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ABSTRACT 
 
In order to operate buildings more energy and cost effective, predictive integrated room auto-
mation can be used instead of conventional – possibly integrated – room automation. Thereby 
the predictive integrated room automation controllers operate the buildings’ passive thermal 
storages based on predicted future disturbances (e.g. weather forecast) by making use of low 
cost energy sources. 
A specific predictive integrated room automation application is considered here: The room 
temperature can – technically – be controlled by heating, cooling with chiller, free cooling 
and blind positioning. To satisfy the thermal comfort demand, the room temperature is con-
trolled within a defined comfort range. This is achieved by a model predictive control strategy 
which makes use of the passive thermal storage of the building: To reduce the energy costs 
the thermal capacity of the building can be loaded or unloaded with low cost energy (free 
cooling, solar gains influenced by blinds) as long as the room temperature remains in the 
comfort range. The predictive controller periodically calculates an optimal future profile of 
the manipulated variables while constraints on the manipulated variables and predicted dis-
turbances are taken into account. The optimization problem is solved numerically by applying 
linear programming (LP) algorithms. 
A performance bound is determined by simulations. Furthermore conventional (non-
predictive) control strategies are compared and assessed using the performance bound as a 
benchmark. These analyses show that predictive control is promising to be a substantial im-
provement compared to non-predictive control regarding cost and energy efficiency. 
 
KEYWORDS: predictive control, integrated room automation, passive storage management, 
integrated blind/light/HVAC control 
 
INTRODUCTION 
 
Predictive control in building applications has a potential to be more energy and cost effective 
(while maintaining equal or better control performance) than non-predictive control where 

- the controlled system has distinctive storage properties, 
- there are ranges for the controlled variables instead of single set points, 
- future ranges for the controlled variables are known, 
- future disturbances of the controlled system are known or can be estimated (predicted) by 

the controller, 
- costs for control actions are time dependent and/or depend on variables that are known or 

can be estimated in advance, 
- future costs for control actions are known or can be estimated. 

In thermal control of buildings these conditions are often fulfilled. Therefore many specific 
applications of predictive control in building systems have been investigated: E.g. predictive 
heating controllers [1-4] or blind controllers [5]. The influence of forecast accuracy and of 
modeling errors on predictive control performance for building systems has also been ana-
lyzed [6]. In particular building system applications where there are means for low and high 
cost heating and cooling are potentially rewarding when using predictive control. 



The specific building system considered here is primarily thermally conditioned by cold and 
hot water, i.e. through chilled ceilings for cooling and radiators for heating. The cold water 
for cooling can be produced either by chiller operation (high cost) or by free cooling using 
only wet cooling tower operation (low cost). The hot water for heating is produced by boiler 
operation (high cost). Moreover blinds can be used to control thermal comfort in the building 
(low cost). The room temperature is allowed to float within the room temperature comfort 
range, e.g. 21°C to 26°C. For systems with passive thermal storages as the considered system, 
a non-zero comfort range is a pre-condition to benefit from predictive control at all. The 
wider the comfort range, the more energy and cost effective predictive control can be since 
there is also a larger range where the thermal capacities of the building can be operated. E.g. 
given a comfort temperature range wide of 5 K, the maximal heat difference stored in a typi-
cal concrete ceiling is already more than 1 kWh/m2. Besides the thermal capacity of the ceil-
ings further capacities (inner and outer walls, furniture etc.) are effective in buildings. 
If the high cost heating and cooling systems are fast and well dimensioned, i.e. the room tem-
perature can be controlled without significant time delay within the comfort range, there is no 
risk of not fulfilling comfort demands. Wrong predictions based on modeling errors or incor-
rect estimated disturbances will therefore lead – temporarily –to more energy and/or cost de-
mand but no discomfort. For this reason this type of predictive control is predestined for (pro-
totype) application in real buildings since the building users’ comfort is not perturbed. 
In conventional control strategies for integrated room automation, blind control is independ-
ent of HVAC control. More sophisticated blind controllers also take into account the artificial 
lighting control task and some controllers additionally make decisions based on actual heating 
or cooling loads [7-8]. 
The investigated control concept has a hierarchical structure with typically one high-level 
controller and typically several sub-level controllers. High-level control is done by model 
based predictive control whereas mainly low cost energy sources such as solar gains (via 
blinds) or free cold (via dry or wet cooling towers) are under high-level control. Sub-level 
control for individual zone control is done by operation the remaining – mainly high cost – 
energy sources. Here only high-level control is considered, sub-level control is assumed to be 
ideal. 
 
