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PREFACE 

The needed transition towards a sustainable energy system opens up new business opportunities 

also in the Building Automation sector.  The development of corresponding products and solutions 

poses however significant scientific-technical challenges that make a close collaboration between 

academia and industry necessary.  

Such an effort was undertaken in the framework of the interdisciplinary project OptiControl 

(http://www.opticontrol.ethz/) that was launched in May 2007.  The project deals with the develop-

ment of predictive control technologies for buildings.  This report summarizes the findings from the 

first two project years.   

As of May 2009 the OptiControl project involved the following persons and institutions: 

D. Gyalistras 
1+2

, A. Fischlin 
1
 

M. Morari, C.N. Jones, F. Oldewurtel, A. Parisio 
2
 

T. Frank, S. Carl, V. Dorer, B. Lehmann, K. Wirth 
3
 

P. Steiner, F. Schubiger, V. Stauch 
4
 

J. Tödtli, C. Gähler & M. Gwerder 
5 

1
 Terrestrial Systems Ecology Group, ETH Zurich, Switzerland 

2
 Automatic Control Laboratory, ETH Zurich, Switzerland 

3
 Building Technologies Laboratory, Empa Dübendorf, Switzerland 

4
 Federal Office of Meteorology and Climatology (MeteoSwiss), Zurich, Switzerland 

5
 Building Technologies Division, Siemens Switzerland Ltd., Zug, Switzerland 

The OptiControl project is sponsored by  

• swisselectric research 

The applied research & development program by swisselectric, an organization of Swiss elec-

tricity grid companies.   

http://www.swisselectric-research.ch/ 

• CCEM-CH 

The Competence Center Energy and Mobility, Switzerland, a center of competence of the 

ETH Domain, the union of the two Swiss Federal Institutes of Technology and four applica-

tion-oriented research institutes.   

http://ccem-ch.web.psi.ch/,  http://www.ethrat.ch/ 

• Building Technologies Division, Siemens Switzerland Ltd., Zug 

Siemens BT is one of the building automation industry’s leading players. It is active world-

wide at more than 500 locations in 51 countries, with annual revenues in the order of 6 billion 

Euros and a divisional profit of ca. 0.45 billion Euros. 

http://www.buildingtechnologies.siemens.ch/ 

Our thanks go to to the sponsors for making this research possible, and to the project participants 

for sharing with us their know-how, creativity and talents in what proved to be a most challenging 

and successful enterprise.  

We trust that the work reported here will be of general interest to researchers and developers in the 

Building Automation sector, and that it will contribute to further improving the efficiency and qual-

ity of building control. 

 The Editors 
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SUMMARY 

This report presents the work conducted during the first two years of the OptiControl project 

(www.opticontrol.ethz.ch), an interdisciplinary project dedicated to the development of predictive 

control technologies for buildings.  The overall aim is to minimize the energy usage of buildings 

whilst maintaining or even improving occupant comfort and reducing peak electricity demand. 

Here we report on project Phases I and II that dealt with the development of methods, tools and 

control strategies, the assessment of the potential of predictive control, and the in-depth analysis of 

selected cases.  This work was based entirely on computer simulations.  In Phase III the newly de-

velopped control approaches shall be tested in a demonstrator building. 

Integrated Room Automation (IRA) for office buildings was identified as a promising candidate for 

the investigation of predictive control strategies.  IRA deals with the automated control of blinds, 

electric lighting, heating, cooling, and ventilation of an individual building zone or room.  Most of 

the work undertaken within the OptiControl project so far has focused on this application. 

A comprehensive set of criteria covering all aspects of IRA control solutions was defined to provide 

guidance for the research and development work.  The criteria ranged from control performance and 

requirements of different users to marketing potential.  Based on these criteria and on further con-

siderations Rule-Based Control (RBC) and Model Predictive Control (MPC) were identified as the 

most promising control approaches.   

A generic framework for the assessment of control performance was developed that uses the so-

called Performance Bound (PB) as an absolute benchmark.  The PB is a theoretical value and pre-

sents the lowest achievable control cost (in terms of energy or money) for a given building, cost 

function, disturbances (weather, internal gains), and set of comfort requirements.  It is estimated by 

assuming perfect knowledge of the building system and all disturbances acting upon it.  The differ-

ence in control cost between the best currently known non-predictive controller and the PB presents 

the theoretical savings potential of predictive control.  The realizable potential in practice will al-

ways be smaller since every real controller will show higher costs than the PB.  

The IRA control task was formally defined in all its facets:  Relevant building types, types of heat-

ing, cooling, ventilation, blind and lighting subsystems, control operation types, and representative 

building locations were identified, the subsystems were sized properly, and meaningful energy us-

ages/costs were specified.  The hierarchical architecture of modern Building Automation and Con-

trol systems was considered from begin on in order to ensure that the solutions developed could be 

easily integrated therein later on. 

Four non-predictive RBC strategies plus associated procedures for the automated tuning of their 

control parameters were identified or newly designed and implemented for use in simulations:  

RBC-1, a state-of-the-art strategy;  RBC-2: same as RBC-1, but allowing for continuous blind 

transmission values and for time-continuous (rather than event-triggered) repositioning of blinds;  

RBC-3: an entirely new strategy that, instead of working with threshold values, uses historical heat 

and cold demand signals and historical room temperature data, and that also allows for maximum 

freedom in blind movement;  and RBC-4: same as RBC-3, but with blinds repositioning restricted 

to once per hour. 

A new family of Model Predictive Control (MPC) strategies was developed that was tailored to the 

needs of building control:  PB, an algorithm that estimates the PB with the aid of MPC;  Certainty 

Equivalence (CE), a controller that uses imperfect models and/or disturbance predictions but treats 

them as if they were correct (i.e. equal to certain);  and Chance Constrained Stochastic MPC 

(SMPC), an enhanced approach that may or may not involve perfect models but takes the uncer-

tainty in the disturbances predictions, in particular of weather predictions, into account.   
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A new model for the coupled thermal, light and air quality dynamics of a single building zone was 

developed, tested and validated.  The model was used to simulate the behavior of real buildings 

under different control strategies, and to describe the building system’s dynamics for MPC.  It was 

a 12th order multiple-input-multiple-output bilinear model with a resistance-capacitance network 

representation of thermal energy fluxes.  Analysis of the approximations employed and a compari-

son with a detailed radiative-convective model suggested that the model delivers accurate and reli-

able results. 

Hourly weather data from 10 representative European SYNOP measurement sites for the years 

2001 (or later) to 2007, predictions by the COSMO-7 numerical weather prediction model for the 

years 2006 and 2007, and various Design Reference Year datasets (special, representative datasets 

compiled from long term climate observations) were prepared as an input for building simulations.  

Algorithms for the disaggregation of hourly global radiation into the direct and diffuse part, and for 

the derivation of global radiation components on vertical oriented surfaces were implemented.  No-

vel statistical post-processing methods were developed and applied to improve local predictions of 

the most important weather variables for the building control applications under investigation.  In 

general, forecast biases could be successfully removed on a seasonal basis.  The root mean square 

error of local temperature predictions for the first 24 hours ahead was reduced by 20–30%.  For 

wetbulb temperature the reduction was 35–45%.  For the radiation components no reductions or 

slight increases were obtained for winter and summer, but reductions of 10–60% were achieved for 

spring and autumn.  These improved data sets were made available for building simulations.   

The theoretical savings potential of predictive control was assessed by comparing the performance 

of the controllers RBC-1 to RBC-4 with the PB.  The found savings potentials were put into context 

by comparing them with possible energy savings due to the following low-cost measures related to 

control:  a) a reduction of the thermal comfort when the building is not used, by allowing for room 

tem-perature set-backs during nights and weekends (base case: no set-backs allowed);  b) a general 

reduction of thermal comfort due to a widening of the room temperature comfort range by ~1.5 ºC 

(base case: narrow comfort range);  c) the use of Indoor Air Quality controlled ventilation (base 

case: application of a constant minimum fresh air supply rate according to a fixed occupancy sche-

dule);  d) the adjustment of the control such that it optimized control actions for energetic rather 

than monetary cost (base case: optimization of control for money). 

Conducted was a large-scale factorial simulation experiment (~23’500 whole-year, hourly time step 

dynamic simulations) considering 64 building/room types (differing in façade orientation, construc-

tion type, building standard etc.), 5 building systems (S1–S5, employing different heating, cooling, 

and ventilation subsystems), 2 “cost” functions (Non-Renewable Primary Energy [NRPE] usage, 

and monetary costs), 4 different building sites, 4 thermal comfort definitions, and 2 ventilation 

strategies.  Annual total costs and annual comfort indices were analyzed by building system, build-

ing standard (PA–“Passive House”, or SA–“Swiss average”), and building class (I–“very frequent”, 

II – “less frequent”, III–“exotic” building case).   

RBC-3 (time-continuous repositioning of blinds and perfect luminance control via blind operation) 

proved clearly as the best performing non-predictive controller and in many cases it came very 

close to the PB.  The average absolute (relative) theoretical NRPE savings potential over the build-

ing classes I and II was 2.6 kWh/m2/a (9.2%) for the PA building standard and building system 

variants S1-S5, and 3.8 kWh/m2/a (9.7%) for the SA building standard and building system variants 

S1-S3.  Much larger theoretical savings potentials were obtained for the RBC-1 and RBC-4 control-

lers that employed much more realistic assumptions on repositioning of blinds as compared to 

RBC-3: average maximum possible NRPE savings (building classes I and II, building system vari-

ants S1–S5) for these two strategies were 34% and 33% for the PA, and 30% and 23% for the SA 

building standard, respectively.   
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Generally, all simulation results showed a very high case-to-case variability.  For example, for the 

RBC-3 controller the 10th and 90th percentiles of the theoretical savings potentials straddled the 

average intervals 0.7–4.7 kWh/m2/a (2%–18%) for PA, and 2.0–5.5 kWh/m2/a (4%–16%) for SA.   

