Use of MPC for Building Control

D. Gyalistras

Short Course on Model Predictive Control

24. February 2009 ETH Zurich

Schweizerische Eidgenossenschaft Confederation suisse Confederazione Svizzera Confederazion svizra MeteoSwiss

Overview

- Why Buildings?
- Control Tasks & Challenges
- Building Modeling
- Assessment Strategy
- Simulation Results
- Transfer to Practice
- Conclusions

Research Team

D. Gyalistras, A. Fischlin ¹
M. Morari, C.N. Jones, F. Oldewurtel, A. Parisio ²
T. Frank, S. Carl, V. Dorer, B. Lehmann, K. Wirth ³
P. Steiner, F. Schubiger, V. Stauch ⁴
J. Tödtli, C. Gähler, M. Gwerder ⁵

- ¹ Terrestrial Systems Ecology Group, ETH Zurich
- ² Automatic Control Laboratory, ETH Zurich
- ³ Building Technologies Laboratory, Empa Dübendorf
- ⁴ Federal Office of Meteorology and Climatology (MeteoSwiss), Zurich
- ⁵ Building Technologies Division, Siemens Switzerland Ltd, Zug

http://www.opticontrol.ethz.ch/

Why Buildings?

Buildings account for ~40% of global final energy use

Example: end-use sector shares of total US consumption.

DOE/EIA (2008): Annual Energy Review 2007. Report No. DOE/EIA-0384(2007)

Most of the energy is consumed during the use of the buildings

Energy consumed in the life of a building, estimated at 60 years.

Jones, D. Ll. (1998): Architecture and the Environment – Bioclimatic Building Design. Laurence King Publishing, London, 256pp.

4

Why Buildings? (2/4)

Buildings account for \sim 33% of global total CO₂ emissions (including emissions from electricity use)

Figure TS.17: CO₂ emissions (GtCO₂) from buildings including emissions from the use of electricity, 1971–2030 [Figure 6.2].

Barker, T. et al. (2007): Technical Summary. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, L. A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Why Buildings? (3/4)

Building sector has large potential for cost-effective reduction of CO_2 emissions

Figure TS.27: Estimated sectoral economic potential for global mitigation for different regions as a function of carbon price in 2030 from bottom-up studies, compared to the respective baselines assumed in the sector assessments. A full explanation of the derivation of this figure is found in Section 11.3.

Barker, T. et al. (2007).

Why Buildings? (4/4)

Most investments in buildings are expected to pay back through reduced energy bills

Greenhouse gas abatement cost curve for London buildings (2025, decision maker perspective)

Source: Watson, J. (ed.) (2008): Sustainable Urban Infrastructure, London Edition – a view to 2025. Siemens AG, Corporate Communications (CC) Munich, 71pp.

7

Control Task – Integrated Room Automation

Integrated control of the

- Heating
- Cooling
- Ventilation
- Electrical lighting
- Blinds

of a single room or building zone

7

MeteoSwiss

EMPA

SIEMENS

Control Task – Building Systems Variants

Building System

Automated Subsystems	S1	S2	S3	S4
Blinds	X	Х	Х	X
Electric lighting	X	Х	Х	Х
Mech. ventilation flow, heating, cooling	_	Х	Х	Х
Mech. ventilation energy recovery	_	Х	Х	Х
Natural ventilation (night-time only)	_	_	_	Х
Cooled ceiling (capillary tube system)	X	Х	_	_
Free cooling with wet cooling tower	X	Х	_	_
Radiator heating	X	Х	_	_
Floor heating	_	_	_	Х

EMPA

SIEMENS

Control Task

Use minimum amount of energy (or money) to keep the room temperature, illuminance level and CO_2 concentration in prescribed comfort ranges

Control Task – Why MPC?

- Several HVAC System components long-term optimal control solution often not trivial.
- Temporal variations in comfort requirements and/or energy costs introduce additional complexity.
- Predictive control opens up the possibilities
 - to exploit the building's thermal storage capacity
 - to use information on future disturbances (weather, internal gains) for better planning.

Building Modeling – Choice of Model?