METHODS 
 
The basic building model used by a high-level controller is typically a simple model that re-
produces the buildings’ essential static and dynamic thermal properties. An example of such a 
model is introduced below. The same model is also employed here to explore the potential of 
predictive control for integrated room automation. 
 
Building Model 
The model inputs are divided into manipulated variables and disturbance inputs. Manipulated 
variables are the heating power u1, the cooling power u2, the blind position u3 (closed = 0, 
open = 1) and the normalized free cooling power u4 (no free cooling = 0, maximum free cool-
ing = 1). For this study the high cost cooling and heating sources are assumed to have no limi-
tation in power output. Constraints for the manipulated variables are listed in (1)-(2). 
Disturbances are the outside air temperature oaϑ , the outside air wet bulb temperature oawbϑ , 
the solar gains for fully closed blinds 0s (secondary heat transmission), the additional solar 
gains for fully open blinds (radiation) and the internal heat gains . 
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A schematic diagram of the building model is shown in Figure 1. Heat flow is modeled 
through outside walls and windows as well as into and from inner parts of the building. Heat-
ing power u1 and internal heat gains i act directly on the lumped thermal room knot which is 
associated with the operative (= sensed) room temperature r

q&
ϑ . Cooling power u2 and free 

cooling u4 act on the ceiling thermal knot (chilled ceiling) while the solar radiation 1s acts 
both on the floor and ceiling thermal knots. Secondary solar heat gains 0s act on the inner 
outside envelope. The window and free cooling system heat transfer coefficients are changing 
with blind position u

q&
q&

3 and free cooling activity u4, respectively. To represent the dynamic 
behavior of a real building, thermal capacities are assigned to the lumped thermal room knot 
(Cr), the outside envelope (Co1, Co2, Co3) and the inner parts of the building (Ci1, Ci2, Ci3). The 
modeled windows have no thermal capacity. The building model can be written in a pseudo-
linear state space representation (3), where the state vector x is given by (4), the disturbance 
input vector v by (5) and the state space matrices by (6)-(9). 

 
Figure 1. Schematic diagram of the building model 
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Control Optimization Problem 
Linear programming is used to determine the solution of the control optimization problem 
with the cost function J in (10) to minimize. For each step, weightings w (costs per unit) are 
assigned to the manipulated variables at this step. n is the number of optimization time steps. 
The related time steps define the partition of the optimization horizon while larger time steps 
at the end of the horizon offer to reduce the optimization problem size (and therefore calcula-
tion time) with small impact on the solution. Besides maintaining the constraints of the ma-
nipulated variables u given in (1)-(2), there can be optimization constraints on the state vector 
x or the output vector y. With these constraints the modeled physics of the system (3) is taken 
into account when optimizing. Here the optimization problem is formulated so that the sensed 
room temperature rϑ remains in the comfort range (11). Since linear programming is used to 
solve the optimization problem, the future states to calculate the manipulated input matrices 

u  are fixed – e.g. to the actual state vector – to obtain a linear optimization problem. In order 
to find the optimal solution for the nonlinear problem an iterative procedure can be applied 
where the solution of the state vector of the linear problem is used to calculate  for the next 
iteration step. 