From the investigated low-cost energy saving measures related to control the use of Indoor Air 

Quality controlled ventilation showed the largest effect: ~27% for the PA and ~18% for the SA 

building standard (average values over building classes I and II and the building system variants 

S2–S5 that included mechanical ventilation).  The assumed widening of the thermal comfort range 

yielded average savings in the order of 10% (average over building classes I and II and all five buil-

ding system variants).   The use of set-backs resulted to average savings by 3% for PA and 8% for 

SA, respectively.  The choice of cost function (optimization for energy instead of money) was 

found to be generally of secondary importance.   

A closer analysis of the theoretical energy savings potentials showed that they tend to be largest for 

building zone cases entailing large energy fluxes (high solar heat gains and/or high internal gains).  

An examination of carefully selected individual building cases showed that the NRPE savings can 

be traced to the optimized use of the blinds, free cooling and energy recovery.  Predictive control of 

these low-cost devices allows to efficiently pre-heat or pre-cool the building structure.  This makes 

it possible to avoid frequent switching between heating and cooling, and to keep room temperatures 

as much as possible floating freely within the thermal comfort range.   

Comparison of hourly electric power demand values in the PB and the RBC-3 simulations showed 

that a reduction in energy use does not necessarily imply also a reduction in peak demand.  Reduc-

tion of peak loads thus makes specific adjustments in the control algorithms necessary.  These can 

be easily accomplished with the developped MPC controllers. 

The extent to which the theoretical energy savings potentials can be exploited in practice was ex-

plored based on simulation studies with the newly developed MPC strategies and using realistic 

weather forecasts from the COSMO-7 processing chain.  It was found that the SMPC strategy is 

clearly superior to the CE strategy, and also much better than RBC-4 in terms of NRPE usage, com-

fort violations and room temperature dynamics.  The tunability of the SMPC and CE strategies with 

regard to thermal comfort was demonstrated, and it was shown that SMPC offers a particularly ele-

gant and plausible tuning procedure.  First analyses suggested that the performance of MPC control-

lers is robust against model parameter mismatch.  The use of operational weather forecasts was 

found to give an improvement as compared to the use of simple persistence forecasts.  The uncer-

tainty present in the weather predictions had however a significant effect on CE controller perform-

ance, and the use of a low-level controller was identified as a remedy.  The use of a Kalman filter 

for the correction of local weather forecasts at the building site was generally found to be beneficial. 

The final section of the report assesses the project’s status after the first two years of work.  The 

project’s achievements are summarized and discussed, and four important areas for further research 

are identified:  the implementation of improved rule-based reference strategies (support of night/ 

weekend set-backs, plus adaptations for floor heating and for thermally activated building systems);  

the enhancement of the comparability of RBC and MPC;  the further development of the novel con-

trol strategies in order to make them suitable for use in practice;  and the integration of MPC in 

commercial BAC systems. 
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1.1 The OptiControl Project 

Buildings use ca. 40% of final energy worldwide and account for ca. 33% of global total CO2 emis-

sions, including emissions from electricity use [1].  Most of the energy is consumed during the use 

of the buildings [2], and in developed countries roughly half of the energy use goes to the building’s 

heating, ventilation, and air conditioning (HVAC) systems [3].  In the EU a massive growth is pre-

dicted in conditioned area and energy consumption in the years to come [4].  At the same time the 

building sector has a large potential for the cost-effective reduction of CO2 emissions [1], and most 

investments in buildings can be expected to pay back through reduced energy bills (e.g.,[5]).   

The research project OptiControl (http://www.opticontrol.ethz.ch/) deals with the improvement of 

the building’s automation and control systems as one possibility to reduce energy consumption.  

The goal is to realize energy savings and reduce peak electricity demand while maintaining high 

user comfort and work productivity, at modest basic investment and operating costs.   

In order to reach this goal the project aims at exploiting newest developments in the areas of build-

ing and information technologies, weather forecasting, and Model Predictive Control (MPC) of dy-

namic systems.  The emphasis is on predictive control, for the following reasons:  

Firstly, the idea of using load and disturbances forecasts – in particular weather forecasts – for 

building control is expressed time and again by specialists [12] and laymen alike.  It is intuitively 

appealing, and in many cases it appears also particularly promising.  Many studies have dealt with 

this issue [7]-[26], but to our knowledge the potential and the benefit/costs of the approach have not 

been investigated systematically so far. 

Secondly, the boundary conditions for building control are becoming increasingly dynamic, and this 

clearly enhances the importance of predictive control.  The changes in boundary conditions relate to 

the increasing use of intermittent, low carbon energy sources, the high solar gains associated with 

many modern building designs, and the advent of dynamic electricity pricing.  

Finally, there are some further developments that may make the use of more sophisticated (e.g., 

predictive) control approaches necessary in order to get buildings to function efficiently and cor-

rectly: increasing comfort requirements, the introduction of new, but in terms of control more de-

manding building technologies (such as heat pumps, thermally activated building systems, cooling 

by night-time ventilation etc.), and the need to integrate diverse technologies into overall systems.   

The OptiControl project addresses the development of novel building control strategies in three 

phases that are extending over a period of ca. one year each.  The phases are:  I. Assessment of po-

tential for improved control;  II. In-depth analysis of selected cases;  and III. Testing of new control 

approaches in a demonstrator building.  Phases I and II are entirely based on computer simulations. 

This report was compiled at the end of Phase II and provides the basis for evaluating a possible con-

tinuation of the project by a third year. 

At an early stage of the project two major applications were identified as particularly promising for 

predictive control.  They are operating on the level of a single building zone and on the whole-

building level, respectively.  They are the so-called Integrated Room Automation (IRA), and the 

generic control of energy fluxes and energy storages related to buildings.  

The main focus during the first two project years has been on the IRA application, and this is also 

the application addressed in the largest part of this report.  However, the overall methodology de-

veloped for the study of IRA is generic and can be used in the context of other applications as well. 
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1.2 Integrated Room Automation  

The Integrated Room Automation (IRA) application deals with the automated control of blinds, 

electric lighting, heating, cooling, and ventilation of an individual building zone or room.  The con-

trol task consists in maintaining occupant comfort at minimum energetic or monetary cost while at 

the same time rejecting disturbances related to, e.g., weather, internal gains, and occupant behavior.  

IRA is a particularly interesting candidate for predictive control studies. The potential benefit of 

predictive control for IRA lies in optimizing the use of cheap control actions (e.g. blinds position-

ing, free cooling) and in the exploitation of the building’s thermal storage capacity.  Also, IRA typi-

cally involves very diverse technical equipment.  Consequently, the control task is quite complex, 

and the equipment’s energy consumption tends to be higher than in simpler set-ups.  This in turn 

promises higher saving potentials thanks to more sophisticated control.    

For several reasons we focused on office buildings.  Firstly, office buildings typically employ en-

ergy intensive HVAC systems.  Within the commercial sector they show together with retail the 

highest energy consumption, in the order for 2–3% of national total energy use [3].  Secondly, total 

built area of office buildings has been steadily increasing in the last years.  Thirdly, they are the 

main type of buildings that are equipped with the individual room/zone controllers considered in the 

IRA application.  And finally, offices typically exhibit relatively high internal gains that need to be 

dealt with in an efficient manner.   

1.3 Criteria for Non-Standardized Control Solutions 

IRA uses so-called “non-standardized” control solutions.  This means that the control has to be tai-

lored to the given building, combination of automated subsystems and user requirements by means 

of corresponding programs that govern the behavior and interplay of the individual subsystems.  

Non-standardized control solutions need to be customized, commissioned (engineering) and oper-

ated (service). Therefore, building automation systems with programmable controllers are typically 

used for that purpose. 

Research and development efforts within the OptiControl project were guided by a comprehensive 

set of criteria that were considered important for non-standardized control solutions in the Building 

Automation (BA) sector (Table 1.1).   

The criteria were defined and selected in cooperation with the product marketing section from Sie-

mens Building Technologies (BT).  They covered all aspects of a control solution, ranging from 

performance, requirements of different users, to development and marketing possibilities.  Several 

of the criteria favored simple control solutions, as it is manifested in the current initiative KISS 

(keep it simple and short) within Siemens BT systems development.  

 

No. Criterion Description/Comments 

1 Achievable control performance Maximum performance that can be attained for a correctly functioning and 

well-tuned system. The resulting cost/benefit (between different control solu-

tions) can be quantified quite exactly – with considerable effort – by simula-

tion studies. For example, energy/monetary costs as well as comfort indices 

can be calculated and compared.  

2 Robustness on control parame-

ter settings 

In practice, the control parameter settings will be far from perfect due to miss-

ing information or insufficient understanding of the control system.  There-

fore, it is essential that the control performance is satisfactory for a broad 

range of control parameter settings. 
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No. Criterion Description/Comments 

3 Robustness on building system, 

disturbances, user interactions 

A control solution should perform well for all kind of different building sys-

tems, disturbances (e.g. weather, internal gains) and user interactions.  Typi-

cal user interactions are light switching, blind positioning or the shifting of 

temperature set points.  Since the occupant behavior varies considerably, a 

control solution should be robust also in this regard. 

