Use of MPC for Building Control

D. Gyalistras

Short Course on Model Predictive Control

24. February 2009 ETH Zurich

Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera O MeteoSwiss

Overview

- Why Buildings?
- Control Tasks & Challenges
- Building Modeling
- Assessment Strategy
- Simulation Results
- Transfer to Practice
- Conclusions

Research Team

D. Gyalistras, A. Fischlin 1 M. Morari, C.N. Jones, F. Oldewurtel, A. Parisio ² T. Frank, S. Carl, V. Dorer, B. Lehmann, K. Wirth ³ P. Steiner, F. Schubiger, V. Stauch ⁴ J. Tödtli, C. Gähler, M. Gwerder ⁵

- ¹ Terrestrial Systems Ecology Group, ETH Zurich
- ² Automatic Control Laboratory, ETH Zurich
- ³ Building Technologies Laboratory, Empa Dübendorf
- ⁴ Federal Office of Meteorology and Climatology (MeteoSwiss), Zurich
- ⁵ Building Technologies Division, Siemens Switzerland Ltd, Zug

http://www.opticontrol.ethz.ch/

Why Buildings?

Buildings account for ~40% of global final energy use

Example: end-use sector shares of total US consumption.

DOE/EIA (2008): Annual Energy Review 2007. Report No. DOE/EIA-0384(2007)

Most of the energy is consumed during the use of the buildings

Energy consumed in the life of a building, estimated at 60 years.

Jones, D. Ll. (1998): Architecture and the Environment – Bioclimatic Building Design. Laurence King Publishing, London, 256pp.

4

Why Buildings? (2/4)

Buildings account for \sim 33% of global total CO₂ emissions (including emissions from electricity use)

Figure TS.17: $CO₂$ emissions (GtCO₂) from buildings including emissions from the use of electricity, 1971–2030 [Figure 6.2].

Barker, T. et al. (2007): Technical Summary. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B, Metz, O, R, Davidson, P, R, Bosch, R, Dave, L, A, Mever (eds)], Cambridge *University Press, Cambridge, United Kingdom and New York, NY, USA.*

Why Buildings? (3/4)

Building sector has large potential for cost-effective reduction of $CO₂$ emissions

Figure TS.27: Estimated sectoral economic potential for global mitigation for different regions as a function of carbon price in 2030 from bottom-up studies. compared to the respective baselines assumed in the sector assessments. A full explanation of the derivation of this figure is found in Section 11.3.

Barker, T. et al. (2007).

Why Buildings? (4/4)

Most investments in buildings are expected to pay back through reduced energy bills

Greenhouse gas abatement cost curve for London buildings (2025, decision maker perspective)

Source: Watson, J. (ed.) (2008): Sustainable Urban Infrastructure, London Edition – a view to 2025. Siemens AG, Corporate Communications (CC) Munich, 71pp.

7

Control Task – Integrated Room Automation

Integrated control of the

- Heating
- Cooling
- Ventilation
- Electrical lighting
- Blinds

of a single room or building zone

Control Task – Building Systems Variants

Building System

Control Task

Use minimum amount of energy (or money) to keep the room temperature, illuminance level and $CO₂$ concentration in prescribed comfort ranges

Control Task – Why MPC?

- Several HVAC System components long-term optimal control solution often not trivial.
- Temporal variations in comfort requirements and/or energy costs introduce additional complexity.
- Predictive control opens up the possibilities
	- to exploit the building's thermal storage capacity
	- to use information on future disturbances (weather, internal gains) for better planning.

Building Modeling – Choice of Model?

Use of MPC for Building Control Use of MPC for Building Control Computer of the Computer of the Control of the Control Computer of the Control of the

Building Modeling – "RC Approach"

Heat transfer rate

$$
\frac{dQ}{dt} = U \cdot A \cdot (\vartheta_e - \vartheta_i)
$$

$$
\Rightarrow \frac{dQ}{d\vartheta_i} \cdot \frac{d\vartheta_i}{dt} = U \cdot A \cdot (\vartheta_e - \vartheta_i)
$$

$$
C_i \qquad K_{ie}
$$

Thermal capacity C

$$
C_i = d \cdot A \cdot \rho \cdot c_p
$$

thickness area density spec heat capacity

Heat transfer coefficient K

 $1/K_{ie} = 1/K_i + 1/K_e$

$$
\Rightarrow C_i \cdot \frac{d\vartheta_i}{dt} = K_{ie} \cdot (\vartheta_e - \vartheta_i)
$$

Use of MPC for Building Control Use of MPC for Building Control **Control Control Control Control Control** Control Cont

Building Modeling – System States

- x_1 = room temperature $[°C]$ $x_2 \ldots x_4$ = temperatures of floor/ceiling $[°C]$ ^{*} $x_5 \cdot x_7$ = temperatures outer wall layers [°C] $x_8 \cdot x_{10} =$ temperatures inner wall layers [°C]
- * Enhanced model variant: two additional layers

Building Modeling – Model Overview

Building Modeling – System Equations

$$
dx/dt = A \cdot x + B_u \cdot u + B_v \cdot v + \sum_{i=1}^{n_u} \{ (B_{vu} \cdot v + B_{xu} \cdot x) \cdot u_i \}
$$

 $y = C \cdot x + D_u \cdot u + D_v \cdot v + \sum_{i=1}^{n_u} \{ D_{vu} \cdot v \cdot u_i \}$

States

- room temperature [degC] x_1
- slab temperatures 1...5 [degC] $X_2...X_6$
- inner wall temperatures 1...3 [degC] $X_7...X_9$
- outside wall temperatures 1...3 [degC] $X_{10}...X_{12}$