*B

*
uB

The optimization problem is solved repeatedly with a sampling time ts that is usually much 
smaller than the optimization horizon length. Only the optimized manipulated variables for 
the next sampling time are applied after each optimization (moving horizon). 
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RESULTS 
 
The parameters in (6)-(9) are set based on a typical office building in Switzerland. Measured 
data for solar radiation, outside air temperature and outside air wet bulb temperature is taken 
from Zurich. Internal heat gains are set to 25 W/m2 from 8 a.m. to 8 p.m. on workdays, oth-
erwise 5 W/m2 are present. A constant weighting w (12)– within the optimization horizon and 
for each optimization – is applied. 1 kW heating power serves as the normalization for the 
weighting. A negative weighting factor for the blind position is chosen because closed blinds 
correlate with higher artificial lighting demand. Thus artificial lighting is treated indirectly as 
a cost for closed blinds. Maximal free cooling is causing costs equal to 10 kW heating power. 

[ ]101.031 −=Tw  (12) 



Fundamental for exploring the energy (costs) saving potential of predictive control is a com-
parison between ideal non-predictive and ideal predictive control. Here ideal means that a 
model based (predictive) controller with a model equal to the controlled process model is ap-
plied; disturbances are known exactly for each optimization horizon. Thus the main difference 
between non-predictive and predictive control is given by the length of the optimization hori-
zon. The following three control solutions will be discussed further below: 

I. performance bound: ideal predictive control with sampling time ts = 0.5 h, optimization 
horizon length topt = 72 h 

II. short term optimal control: ts = 0.5 h, topt = 0.5 h 
III. representative example for conventional control algorithm: blinds are used as “cooling 

device” (close blinds when solar radiation is present, otherwise open blinds) when last 
active action was cooling (u2 > 0 or u4 > 0), blinds are used as “heating device” (open 
blinds when solar radiation is present, otherwise close blinds) when last active action was 
heating (u1 > 0), free cooling is favored when oawbϑ > 15 °C; this has been approximated 
here by setting the blind position weight to 0.1 when last active action was cooling and 
back to –0.1 when last active action was heating and by setting the free cooling weight to 
–10 when oawbϑ > 15 °C, ϑr > (ϑr,min+ϑr,max)/2, otherwise back to 10, ts = 0.5 h, topt = 0.5 h 

 
Figure 2. Simulation results for strategies I. and III. 
 
Energy costs – according to the weighting (12) except no blind position weighting is included 
– accumulated in whole year simulations for the three strategies were determined: For strat-
egy I (performance bound) an average cost of 6.44 · 10-3/m2 resulted, strategy II caused aver-
age costs of 13.6 · 10-3/m2 and for strategy III 9.19 · 10-3/m2 average costs resulted. 



Figure 2 shows a comparison between the performance bound predictive strategy I and the 
non-predictive strategy III for 14 days in spring. The predictive strategy manages to control 
the room temperature within the comfort range by only using low cost heating (open blinds 
when radiation is present) and cooling sources (free cooling instead of cooling with chiller, 
open blinds during nights when no radiation input is present and ϑoa is relatively low). 
Therewith it keeps the room temperature ϑr high when the coming days are cooler and less 
solar gains are present (days 131-135), and it keeps the room temperature lower when the 
next days are warm and high solar gains are effective (days 136, 137). In doing so the build-
ings thermal capacities are emptied and loaded with low cost energy. 
 
DISCUSSION 
 
The presented results show that predictive integrated room automation has substantial poten-
tial to exploit. The predictive control solution is superior to non-predictive control especially 
when low cost heating and low cost cooling can be used to cool or heat the building at an 
early time (before high-cost heating or cooling is necessary). If there are fast (high-cost) heat-
ing and cooling devices, a predictive controller of the presented type is not compromising 
comfort – even if the controllers building model is bad and future disturbances are estimated 
wrong. 
To further investigate the subject, realistic predictions of disturbances will be used for differ-
ent building types and different climates. More (simpler) building models will also be studied 
regarding their robustness and sensitivity to model errors as well as possible tuning methods. 
In addition the users’ behavior – in particular in respect of glare protection, desire of daylight 
and a small numbers of blind repositions – will be treated more realistic. This will lead to 
fewer possibilities for a predictive controller to use blinds as low cost heating or cooling de-
vice and therefore reduce the energy (cost) savings. 
The outcomes will be helpful not only to design and justify predictive controllers for real-
world application but also to design and evaluate simple heuristic integrated room automation 
controllers. 
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