4 Flexibility and tuning effort in 

the engineering process 

In the building automation market exist numerous variants of the here consid-

ered applications (besides different locations and building types): Different 

HVAC, blind and lighting systems, different levels of automation, different 

control requirements etc.  Moreover, a given application can change during 

the building’s lifetime (e.g., due to installation or removal of inner walls).  

Therefore, there is a need for flexible control solutions that support as many 

variants as possible with low engineering effort.   Tuning effort refers to the 

effort for determining control parameter values that lead to a good control 

performance.  Tuning can occur in the pre-commissioning, the commission-

ing, and/or the service phase of a control solution. 

5 User acceptance for engineer-

ing, commissioning and service 

Non-standardized control solutions such as IRA are engineered for each 

building individually.  Engineers must be able to adapt a control solution to a 

particular case.  The solution then needs to be commissioned and – during 

operation – serviced.  In all that, the engineer’s skill level has to be consid-

ered:  the person involved must understand the basic functionality of the con-

trol solution.  The procedure for adapting and tuning the control solution 

should be as simple as possible and understandable by engineering, commis-

sioning and service personnel.  Training effort to enable an efficient engineer-

ing, commissioning and service procedure should be kept as low as possible. 

6 User acceptance of the end user This is an essential prerequisite for the commercial success of a control solu-

tion. A study about human-machine interface for building automation can be 

found in [27].  For the IRA applications investigated therein the following 

relevant aspects were identified:  (i) Desired comfort can be achieved; (ii) 

Possibility and ease of manual interaction; (iii) Plausibility of automatic con-

trol actions – in particular blind movement; disturbances through automatic 

control actions (e.g. noise of blind movement, automatic light switches). 

7 Suitable as extension option The possibility to use a new control solution as an “add-on” is generally val-

ued as an advantage.  The control solution then presents an element in an 

incrementally extendable solution portfolio.  The overall control solution 

should be based on as many conventional components as possible; the new 

components can then be introduced selectively to increase performance or 

provide additional functionality.   

8 Investment and maintenance 

costs 

The costs associated with the application of the control solution. Investment 

costs can be costs for extra needed computing infrastructure, training costs for 

engineers etc. Maintenance costs include costs for service activities, but also 

possible costs for purchasing weather forecasts from a meteorological service. 

9 Development effort The smaller this effort is, the higher the chances for a control solution to be 

developed and applied in the market.  A control solution with low develop-

ment effort can be directly investigated in field tests with low financial risk if 

the solution fails in these tests.  On the contrary, before developing a solution 

with high development effort, such a solution has to be thoroughly tested in 

simulations and/or prototypes. 

10 Innovativeness and selling ar-

guments  

Besides potential benefits in terms of improved comfort and energy efficiency 

of new control solutions, the offer of an innovative control solution can be 

exploited for marketing purposes: additional selling arguments are generated. 

Table 1.1:  Criteria for the assessment of non-standardized control solutions in the Building Automa-

tion sector. 
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1.4 Assessment of Control Performance 

The criteria 1–4 from Table 1.1 are accessible to quantitative analysis by means of computer simu-

lations and received particular consideration in the OptiControl project.   

The most important criterion was criterion no. 1, the achievable control performance.  The concep-

tual framework used to assess the performance of a specific control strategy (or the comparative 

performance of several control strategies) is shown in Figure 1.1. 

 

 
 

Figure 1.1:  Conceptual framework for assessing controller performance. 

The key element of the assessment is the so-called Performance Bound (PB).  It is a theoretical 

value that presents the lowest achievable control cost (in terms of energy or money) for a given 

building, building system, cost function, disturbances (weather, internal gains) and set of comfort 

requirements.   

The PB can be determined by means of mathematical optimization under the assumption that the 

dynamical behavior of the building and its automated subsystems as well as all (future) weather and 

internal gains disturbances that are acting upon the system are perfectly known (see also Chapter 4). 

Clearly, no real controller will ever reach the PB, but the difference between its performance (e.g. 

energy usage) and the PB value gives a measure of the maximum achievable improvement.  Noth-

ing can be said about to what extent the potential can be exploited by a feasible control.  But the 

sizes of remaining potentials reveal for what applications (building type, HVAC system, location 

etc.) further control strategy development may be promising. 
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1.5 Selection of Control Approaches 

To date a large variety of control approaches have been proposed for building control (overviews 

can be found in  [28], [29], [13]).  These include the usage of neuronal networks (e.g., [30], [17]), 

fuzzy logic approaches (e.g., [30], [31]), rule-based control (RBC, e.g. [32]), and Model Predictive 

Control (MPC, e.g. [33], [34], [35], see also predictive heating control in [32]).  The OptiControl 

project focused on the RBC and MPC approaches.   

The main reason for selecting RBC was that it is the common solution for non-standardized BA 

applications.  Accordingly, a lot of experience with regard to the engineering, commissioning and 

servicing of this type of control is available.  This is important because in order to profit from the 

flexibility of the RBC approach a corresponding tuning effort is often needed.   

Most RBC solutions currently offered for IRA by Siemens BT are non-predictive.  However, the 

implementation effort for new RBC strategies is relatively low.  Given that appropriate rules are 

being identified the already existing RBC solutions could be extended quite easily to integrate 

weather forecasts as well as internal gains and occupancy predictions.   

The second control approach considered was MPC.  It was chosen because it is tailored to predic-

tive control.  A major advantage of MPC as compared to all other control approaches is that it em-

ploys a mathematical, physically based model of the controlled process, and can thus account for 

non-linear and complex interactions in multiple-input-multiple-output systems.  

A further reason for considering MPC was the large expertise available within the OptiControl pro-

ject team.  Moreover, Siemens BT has just launched an MPC-based predictive heating controller for 

domestic applications, such that first experience from the usage of MPC in practice is expected to 

become available in the near future.   

According to the experience of the OptiControl team non-specialists are generally able to easily 

understand both approaches, RBC as well as MPC. This is important for the acceptance of any 

newly developed control solutions.   

A second important element for user acceptance is the plausibility of the control actions.  It is well 

known from practice that the control actions delivered by RBC sometimes appear counter-intuitive 

and are difficult to understand (e.g., operation of blinds).  In contrast, the control actions provided 

by MPC can be interpreted directly in the context of the underlying model of the physical building 

system and of the chosen optimization criteria and constraints.  This could open up totally new pos-

sibilities for improved servicing by engineers, and for making the actions understandable (and thus 

better acceptable) to the users of a building.   

From a methodical point of view the two approaches are to some extent complementary.  The indi-

vidual rules applied in RBC strategies are fairly simple and straightforward to implement, but in 

order to obtain a good performance a considerable tuning effort may be necessary.  Quite differ-

ently, MPC involves sophisticated mathematical modeling and optimization techniques that are only 

accessible to specialists.  On the upside, constraints and control targets can easily be specified, such 

that according changes can be handled well and without new tuning of the control. 

Finally, an important synergy of the RBC and MPC approaches should be stated:  MPC is mathe-

matically equivalent to a method for finding the globally optimal set of rules and associated pa-

rameters in a very large decision space.  Hence, careful study of MPC results can be used to derive 

approximate, reduced sets of relevant rules and parameters for use in RBC controllers.  
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1.6 Overview of Report 

The rest of this report is structured as follows:    

Chapter 2 presents the IRA control problem in detail and introduces the various building variants 

considered for the development and simulation-based assessment of the control strategies.   

Chapters 3 and 4 provide an introduction to, and a description of the RBC and MPC control strate-

gies considered, respectively.   

Chapter 5 deals with the developed models of buildings and their automated subsystems for use in 

the simulations and in the MPC controllers.   

Chapter 6 discusses the used weather data and the development of local weather forecasts for build-

ing applications.   

Chapter 7 presents a large-scale simulation study on low-cost energy savings measures related to 

control, and on the theoretical potential of predictive control for IRA.   

Chapter 8 provides a detailed analysis of the found energy savings potentials and of peak electricity 

demand. 

Chapter 9 is dedicated to the analysis of the novel MPC approaches developed for IRA. 

Chapter 10 provides an assessment of the current project status and an outlook to future work. 

 

In order to enhance the readability of the Chapters, detailed information is being provided in a se-

ries of Appendices.  Their contents are as follows:  

Appendix A:  Description of the building model. 

Appendix B:  Validation of the building model and the approximations employed. 

Appendix C:  Methodology and factors for assessing the control costs. 

Appendix D:  Results from Performance Bound simulations. 

Appendix E:  Performance assessment of RBC and theoretical potential of predictive control. 
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2.1 Introduction 

The purpose of this section is twofold:  Firstly, to present all facets of the control problem posed by 

the Integrated Room Automation (IRA) application.  Secondly, to describe – and give the rationale 

for – the experimental set up that we have chosen for the simulation-based analysis, development 

and testing of the various IRA control strategies that are described later in Chapters 3 and 4.   

2.2 Buildings 

By definition, IRA deals with the control of individual building zones or rooms.  These are to some 

extent interconnected, e.g. by the exchange of energy and air, the centralized heat/cold generation 

and distribution, the use of centralized air handling units, the presence of building usage schedules, 

the grouping of zones/rooms into groups with common schedules for comfort, or light etc.  How-

ever the presence of individual room/zone control is the dominating factor.   

Accordingly, in the present work we studied the individual building zones/rooms in isolation from 

each other, deliberately neglecting any coordination and control issues on the so-called automation 

(whole building) level.  This corresponds to the practice employed in design tools such as SIA 382 

[1], where dynamical calculations are used to determine heat, cold and air conditioning demand. 

In terms of the building construction we considered different types of zones/rooms that were de-

fined by the following set of attributes:  façade orientation, construction type, building standard, and 

window area fraction of the façade.  

