that the practical limitations are included in the 
optimization in a natural way. How much energy can be saved with such an algorithm 
needs still to be determined. A comparison with existing algorithm must be performed 
very carefully, otherwise unrealistic numbers are generated. It can certainly be said that 
the proposed controller behaves at least as good as a very well tuned conventional 
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controller. The implementation issue is now tackled in two directions. For an 
implementation in a standard controller some modifications have to be done, that will be 
reported later. The modifications were concerned with memory and speed of the 
algorithm. An implementation on the building management level is under way. 
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