Use of MPC for Building Control 24. Feb. 2009, ETH Zurich

Building Modeling – "RC Approach"

Heat transfer rate

$$\frac{dQ}{dt} = U \cdot A \cdot (\vartheta_e - \vartheta_i)$$

$$\Rightarrow \underbrace{\frac{dQ}{d\vartheta_i}}_{C_i} \cdot \frac{d\vartheta_i}{dt} = \underbrace{U \cdot A}_{K_{ie}} \cdot (\vartheta_e - \vartheta_i)$$

Thermal capacity C

$$C_i = d \cdot A \cdot \rho \cdot c_p$$

thickness area density spec. heat capacity

Heat transfer coefficient K

 $1/K_{ie} = 1/K_i + 1/K_e$

$$\Rightarrow C_i \cdot \frac{d\vartheta_i}{dt} = K_{ie} \cdot (\vartheta_e - \vartheta_i)$$

Use of MPC for Building Control 24. Feb. 2009, ETH Zurich

Building Modeling – System States

- $\begin{array}{ll} x_1 &= \text{room temperature [}^\circ\text{C}\text{]} \\ x_2 \,..\, x_4 &= \text{temperatures of floor/ceiling [}^\circ\text{C}\text{]} \,* \\ x_5 \,..\, x_7 &= \text{temperatures outer wall layers [}^\circ\text{C}\text{]} \\ x_8 \,..\, x_{10} &= \text{temperatures inner wall layers [}^\circ\text{C}\text{]} \end{array}$
- * Enhanced model variant: two additional layers

Confédération suisse Confederazione Svizzera

MeteoSwiss

EMPA

SIEMENS

Building Modeling – Model Overview

Building Modeling – System Equations

$$dx/dt = A \cdot x + B_{u} \cdot u + B_{v} \cdot v + \sum_{i=1}^{n_{u}} \{ (B_{vu} \cdot v + B_{xu} \cdot x) \cdot u_{i} \}$$
$$y = C \cdot x + D_{u} \cdot u + D_{v} \cdot v + \sum_{i=1}^{n_{u}} \{ D_{vu} \cdot v \cdot u_{i} \}$$

States

- x₁ room temperature [degC]
- x₂..x₆ slab temperatures 1...5 [degC]
- x₇..x₉ inner wall temperatures 1...3 [degC]
- x₁₀..x₁₂ outside wall temperatures 1...3 [degC]

Control inputs

- u_1 Heating power (mv), positive values = heating [W/m²]
- **u**₂ Cooling power (slab), positive values = cooling [W/m²]
- **u**₃ Blind position [0: closed ... 1: open] [-]
- **u**₄ Free cooling usage factor [0: off ... 1: max] [-]
- **u**₅ Gains electric lighting [W/m²]
- u_6 Heating power (slab), positive values = heating [W/m²]
- u_7 Cooling power (air), positive values = cooling [W/m²]
- $\textbf{\textit{u}}_{\textbf{\textit{8}}}$ Air change rate mech. vent. with ERC (eps>0) [1/h]
- u_{g} Air change rate mech. vent. without ERC [1/h]
- u_{10} Heating power (radiator), positive values = heating [W/m²]
- u_{11} Air change rate nat. vent. [1/h]

Disturbances

- v₁ Outside air temperature [degC]
- v₂ Free cooling temperature [degC]
- v_3 Solar gains with fully closed blinds [W/m²]
- v_4 Additional solar gains with open blinds [W/m²]
- v₅ Daylight illuminance with fully closed blinds [lux]
- v₆ Additional daylight illuminance with open blinds [lux]
- v_7 Internal gains persons [W/m²]
- v₈ Internal gains equipment [W/m²]
- v₉ Fresh air temperature mech. ventilation [degC]
- **v**₁₀ Air change rate infiltration [1/h]

Outputs

- y₁ room temperature [degC]
- y₂ room illuminance [lux]
- y₃ ceiling surface temperature [degC]

- y_4 Sum of air change rate mech. vent u8+u9 [1/h]
- y₅ Total air change rate [1/h]
- y_6 Inlet temperature overheat (balance <=0 ok) [W/m2]
- y_7 Inlet temperature overcool, (balance >=0 ok) [W/m2]

Controler Assessment– Challenges

- Absolute and comparative performance of control algorithms varies strongly with building type, type of HVAC system, comfort requirements, location etc.
- Multiple assessment criteria: energy consumption, monetary cost, various comfort indices
- Relative importance of control: how does the choice of control strategy compares to variations in other important key factors?