Figure 2.1 shows two selected configurations as an example, and Table 2.1 gives an overview of the 

attribute values considered. 

 

 

 

 

Figure 2.1:  Schematic representation of two building zones.  Left: normal office, façade orientation 

“South” (S), window area fraction “high” (80%);  right: corner office, façade orientations South+East 

(SE), window area fraction “low” (30%).   

 

The choice of values sets for the various attributes (Table 2.1) presented a compromise between two 

conflicting objectives:  on the one hand we aimed at covering as many realistic situations as possi-

ble, on the other hand we had to keep the total number of cases (as given by all possible combina-

tions of attribute values) sufficiently small in order to restrict the needed overall computational ef-

fort for a systematic investigation.  
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Attribute Value Identifier Remarks 

Façade Orientation North 

South 

South+East 
South+West 

N 

S 

SE 
SW 

Normal office 

–¨– 

Corner office 
–¨– 

Construction Type Heavyweight 

Lightweight 

h 

l 

cdyn ! 80 Wh/m
2
K 

cdyn ! 36 Wh/m
2
K 

Building Standard Swiss Average 

Passive House 

sa 

pa 

Uop ! 0.6 W/m
2
K     Uwin = 2.8 W/m

2
K 

Uop ! 0.1 W/m
2
K     Uwin = 0.7 W/m

2
K 

Window Area Fraction Low 

High 

wl 

wh 

30%  window area per façade 

80%  –¨– 

Table 2.1:  Considered building attributes and associated sets of attribute values. cdyn: internal dynamic 

heat capacity of the room; Uop: overall heat transfer coefficient of opaque façade parts;  Uwin: overall 

heat transfer coefficient of windows including frame.  Reference for cdyn and U-values is the floor area.   

Clearly, the 32 possible combinations of building attributes according to Table 2.1 are not all of 

equal interest, and one can expect that the buildings they stand for are very unevenly distributed 

within the building stock of a given nation or market.  Table 2.2 presents our subjective ranking of 

the 32 building types according to their importance for Switzerland.   

 

 

Building Standard pa    sa    

Window Area Fraction wh  wl  wh  wl  

Construction Type h l h l h l h l 

Façade Orientation         

N I II II II III III I II 

S I II II II III III I II 

SE II II II II III III II II 

SW II II II II III III II II 

Table 2.2:  Classification of building cases according to four key attributes. I: Common and wide-

spread configurations;  II: Less common configurations;  III: Exotic cases.  For abbreviations see Ta-

ble 2.1. 

The classification was based on the following considerations: usually the “sa” buildings have low, 

the “pa” buildings high window area fractions on one façade.  When combined with the most wide-

spread construction type, “h”, the resulting building types were defined to belong to the most im-

portant class, Class I.  Combinations with very high energy consumption (“sa” + “wh”) that are rare  

in practice – at least in Switzerland – were assigned to Class III.  All remaining cases were defined 

to belong to Class II. 

Note that the overall thermal building envelope loss factor as a function of window type, window 

area fraction and number of facades is varying in a very broad range, even if only one particular 

building standard is considered.  A comprehensive compilation of overall loss factors can be found 

in Appendix A (Table A-3).    
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2.3 Building Systems 

2.3.1 Variants 

The solution to the IRA control task clearly depends strongly on the building system at disposal.  

Many such systems occur in practice.  Figure 2.2 illustrates as an example the technical set up asso-

ciated with a particular building system variant (S1, see below). 

 

           

Figure 2.2:  Example for an IRA technical set up. 

For this study we considered five typical variants of building systems that employed different com-

binations of automated subsystems (Table 2.3).   

 

 

 Building System 

Automated Subsystems S1 S2 S3 S4 S5 

Blinds x x x x x 

Electric lighting x x x x x 

Mechanical ventilation flow, heating, cooling – x x x x 

Mechanical ventilation energy recovery – x x x x 

Natural ventilation heating/cooling (night-time only) – – – x – 

Cooled ceiling (capillary tube system) x x – – – 

Free cooling with wet cooling tower x x – – x 

Radiator heating x x – – – 

Floor heating – – – x – 

Thermally activated building systems for heating/cooling – – – – x 

Table 2.3:  Building systems considered. “x” denotes the presence of a subsystem.  



OptiControl Two Years Report                                                         Chapter 2 

   19 

As can be seen from Table 2.3 all five systems include automated blinds and light control.  For sys-

tem variants S2-S5, that all involve mechanical ventilation, we also assume the presence of a sub-

system for energy recovery from the facility's exhaust air stream.  

System variant S1 is the only one with no ventilation subsystem present.  System variant S2 has the 

same heating and cooling subsystems as variant S1, but in addition also a mechanical ventilation 

subsystem. Variant S3 is defined to have only a ventilation subsystem, i.e. no other subsystems are 

assumed to be at disposal for heating and cooling.  Finally, system variants S4 and S5 are used to 

investigate hybrid (mechanical + natural) ventilation schemes, and the use of Thermally Activated 

Building Systems (TABS), respectively. 

A more detailed description of the individual subsystems is given in Chapter 5. 

2.3.2 Dimensioning 

The dimensioning of the building system components determines the maximum available control 

power and thus presents an important boundary condition for the control.  On the one hand, too lit-

tle power may lead to unacceptable discomfort and/or it may jeopardize options for more efficient 

control (e.g., if there is not enough power available for reheating after night set-back).  On the other 

hand, assuming too much power may favor unrealistic control solutions. 

In order to enable studies of the sensitivity of control solutions to the dimensioning of subsystem 

components we defined two dimensioning strategies, a scant and an ample one (Table 2.4).   

 

 

 Dimensioning  

Strategy 

Parameters used to calculate design power values for heat-

ing and cooling depending on building and building systems 

scant  

(Ds) 

ample  

(Da) 

Design outside air temperature for transmission through 

building envelope 

4-d-rm 4-d-rm 

Design outside air temperature for infiltration 4-d-rm hr-min-max 

Reference room temperature mechanical ventilation heating TrMin TrMin 

Reference room temperature mechanical ventilation cooling TrMax TrMax 

Assumed room temperature for heat recovery mechanical 

ventilation heating 

TrMax TrMin 

Assumed room temperature for heat recovery mechanical 

ventilation cooling 

TrMin TrMax 

Design air change rate mechanical ventilation n_Min n_Max 

Power allowance for heating/cooling after periods with re-

duced comfort requirements (e.g. night set back). 

none up to + 30% 

of design 
power 

Table 2.4:  Overview of used dimensioning strategies.  4-d-rm: 4 day running mean;  hr-min-max:  

hourly minimum/maximum values;  n_Min: air change rate for minimum fresh air supply at maxi-

mum occupancy;  n_Ma: maximum allowed air change rate;  TrMin/TrMax:  lower/upper room tem-

perature setpoints. 
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The scant dimensioning variant was chosen to explore how the investigated control strategies be-

have when they are pushed to their limits.  The variant used scant dimensioning parameters and no 

additional heating or cooling power was granted.  

The ample dimensioning variant was chosen to account for the fact that in practice systems are gen-

erally over-dimensioned.  Here we considered conservative dimensioning parameters and an over-

dimensioning of the systems up to the maximum allowable values stated in the standards.  

For both variants the calculation of maximum heating power was based on Swiss dimensioning 

standards for heating subsystems ([2], [3]).  For the dimensioning of the cooling systems the under-

lying method for heating systems was adapted.  Design values for heating and cooling power de-

pended in our study solely on losses/gains by transmission over the building envelope and of the 

mechanical ventilation system.  Details on the calculations can be found in Appendix A.4. 

Under both dimensioning variants, when several heating or cooling subsystems were available 

(Building System variants S1, S2, S4, S5) the total available heating or cooling power was distrib-

uted among the subsystems as follows: the transmission and infiltration heat gains/losses were con-

sidered for the slab system or radiator heating, the power needed for conditioning of ventilation air 

was attributed to the mechanical ventilation system.  In Building System Variant 3 (mechanical 

ventilation only) all heating/cooling power was assigned to the mechanical ventilation.  

The heating/cooling power of the mechanical ventilation subsystem was assumed to be limited such 

that the inlet air was tempered within the thermal comfort range of 16–40 °C.  To prevent violation 

of these limits the maximum increase/decrease of if inlet air temperature by heating/cooling was 

limited.  In extreme cases this can imply a power limitation to actual values below the design values 

(see Chapter 5.4.1). 

Standard design outside air temperatures for the Swiss sites and for the heating case were obtained 

from [4].  Values for all considered non-Swiss sites and for the cooling case in general were calcu-

lated using the standard procedure, but based on all whole-year, hourly temperature datasets in our 

database (see Chapter 6).  Details on the used design outside air temperature are given in Appen-

dix A (Table A.2). 

2.3.3 Control Costs 

The minimization of control costs under comfort maintenance presents the primary objective of the 

IRA control task.  Two kinds of control costs were assessed: Non-Renewable Primary Energy 

(NRPE) usage, and Monetary Cost (MC).   

The cost of a given control action was determined as follows: 

 In a first step, the delivered energy (DE, electricity) was calculated.  The DE depends on the effi-

ciency of the activated distribution subsystem and on the building’s energy generation/conversion 

system (Table 2.5).   

In a second step a conversion factor (NRPE- or MC-Factor; Table 2.6) was applied to determine the 

primary energy amount or monetary cost required in order to obtain the given amount of DE. 