Control inputs

- Heating power (my), positive values = heating $\left[W/m^2\right]$ u,
- Cooling power (slab), positive values = cooling $[W/m^2]$ u.
- Blind position [0: closed ... 1: open] [-] u,
- Free cooling usage factor [0: off ... 1: max] [-] u,
- Gains electric lighting [W/m²] U,
- Heating power (slab), positive values = heating $\left[W/m^2\right]$ Шc
- Cooling power (air), positive values = cooling $[W/m^2]$ u,
- Air change rate mech. vent. with ERC (eps>0) [1/h] **U**s
- Air change rate mech. vent. without ERC [1/h] **U**q
- Heating power (radiator), positive values = heating $[W/m^2]$
- u_{11} Air change rate nat. vent. [1/h]

Disturbances

- Outside air temperature [degC] V_{1}
- Free cooling temperature [degC] $V₂$
- Solar gains with fully closed blinds $\left[W/m^2\right]$ V_{2}
- Additional solar gains with open blinds $[W/m^2]$ V_A
- Daylight illuminance with fully closed blinds [lux] $V₅$
- Additional daylight illuminance with open blinds [lux] $V_{\rm f}$
- Internal gains persons $[W/m^2]$
- Internal gains equipment $[W/m^2]$ V_8
- Fresh air temperature mech. ventilation [degC]
- Air change rate infiltration [1/h] V_{10}

Outputs

- room temperature [degC] V_1
- room illuminance [lux] V_2
- ceiling surface temperature [degC] V₃
- Sum of air change rate mech, yent u8+u9 [1/h] **V**_A
- Total air change rate [1/h] y₅
- Inlet temperature overheat (balance <= 0 ok) [W/m2] V₆
- Inlet temperature overcool, (balance >=0 ok) [W/m2] $y₇$

Controler Assessment– Challenges

- Absolute and comparative performance of control algorithms varies strongly with building type, type of HVAC system, comfort requirements, location etc.
- Multiple assessment criteria: energy consumption, monetary cost, various comfort indices
- Relative importance of control: how does the choice of control strategy compares to variations in other important key factors?

Controler Assessment – Case Study Sites

Zürich Basel-Binningen Genève-Cointrin Lugano Modena Marseille-Marignane Clermont-Ferrand Mannheim Hohenpeissenberg Wien Hohe Warte

Controler Assessment – Modeling & Simulation Environment

Controller Assessment – Concept

Information Levels:

- 1. "perfect world we know everything"
- 2. "real world, no weather forecasts"
- 3. "real world, with weather forecasts"

Controler Assessment – Definition of Simulation Experiments

8 building zone types:

Controler Assessment – Control Strategies Considered

- **RBC**_{has} Basic rule based control
- **RBC**_{adv} Advanced rule based control (newly developed)
- **MPC-CE** MPC-Certainty Equivalent control *)
- **PB** Performance Bound
	- *n* = Narrow thermal comfort range
	- *w* = Wide thermal comfort range
- *) Using "COSMO-7" weather forecasts by MeteoSwiss, preliminary results.

Controler Assessment – "Basic Rule Based Control"

- A solar radiation sensor measures total solar gains on room orientation(s)
- Rule based blinds positioning:

```
if ( solar gains < threshold value )
    blinds are fully opened
else
    if (room is not occupied)
          blinds are fully closed
    else
          blinds are closed to a predefined position that attempts
          to maintain luminance setpoint (if possible)
    end
end
```
• For all remaining control actions is used instantaneous optimal control

Results (1) – Improved Rule Based Control

Results (2) – Potential of Predictive Control

Results (3) – Comparison of Control Strategies

Use of MPC for Building Control

26

Controler Assessment – Simulations Experiments (2)

40 building zone types:

Façade orientation Thermal insulation level **Construction type Window area fraction Internal gains level**

Building Systems:

Control Strategies:

Assessment Criterium: Annual Primary Energy (PE) consumption

EMPA

SIEMENS

Use of MPC for Building Control Use of MPC for Building Control **Control Control Control** Swisselectric and 27 **Matter 2009, ETTM** 2

24. Feb. 2009, ETH Zurich Computer Control Control of *Tesearch*

Results – Comparison of Annual PE Consumption

Results – Required Prediction Horizons

Transfer to Practice – Challenges for MPC approach

• Embed in existing automation systems

Confédération suisse

onrederation subse
onfederazione Svizzera

swisselectric

Transfer to Practice – Challenges for MPC approach (2)

- Prove added value (benefit/cost analysis)
- Commissioning & tuning aspects
- Robustness
- Accuracy of input data (system state, disturbances)
- Plausibility / User acceptance

Transfer to Practice – General Challenges

- Conservative Industry
- Fragmented Field
- Lowest First Cost
- Lack of Incentives
- Poor Education
- Lack of information
	- Performance Projections
	- Results from New Buildings
- Linear Designs

Glicksman, L.R. (2009). Transforming the Building Stock: Opportunities and Barriers. Presentation at the Annual Meeting of The Alliance for *Global Sustainability: Urban Futures: the Challenge of Sustainability, 26-29 January 2009, ETH Zurich, Switzerland.*

Conclusions

- Demonstration of significant savings potential.
- Potential is highly system and case dependent.
- Benefit of weather predictions varies also strongly from case to case.
- Appropriate tools and data sets are important.
- Examination of sophisticated control strategies can be useful for identifying improved simpler strategies.
- Cases with large required prediction horizons suggest that improvement might only be possible by means of predictive control.
- Transfer to practice is challenging.