Controler Assessment – Case Study Sites

Zürich Basel-Binningen

Genève-Cointrin

Lugano

Modena

Marseille-Marignane

Clermont-Ferrand

Mannheim

Hohenpeissenberg Wien Hohe Warte

Controler Assessment – Modeling & Simulation Environment

Controller Assessment – Concept

Information Levels:

- 1. "perfect world we know everything"
- 2. "real world, no weather forecasts"
- 3. "real world, with weather forecasts"

Controler Assessment – Definition of Simulation Experiments

8 building zone types:

SW (corner)	
Swiss Average	Passive House
Heavyweight	Lightweight
30%	80 %
low	high
S01	
9 European sites	
(see next slide)	
Annual Primary E	nergy (PE) consumption
	SW (corner) Swiss Average Heavyweight 30% low S01 9 European sites (see next slide) Annual Primary E

Controler Assessment – Control Strategies Considered

- **RBC**_{bas} Basic rule based control
- **RBC**_{adv} Advanced rule based control (newly developed)
- MPC-CE MPC-Certainty Equivalent control *)
- **PB** Performance Bound
 - *n* = Narrow thermal comfort range
 - *w* = Wide thermal comfort range
- *) Using "COSMO-7" weather forecasts by MeteoSwiss, preliminary results.

Controler Assessment – "Basic Rule Based Control"

- A solar radiation sensor measures total solar gains on room orientation(s)
- Rule based blinds positioning:

```
if ( solar gains < threshold value )
    blinds are fully opened
else
    if (room is not occupied)
        blinds are fully closed
    else
        blinds are closed to a predefined position that attempts
        to maintain luminance setpoint (if possible)
        end
end</pre>
```

· For all remaining control actions is used instantaneous optimal control

Results (1) – **Improved Rule Based Control**

Results (2) – Potential of Predictive Control

Results (3) – Comparison of Control Strategies

Controler Assessment – Simulations Experiments (2)

40 building zone types:

Façade orientation Thermal insulation level Construction type Window area fraction Internal gains level

Building Systems:

Sites:

Control Strategies:

Assessment Criterium:

N, E, S, W and S	W (corner)			
Swiss Average	Passive House			
Heavyweight	Lightweight			
30%	80 %			
low	high			
S01 S04				
Geneva, Basel, Lugano				
Short-term optinPerformance Berter	mal control (STOC) ound (PB)			
Annual Primary Energy (PE) consumption				

Results – Comparison of Annual PE Consumption

Results – Required Prediction Horizons

Transfer to Practice – Challenges for MPC approach

Embed in existing automation systems

Confédération suisse Confederazione Svizzera

MeteoSwiss

swisselectric

research

 \bigcirc

ccem.ch

Transfer to Practice – Challenges for MPC approach (2)

- Prove added value (benefit/cost analysis)
- Commissioning & tuning aspects
- Robustness
- Accuracy of input data (system state, disturbances)
- Plausibility / User acceptance

Transfer to Practice – **General Challenges**

- Conservative Industry
- Fragmented Field
- Lowest First Cost
- Lack of Incentives
- Poor Education
- Lack of information
 - Performance Projections
 - Results from New Buildings

research

• Linear Designs

Glicksman, L.R. (2009). Transforming the Building Stock: Opportunities and Barriers. Presentation at the Annual Meeting of The Alliance for Global Sustainability: Urban Futures: the Challenge of Sustainability, 26-29 January 2009, ETH Zurich, Switzerland.

Conclusions

- Demonstration of significant savings potential.
- Potential is highly system and case dependent.
- Benefit of weather predictions varies also • strongly from case to case.
- Appropriate tools and data sets are important.
- Examination of sophisticated control strategies can be useful for identifying improved simpler strategies.
- Cases with large required prediction horizons suggest that improvement might only be possible by means of predictive control.
- Transfer to practice is challenging. •

research