Note that the only kind of energy used in the present study was electrical energy.  A full description 

of the calculation of the control costs is given in Appendix C. 
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Delivered Energy Generation/ 

conversion system 

Distribution subsystem Annual Average  

Efficiency (!system) 

Heat Earth coupled  

heat pump 

Floor heating, TABS 

Mechanical ventilation 

Radiators 

340% 

310% 

300% 

Cold Mechanical chiller Ventilation (fan coil) 

TABS 
Cooled ceiling 

350% 

345% 
340% 

Electricity 

(for aux. drives) 

Wet cooling tower  

(free cooling) 

TABS 

Cooled ceiling 

2.0 W/m2 

2.25 W/m2 

Electricity 

(for fan operation) 

Ventilation Mechanical ventilation 0.34 W/(m3/h) 

Table 2.5: Kinds of delivered energies considered, associated generation/conversion and distribution 

subsystems, and their average efficiencies or specific power demand. 

 

 NRPE-Factor 

[kWh PE/kWh DE] 

 MC-Factor  

[CHF/kWh DE] 

 UCTE CH  UCTE CH 

Electricity 3.32 2.5 HT 

LT 

0.30 

0.11 

0.27 

0.14 

Table 2.6:  Conversion factors assumed for primary energy production.  NRPE: Non-Renewable Pri-

mary Energy usage;  MC: Monetary Cost;  PE: Primary Energy;  DE: Delivered Energy;  UCTE: gen-

eration mix by the Union for the Co-ordination of Transmission of Electricity;  CH: Swiss generation 

mix;  HT: high tariff;  LT:  low tariff .  HT was assumed to hold from 7:00-20:00 local time for all 

days of the year.  Costs used in the present study are underlined.  

2.4 Comfort Requirements 

The focus of the present study is on the thermal comfort, the visual comfort, and the CO2 concentra-

tion within a given zone/room.  Further aspects of indoor environmental quality such as airflow 

rates, humidity, and other air pollutants besides CO2 were not considered.  Humidity was not con-

sidered because it is normally controlled via the central air handling unit.  CO2 can serve as an indi-

cator for other relevant pollutants. 

The physical variables of interest were thus the room temperature as perceived by human occupants 

(typically calculated as a combination of the room’s air temperature and the surface temperature of 

the enclosing surfaces), the illuminance (light level), and the average CO2 concentration within the 

room.  The used comfort definitions for these variables are presented below. 
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2.4.1 Thermal Comfort 

The choice of thermal comfort criteria is not straightforward because a variety of definitions exists 

in the literature that employ different assumptions for the clothing factor.  Also, the width of the 

thermal comfort range is known to have a significant effect on the control costs.   

In order to account for this we considered four different thermal comfort definitions.  Each defini-

tion actually corresponds to a different procedure to define the thermal comfort range at a given 

point in time, as summarized in Table 2.7.  

 

              Comfort Range Width Calculation 
Procedure Working hours Non-working hours 

An Narrow Narrow 

Aw Wide Wide 

Bn Narrow 12°C - 35°C 

Bw Wide 12°C - 35°C 

Table 2.7:  Calculation procedures used to determine the thermal comfort range at a given point in 

time.  For the definitions of “Narrow” and “Wide” see Figure 2.3. 

The minimum and maximum room temperature set points for heating and cooling that were used to 

delineate the “Narrow” and “Wide” comfort ranges were chosen to be similar to the definitions in 

SIA 382/1 [5].  The actual range at a given point in time was determined as a function of the expo-

nentially weighted running mean of the past measured outside air temperature values (Figure 2.3).   

 

Figure 2.3:  Room temperature set points for heating and cooling, and for the temperature comfort 

ranges “Narrow” and “Wide”.  

The running mean was calculated in a similar manner as described in EN 15251 [6].  Our calcula-

tion differed from the EN standard because the latter relies upon daily mean values, whereas we 

used hourly mean temperatures.  The reason was that the hourly time step guaranteed a smooth 

comfort range devolution, whereas the daily time step resulted into large discontinuities that implied 

unrealistically large heat/cold pulses for control.  (The standards are used for design, they are not 

made for control purposes).  As shown in Appendix A-3.7 the set point progressions calculated with 
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the hourly values are much smoother than those obtained with the standard method. Note that the 

running mean values can differ considerably from the current outside air temperature. 

In variants An and Aw the comfort settings from Figure 2.3 were applied 24 hours a day and 7 days a 

week, whereas in variants Bn and Bw they were applied only during working hours.  The working 

hours were determined from the occupancy schedule (see Section 2.5.1) as being all hours with an 

occupancy density different from zero. 

2.4.2 Indoor Air Quality 

To achieve an acceptable indoor air quality in non-smoking offices, different methods are possible.  

Standard [7] stipulates a minimum fresh air supply rate of at least 36 m
3
/h per person.  Another pos-

sibility is the CO2 control of the ventilation.  In this case air supply is controlled continuously such 

that the CO2-concentration remains below specific design values.  According to EN15251 [6], and 

assuming an outside air concentration of 400 ppm, the recommended upper concentration limits for 

the comfort categories “I” and “II” are 750 ppm and 900 ppm, respectively.  

In this study both ventilation methods were considered (Table 2.8).   

 

 

Ventilation 
Strategy 

Description 

V Non-air quality controlled ventilation. 

Ventilation is operated based on a time schedule. 

W CO2-controlled ventilation (approximated). 

The air change rate is adapted dynamically depending on  
occupancy density. 

Table 2.8: Ventilation strategies considered. 

As indicated in Table 2.8 the CO2-based control was not modeled directly, but was instead ap-

proximated by assuming an occupancy-dependent air change rate.  This was done because the CO2-

concentration shows in reality very fast dynamics that would have made it necessary to employ a 

time step of 5 min or less in the simulations.  Given that the used time horizon for predictive control 

was typically at least one day this very small time step would have resulted into a prohibitive in-

crease of the needed computation time.   

The achieved indoor air quality (category I or II) in our simulations thus depended on the chosen 

strategy and the air supply parameters.  Further information on the ventilation strategies is given in 

Section 5.4.1 and Appendix B.4.  

2.4.3 Illuminance Comfort 

For the illuminance comfort we applied a standard lower illuminance setpoint value for occupied 

offices of 500 lux.  No upper limit was defined assuming that in case of excess incoming solar ra-

diation the user would be able to obtain glare protection by manual adjustment of an internal blind. 
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2.5 Disturbances 

The state of a single room or building zone is continuously perturbed by a variety of factors that 

cannot be controlled by an individual room/zone controller, or not at all.  These include the state of 

neighboring building zones or spaces, the weather, the internal gains due to equipment; energy, 

moisture and CO2 fluxes by the occupants, and occupant behavior.  To the extent that these influ-

ences cannot be predicted they present from a control point of view “disturbances” that need to be 

rejected in order to keep the controlled system’s state within the desired bounds. 

As already discussed in Section 2.2 the effect of neighboring building zones or spaces was consid-

ered as secondary and was thus neglected.   

Inopportune occupant behavior can clearly thwart the success of even the best control strategy.  

However, particularly in the case of IRA it seemed appropriate to assume that the user does not act 

directly on the subsystems (e.g., manipulate radiator valves), but instead communicate his or her 

wishes (such as changes in comfort parameters) to the control system via a corresponding interface.  

The IRA controller should then carry out the corresponding actions and adjust its strategy accord-

ingly.  Hence disturbances due to occupant behavior were not further considered in this study.   

Thus we focused on the disturbances related to the internal gains and the weather.  Below we de-

scribe our approach for both in more detail.   

2.5.1 Occupancy and Internal Gains 

The occupancy density of the building (a number ranging from 0-100%) was used as the key quan-

tity to determine the internal heat gains from persons and equipment, plus CO2 production.   

We considered two internal gains levels that were based on the Swiss standard SIA 2024 [7] for 

cellular offices (Table 2.9). 

 

 

Internal gains level Parameter Unit 

low  high 

Floor area per person m
2
 14 7.8 

Internal gains due to persons W/m
2
 5 9 

Internal gains due to equipment W/m
2
 7 15 

CO2 – production m
3
/(h m

2
) 1.1e-3 1.9e-3 

Table 2.9: Definition of internal gains levels. 

Presence of persons and usage of equipment typically show a pronounced diurnal and weekly varia-

tion.  We used hourly profiles from the Swiss standard SIA 2024 [7] for cellular offices.   

The assumed weekdays profiles are shown in Figure 2.4.  
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Figure 2.4:  Diurnal occupancy profiles for weekdays.  Data are mean values over the hour indicated.  

Time labeling is for local wintertime.  

During weekends (not shown) no persons were assumed to be present and the person gains were set 

to zero.  The equipment gains were set to the weekdays’ night-time value.  

A switch to Daylight Savings Time (DST) was always considered by assuming a shift in all profiles 

to one hour earlier during the period March 20
th

 until October 31
st
.  

2.5.2 Weather 

Weather variations affect a building, its thermal dynamics, and its technical systems in a variety of 

ways.  In this study we focused on the effects of the following weather variables:  global irradiation, 

air temperature and wet bulb temperature.   

Other variables that may affect building energy performance and occupant comfort are for example 

wind, longwave radiation and humidity.  We discarded them because they were considered to be of 

secondary importance for the present study.  

In order to account for a range of outdoor climatic conditions we considered weather data from sev-

eral European locations.  For further information on the criteria used to select these locations and on 

the used meteorological data sets see Chapter 6. 

2.6 Technical System Integration  

IRA controllers are integrated into larger Building Automation and Control (BAC) systems.  The 

integration normally involves a hierarchical control structure that is typically realized in both, the 

hard- and the software. 

Figure 2.5 shows the system topology of the Siemens building automation system Desigo V2.37 [8] 

as an example.  In this system the control is structured in field level, automation level and manage-

ment level.  The field level includes individual room control.  Primary plant control (e.g. control of 

air handling units) and room control integration are done at the automation level.  The management 

level is mainly used for operation and monitoring. 

Automation level control programs typically are customized solutions.  They combine locally de-

veloped solutions with proven solutions from the head quarter.  The relevant tasks of automation 

level control for IRA are:  

• Building usage and occupancy schedule 

• Room group definition (and schedule) for lights, blinds, room set points etc. 

• High-level control of lights, blinds 

• Control of primary plants (e.g. air handling units, heat/cold generation and distribution) 
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Field level control programs are typically standardized.  They are written by headquarter engineers, 

and only parameter values are changed by regional companies or value added partners.  Relevant 

tasks with regard to IRA are: 

• Room temperature control by valve/damper operation to given set point 

• Room ventilation control by damper operation (heating/cooling, poss. air quality control) 

• Room luminance control (presence dependent, poss. to given luminance set point) 

• Interaction to room control human-machine interfaces (room device, light/blind switches etc.) 

 

 

Figure 2.5: Topology of the Siemens building automation system Desigo V2.37 [8]. 
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Figure 2.6:  Schematic representation of present-day IRA control solutions.  Note, only a subset of all 

signals is displayed. 

Figure 2.6 shows how IRA can be realized in present-day BAC systems.  It can be seen that the 

approach involves a hierarchical control structure with so-called high-level and low-level control-

lers.  The task of the high-level controller is to determine a set of so-called operating modes that are 

sent to the low-level controller. In the opposite direction, the low-level controller delivers meas-

urements (e.g. room temperatures), heat/cold demand, setpoints etc. to the high-level controller.  

The definition of appropriate operating modes is crucial. In commercial BAC systems such as [8], 

such modes have been defined in particular for “low cost” control actions (compare Chapter 3): 

blind movement, free cooling usage, mechanical night-time ventilation, natural night-time ventila-

tion and energy recovery operation.   

2.7 Discussion 

The chosen focus on a single building zone/room corresponded to a well-established practice.  We 

assume that the overall energy performance of a given building can still be estimated at reasonable 

precision, by scaling up the results obtained from a series of individual single zone/room calcula-

tions.  Our single zone approach contains, however, a slight inconsistency because we consider en-

ergy recovery as part of the IRA problem, whereas this function can only be applied centralized for 

the air handling unit that supplies the considered single zone/room.  

Finding the optimal dimensioning of a building system’s components proved to be a demanding 

task.  In reality, the solution will also depend on the chosen control strategy.  This requires an itera-

tive procedure that is not feasible for the large number of cases considered in the present study.  

Instead we chose to consider the two extreme variants of scant and ample dimensioning, assuming 

that in reality the optimal dimensioning for a particular system would lie somewhere in-between.   
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2.8 Conclusions 

The chosen experimental set-up considers (i) all relevant dimensions of the IRA control task (build-

ing, building system, comfort, disturbances) and (ii) a plausible, well-chosen set of variants for each 

dimension. This work presents a prerequisite for the derivation of appropriate models, the formal 

specification of modeling and simulation software, and the design of systematic simulation studies.   

By taking into consideration the interfaces and hierarchical structure of present-day BAC systems 

we could ensure that the control algorithms developed in the course of the project can be smoothly 

integrated in existing buildings or new BAC products later on.  
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3.1 Introduction 

The state-of-the-art of Integrated Room Automation is rule-based control (RBC).  Since RBC is 

likely to remain the most frequently used control approach in the years to come, a series of RBC 

strategies were considered in order to (i) explore their performance, and (ii) use them as a bench-

mark for comparison with the model predictive control (MPC) strategies. 

As the naming indicates, an RBC based controller determines all control inputs based on a series of 

rules of the kind “if condition then action”.  The conditions and actions typically involve numerical 

parameters (e.g., threshold values), the so-called control parameters.  Determining both, a good set 

of rules, as well as the associated parameters is decisive for good RBC performance.   

An overview of the RBC strategies considered is given in Table 3.1.  

 

 

Strategy Description Main Input Data 

High-level Control 

Blind Transmis-

sion Values 

Blind 

Repositioning 

RBC-1  Typical, broadly 

applied strategy.  

Current measure-

ments of room tem-

perature, outside air 

temperature, external 

heat gains, occu-
pancy state. 

Three transmis-

sion values:  fully 

open, fully closed 

and shading 

transmission. 

In real application: 

event driven (threshold 

crossings).  In simula-

tions: once per hour 

(decision based on 
hourly mean data). 

RBC-2 As RBC-1, but 

more freedom in 

blind movement. 

– ¨ – Continuous blind 

transmission val-

ues. 

Continuous. 

RBC-3 Novel strategy 

(newly elaborated 

within the Opti-

Control project).  

As RBC-1/2, in addi-

tion: historical heat 

and cold demand sig-

nals, historical room 
temperature data. 

– ¨ – – ¨ – 

RBC-4 As RBC-3, but 

with restricted 

blind repositioning. 

– ¨ – – ¨ – Once per hour. 

Table 3.1:  Overview of investigated rule-based control strategies. 

All four RBC strategies are non-predictive. i.e. they do not accommodate rules to consider any pre-

dictions related to weather or internal gains.  Also, all strategies adhere to the hierarchical control 

scheme described earlier in Section 2.6, i.e. they consist of a high- and a low-level control part.  

However, they differ only in their high-level control parts.   

The high-level controllers were defined to drive one or several of the following “low-cost” actions: 

Blind positioning, free cooling operation, mechanical night-time ventilation operation, natural 

night-time ventilation operation, and energy recovery (ERC) operation. 

In Section 3.2 we first describe the four RBC strategies’ high-level control parts.  Section 3.3 gives 

a description of the common low-level controller.  The control parameters (printed bold in Sections 

3.2 and 3.3) and their calculation procedures are presented in Section 3.4.  A short discussion and 

concluding remarks are finally given in Sections 3.5 and 3.6. 
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3.2 High-Level Control  

3.2.1 RBC-1 

Control strategy RBC-1 reflects a broadly applied strategy (see for example [1]).  Cooling by free 

cooling, mechanical and natural night-time ventilation were realized as defined in [2].   

Blind Positioning 

The high-level controller only uses the operating mode FIXPOS for blinds.  In addition, three speci-

fied blind transmission values are communicated to the low-level control: Fully closed, fully opened 

and a defined shading transmission value.  

 
If (total solar gains > solar gains threshold value1) 
    // high external gains 
    if (room is occupied) 
        blind transmission = shading transmission; 
    else 
        blind transmission = fully closed transmission; 
    end 
else 
    // low external gains 
    blind transmission = fully open transmission; 
end 
blind operating mode = FIXPOS 

 

Free Cooling Operation  
 

If (mean outside air temperature of last 24 hours > ... 
    free cooling limit) & (room is unoccupied) 
    // high outside air temperature and room not occupied 
    if (room temperature > free cooling target room temp. setpoint) 
        free cooling operating mode = UNLOAD; 
    else 
        free cooling operating mode = LOAD; 
    end 
else 
    // low external gains 
    free cooling operating mode = LOAD; 
end 

 

Mechanical Night-Time Ventilation Operation  
 

If (mean outside air temperature of last 24 hours > mechanical... 
...night-time ventilation limit) & (room is unoccupied) & (night) 
    // high outside air temp. and room not occupied and night-time 
    if (room temp. > mech. night-time target room temp. setpoint) 
        mechanical night-time ventilation operating mode = UNLOAD; 
    else 
        mechanical night-time ventilation operating mode = LOAD; 
    end 
else 
    // low external gains 
    mechanical night-time ventilation operating mode = LOAD; 
end 

                                                
1
 Control parameters are printed in bold. 
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Natural Night-Time Ventilation Operation 
 

If (mean outside air temperature of last 24 hours > natural ... 
...night-time ventilation limit) & (room is unoccupied) & (night) 
    // high outside air temp. and room not occupied and night-time 
    if (room temp. > natural night-time target room temp. setpoint) 
        natural night-time ventilation operating mode = UNLOAD; 
    else 
        natural night-time ventilation operating mode = LOAD; 
    end 
else 
    // low external gains 
    natural night-time ventilation operating mode = LOAD; 
end 

 

Energy Recovery (ERC) Operation  
 

If (room temp. below center of room temp. comfort range) 
    // room temp. lower than center of room temp. comfort range 
    energy recovery operating mode = LOAD; 
else 
    // room temp. higher than center of room temp. comfort range 
    energy recovery operating mode = UNLOAD; 
end 

 

3.2.2 RBC-2 

Blind Positioning 

This strategy deviates from the first only in one respect:  When the room is occupied and high solar 

gains are present, the blind operating mode is set to LUMSETPOINT which means that the blinds 

are used to control the (lower) luminance set point.  

In practice, this strategy is not applied.  We considered it for comparison with the MPC controllers 

(see Chapter 4) that were allowed to control the room luminance by the blinds.  

 
If (total solar gains > solar gains threshold value) 
    // high external gains 
    if (room is occupied) 
        blind operating mode = LUMSETPOINT; 
    else 
        blind operating mode = FIXPOS; 
        blind transmission = fully closed transmission; 
    end 
else 
    // low external gains 
    blind operating mode = FIXPOS; 
    blind transmission = fully open transmission; 
end 

 

The rules employed for all other high-level control inputs are identical to those given for RBC-1.  

 



OptiControl Two Years Report                                                         Chapter 3 

   33 

3.2.3 RBC-3 

Control strategy RBC-3 was newly developed within the OptiControl project and presents one of 

the most advanced RBC approaches known to us.  It was designed such that it requires less control 

parameters than RBC-1 and RBC-2, and that the parameter’s values can be determined more easily.   

Note that so far, RBC-3 has only been used in simulations. It may be necessary to modify the con-

trol strategy for practical use. 

 

Blind Positioning 

The rules for determining the blind operating mode are shown in Figure 3.1.  Instead of working 

with threshold values, the strategy works with historical heat and cold demand signals and historical 

room temperature data.  Primarily, heating and cooling demands of the last 24 hours are evaluated; 

if there was no heating and cooling demand during the last 24 hours, the strategy attempts to shift 

the room temperature towards the middle of the room temperature comfort range.  

 

 

           

Figure 3.1: Determination of blind operating mode for control strategy RBC-3. 
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Free Cooling Operation  

The rules for determining the free cooling operating mode are shown in Figure 3.2.  Similar to the 

approach taken for blind positioning the control is based on the heating and cooling demands of the 

last 24 hours.  If there was no such demand during the last 24 hours, free cooling is forced (operat-

ing mode UNLOAD), however only if there is some probability that the room temperature will be 

exceeded during the next control step.  To this end the controller evaluates the sum of the maximal 

room temperature rise and of the minimal room temperature encountered during the last 24 hours.  

If the resulting value exceeds the comfort range, the operating mode is set to UNLOAD. 

 

                  

Figure 3.2:  Determination of free cooling operating mode for control strategy RBC-3. 
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Figure 3.3:  Determination of natural night-time ventilation operating mode for control strategy RBC-3. 

Mechanical Night-Time Ventilation Operation  

The rules used to determine the mechanical night-time ventilation operating mode are identical as 

for free cooling. 

Natural Night-Time Ventilation Operation  

The rules used to determine the natural night-time ventilation operating mode are similar to the ones 

for blind operation.  In addition, there is a rule accounting for the occupancy status and the time of 

day (Figure 3.3).  

Energy Recovery (ERC) Operation  

The rules used to determine the Energy Recovery operating mode are identical as for blind opera-

tion. 

3.2.4 RBC-4 

Blind Positioning 

This strategy deviates from RBC-3 only in one respect: Whereas RBC-3 allows for continuous 

blind transmissions during a control step (see next Section), the blind transmission in RBC-4 is re-

stricted to one transmission value per control step, as determined at the beginning of that step.   

This was accomplished as follows:  First, the blind operating mode for the time step ahead is deter-

mined as for RBC-3.  Then the blind transmission value is determined based on the operating mode.  

And finally, the blind operating mode is set to FIXPOS.   
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• Operating mode LOAD  
 
If (night) 
    // night-time 
    blind transmission = fully closed transmission; 
else 
    // day-time 
    blind transmission = fully open transmission; 
end 
blind operating mode = FIXPOS 

 

• Operating mode UNLOAD  
 
If (night) 
    // night-time 
    blind transmission = fully open transmission; 
else 

// day-time 
if (room occupied) 

        blind transmission is set so that lower luminance setpoint is 
        reached based on last luminance measurement 
        (not changed/controlled in the next sampling time); 

else 
    blind transmission = fully closed transmission; 
end 

end 
blind operating mode = FIXPOS 

 

For all other control inputs, RBC-4 uses the same rules as RBC-3. 

3.3 Low-Level Control  

The used low-level controller operates in two steps.  In the first step, the operating modes and sig-

nals as obtained from the respective high-level controller are used to determine corresponding con-

trol actions for the “low-cost” action aggregates.  In a second step, the remaining control outputs are 

calculated.  These are the control outputs involving “high-cost” actions such as active heating or 

cooling, and ventilation. 

Blind Positioning 

• Operating mode FIXPOS  

 
Blind transmission value set as specified by the high-level control-
ler. 

 

• Operating mode LOAD  

 
If (night) 
    // night-time 
    blind transmission = fully closed transmission; 
else 
    // day-time 
    blind transmission = fully open transmission; 
end 

 

• Operating mode UNLOAD  

 
If (night) 
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    // night-time 
    blind transmission = fully open transmission; 
else 
    // day-time 
    If (room occupied) 
        maintain lower luminance set point (if possible); 
    else 
        blind transmission = fully closed transmission; 
    end 
end 

 

• Operating mode LUMSETPOINT  

 
maintain lower luminance set point (if possible); 

 

Free Cooling Operation 

• Operating mode LOAD  

 
Do not force free cooling. 

 

• Operating mode UNLOAD  

 
If (free cooling temperature < room temperature - minimal... 
...required temperature diff. room – free cooling temperature) 
    // force free cooling 
    free cooling usage  = full; 
else 
    // do not force free cooling  
end 

 

Mechanical Night-Time Ventilation Operation  

• Operating mode LOAD  

 
Do not force Mechanical night-time ventilation. 

 

• Operating mode UNLOAD  

 
If (outside air temperature < room temperature - minimal... 
...required temperature diff. room – outside) 
    // force mechanical night-time ventilation 
    mech. vent. air change rate = mech. vent. air change rate; 
else 
    // do no mechanical night-time ventilation  
end 

 

Natural Night-Time Ventilation Operation  

• Operating mode LOAD  

 
Do not force natural night-time ventilation. 

 

• Operating mode UNLOAD  

 
If (outside air temperature < room temperature) 
    // perform natural night-time ventilation 
    automated window position = open; 
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else 
    // do no mechanical night-time ventilation  
    automated window position = closed; 
end 

 

Energy Recovery (ERC) Operation  

• Operating mode LOAD  

 
If (room temperature > outside air temperature) 
    // heating potential: force energy recovery usage 
    if (mechanical ventilation air change rate > 0) 
        energy recovery usage = full; 
    else 
        energy recovery usage = none; 
    end 
else 
    // cooling potential: do not force energy recovery usage 
end 

 

• Operating mode UNLOAD  

 
If (room temperature < outside air temperature) 
    // cooling potential: force energy recovery usage 
    if (mechanical ventilation air change rate > 0) 
        energy recovery usage = full; 
    else 
        energy recovery usage = none; 
    end 
else 
    // heating potential: do not force energy recovery usage  
end 

 

Active Heating and Cooling Operation 

Depending on the Building System variant considered (see Section 2.3.1) the low-level controller 

had to provide one or several of the following control inputs:  heating or cooling power for me-

chanical ventilation;  heating or cooling power for the slab subsystem (e.g. cooled ceiling, TABS);  

heating power for the radiators.  

In a conventional low-level control solution the heating aggregates (e.g. floor heating, radiators, 

heating by mechanical ventilation) are used in a predefined sequence to “lift” the room temperature 

to its lower set point.  Similarly, the cooling aggregates (e.g. chilled ceiling, cooling by mechanical 

ventilation) are used in a predefined sequence to “bring down” the room temperature to its higher 

set point.  If all heating or cooling aggregates are fully deployed, the air change rate will be in-

creased as a further heating or cooling measure.  Typically, the low-level temperature control is 

based on (sequenced) PI-controllers [3]. 

Conventionally, the mechanical ventilation air change rate (or volumetric flow rate) is controlled to 

a minimal set point.  The mechanical ventilation air change rate is increased – from its minimal set 

point – either as a heating or cooling measure (as stated above), or as a measure to meet air quality 

requirements (e.g. CO2 concentration control). 

In the simulation studies all needed signals for active heating and cooling operation as well as the 

mechanical air change rate were computed with the aid of a perfect MPC controller (see next Chap-

ter) that was operated with a one-step optimization horizon.  When a high-level control input im-

plied a fix value (e.g. for blind positioning) this was passed on as a constraint to the MPC optimiza-

tion problem.  All other, “free” low-level control actions where then optimally determined by MPC.   
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For RBC-1 to RBC-3 the perfect MPC control was based on perfect knowledge of all disturbances 

(weather, internal gains) for the time step ahead.  This procedure approximated an ideal, continuous 

time, closed-loop low-level control for all “free” control actions over the entire next time step of the 

discrete time simulation.   

For RBC-4 the assumption of a perfect MPC control was relaxed as follows: the fix blind position-

ing was determined using solar gains from the previous time step.  This was done in order to simu-

late the situation that the low-level controller was not allowed to continuously adjust the blinds dur-

ing the current time step, i.e. that the blinds were allowed to move only once at begin of every time 

step (hour), based on the solar gains measurements available up to the begin of that time step. 

Electrical Lighting Operation 

For the electrical lighting we assumed presence of a constant light level controller.  Further we as-

sumed that the luminance was measured (by a photometer) and that it was always controlled to the 

luminance setpoint.  This control was assumed to be ideal. 
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3.4 Control Parameters  

3.4.1 Basic Parameters 

Table 3.2 lists all basic control parameters and their values employed in the four RBC strategies.  

The basic parameters were used to derive all further control parameters (see next Section) for all 

building and Building System variants considered.  The values shown in Table 3.2 were universally 

used.  They were determined by experience, rules of the thumb, and systematic simulation studies. 

 

 

 Parameter Unit RBC-1 RBC-2 RBC-3 RBC-4 

Solar gains threshold value (for setting 
the blinds to shading transmission) 

W/m
2
 15 15 – – 

Blinds 

Illuminance on reference plane with  
blinds set to shading transmission at 
threshold 

lux 300 – – – 

Min. required temperature difference 
 room – free cooling temperature 

K 5 5 5 5 
Free  
cooling 

Target room temperature setpoint offset K 1 1 – – 

Air change rate 1/h 3 3 3 3 

Min. required temperature difference 
room – outside 

K 7 7 7 7 

Mechanical  
night-time  
ventilation 

Target room temperature setpoint offset K 1 1 – – 

Natural  
night-time 
ventilation 

Target room temperature setpoint offset K 1 1 – – 

Table 3.2:  Overview of basic control parameters for rule-based control. 

 

Several remarks apply to Table 3.2: 

In practice, the solar gains threshold value is typically specified as a threshold for the measured 

solar radiation on a vertical surface with the orientation of the room.  This value depends strongly 

on the window area fraction, window properties etc.  For our simulations we defined as a basic – 

and universally applied – control parameter a threshold value for the solar gains per floor area in-

side the room.   

In order to calculate the shading transmission of the blinds for control strategy RBC-1 was used a 

value of 300 lux for the illuminance on reference plane with blinds set to the shading transmission 

at the solar gains threshold value. 

The “minimal required temperatures differences” for free cooling and mechanical night-time venti-

lation were specified as follows:  for values exceeding these differences, the costs for free cooling 

or mechanical night-time ventilation became lower than he cooling costs with active cooling meas-

ures.  Guideline values have been reported in [4]. 

Reasonable air change rates for mechanical night-time ventilation are around 2 to 4 h
-1

 (see [4]). 

The target room temperature setpoints for free cooling, mechanical and natural night-time ventila-

tion were set to 1 K above the lower temperature setpoints of the thermal comfort range (see Sec-

tion 3.4.1). 
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3.4.2 Actually Used Parameters 

Table 3.3 shows the RBC control parameters actually used in the simulations.  It can be seen that 

several of the parameters were derived from the basic control parameters discussed above. 

 

 

 Parameter Unit RBC-1 RBC-2 RBC-3 RBC-4 

Solar gains threshold value  (for setting 
the blinds to shading transmission) 

W/m
2
 15 15 – – 

Blinds 

Transmission value when occupied and 
high solar gains (shading transmission) 

- calc 1) – – – 

Min. required temperature difference 
 room – free cooling temperature 

K 5 5 5 5 

Target room temperature setpoint K calc 4) calc 4) – – 

Free  
cooling 

Free cooling limit °C calc 2) calc 2) – – 

Air change rate 1/h 3 3 3 3 

Min. required temperature difference 
room – outside 

K 7 7 7 7 

Target room temperature setpoint K calc 4) calc 4)   

Mechanical  
night-time  
ventilation 

Mechanical night-time ventilation limit °C calc 3) calc 3) – – 

Target room temperature setpoint  K calc 4) calc 4) – – Natural  
night-time 
ventilation Natural night-time ventilation limit °C calc 3) calc 3)   

Table 3.3:  Overview of actually used parameters for rule-based control.  “calc x” denotes calculation 

of the parameter value based on procedure x (see text for details). 

 

The used calculation procedures were as follows: 

1)  Blind transmission value when occupied and high solar gains (RBC-1) 

This blind transmission value was calculated such that at the given threshold value (15 W/m
2
), 

the specified illuminance (300 Lux, Table 3.2) on the reference plane was obtained. 

2)  Free cooling limit (RBC-1 and RBC-2) 

 The free cooling limit (outside air temperature threshold) was calculated such, that at this tem-

perature the average internal heat gains occurring during a workday stationary compensated the 

heat loss through the façade.  For the calculation, it was assumed that the room temperature is in 

the middle of the comfort range. 

3)  Mechanical and natural night-time ventilation limit (RBC-1 and RBC-2) 

 The calculation was the same as for the free cooling limit. 

4)  Free cooling, mechanical and natural night-time ventilation target room temperature setpoint 

(RBC-1 and RBC-2) 

The target room temperature setpoint was set to 1 K above the lower temperature setpoint of the 

thermal comfort range.  Example: If the lower comfort temperature was 22 °C the used target 

room temperature setpoint was 23 °C. 
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3.5 Discussion 

The control strategies presented here were designed for simulations only.  In real operation, addi-

tional features (e.g. hysteresis functions) are necessary to prevent undesired control behavior such 

as frequent switching, or to cope with restrictions for blind control in case of rain or strong winds.   

The novel strategy RBC-3 has only been used in simulations so far.  It is possible that it has to be 

modified for robust and trouble-free usage in practice.   

The continuous blind control assumed in strategies RBC-2 and RBC-3 is typically not feasible in 

real buildings since it would not be accepted by the occupants.  The reason why we considered 

these strategies was for better comparison with the MPC controllers (that are using continuous blind 

transmission values), and because we wanted to investigate how far one can push non-predictive 

control.  In the future RBC-2 and RBC-3 could however gain practical importance for electro-

chromic windows control.   

As stated in Chapter 1 (Table 1.1), the achievable control performance is only one of several criteria 

that determine the market potential of a given control strategy.  The robustness on control parameter 

settings and the availability of procedures for tuning of the control parameters can be as important. 

In practice RBC control parameter values are typically determined by tuning rules, or by rules of 

thumb.  Due to the very large number of cases considered in our simulation studies (see Chapter 8) 

manual tuning was neither possible, nor desirable (in order to ensure strict comparability of the re-

sults).  Instead automated calculation procedures were developed.  These can also be applied in re-

ality, provided that the needed building parameters are known at sufficient accuracy.   

3.6 Conclusions 

A range of rule-based control strategies with different properties is available: 

• RBC-1 is a typical, state-of-the-art control strategy. 

• The enhanced strategy RBC-2 differs only in blind control from RBC-1; it allows the effect of 

adding maximum freedom in blind control to be evaluated. 

• The newly designed strategy RBC-3 is an advanced, but still non-predictive strategy that is 

therefore particularly suitable for exploring the potential of predictive control.  

• The control strategy RBC-4 is based on RBC-3, but restricts blind transmission setting to once 

per hour. Comparison with RBC-1 thus allows to assess the novel rules developed in RBC-3. 

All RBC strategies come with a generic procedure that allows their control parameters to be deter-

mined from a small set of generally valid, basic parameters plus selected building parameters. 
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4.1 Introduction 

In this chapter we describe the developed predictive control strategies.  They are all based on the so-

called Model Predictive Control (MPC) approach.  MPC uses a model of the building and its auto-

mated subsystems plus predictions of relevant disturbances (e.g., related to weather) over a given 

prediction horizon to define an optimization problem.  Its solution yields the control actions.  

Table 4.1 gives an overview of the MPC strategies investigated. 

 

 

Strategy Description 

PB Performance Bound: 

Ideal MPC with perfect information  

(including weather predictions) 

CE Certainty Equivalence MPC:  

MPC with realistic weather predictions 

SMPC Chance Constrained Stochastic MPC: 

MPC with realistic weather predictions and  

uncertainty taken into account 

Table 4.1: Overview of investigated Model Predictive Control strategies. 

 

The Performance Bound (PB) controller is the control performance of an ideal controller that has 

perfect knowledge of the controlled systems’ dynamics as well as perfect knowledge of all future 

disturbances acting upon the system. This controller has perfect information and it uses this infor-

mation to gain the optimal control performance regarding a specified optimization target. The PB 

defines an absolute benchmark, all performances of other controllers will be worse.   

Certainty Equivalence MPC (CE) is the standard MPC approach that is used in virtually all com-

mercial MPC applications. It takes the imperfect/uncertain weather predictions and makes its con-

trol decision by assuming that the predictions are correct (i.e. equal to certain). 

The Chance Constrained Stochastic MPC (SMPC) is a newly developed strategy that can account 

directly for the uncertainty in the weather predictions, and in principle also in the prediction of any 

other disturbances. 

Note that both CE and SMPC do not take uncertainties in the building model into account. 

The Chapter is organized as follows: In Section 4.2 a general overview of MPC is given, including 

a detailed description of CE.  Section 4.3 introduces both Robust and Stochastic MPC and explains 

all ingredients of the newly developed SMPC approach.  Section 4.4 addresses the PB.  Section 4.5 

explains the specific adaptations of MPC for building control and describes the overall resulting 

algorithm in detail.  The Chapter concludes with a discussion and some conclusions (Sections 4.6 

and 4.7). 
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4.2 General Overview of MPC 

Model Predictive Control (MPC) is a very simple and satisfyingly intuitive approach to constrained 

control.  During each sampling interval, a finite horizon optimal control problem is formulated and 

solved over a finite future window.  The result is a trajectory of inputs and states into the future that 

satisfy the dynamics and constraints of the building while optimizing some given criteria.   

In terms of building control, this means that at the current point in time, a heating/cooling etc. plan 

is formulated for the next several hours to days, based on predictions of the upcoming weather con-

ditions.  Predictions of any other disturbances (e.g., internal gains), time-dependencies of the con-

trol costs (e.g., dynamic electricity prices), or of the constraints (e.g., thermal comfort range) can be 

readily included in the optimization. 

The first step of the control plan is applied to the building, setting all the heating, cooling and venti-

lation elements, before the window is shifted backwards by one step (and a further time step is 

added at the end of the window), and the process is repeated at the next sample.  This receding ho-

rizon approach is what introduces feedback into the system, since the new optimal control problem 

solved at begin of the next time interval will be a function of the new state at that point in time and 

hence of any disturbances that have meanwhile acted on the building. 

 

Figure 4.1:  Basic principle of Model Predictive Control. 

Figure 4.1 summarizes the basic MPC control scheme.  One can see that the modeling and design 

effort consists of specifying a dynamic model (Chapter 5), as well as constraints of the control prob-

lem and a cost function that encapsulates the desired behavior (Chapter 2).  In each sampling inter-

val, these components are combined and converted into an optimization problem depending on the 

MPC framework chosen.  A generic framework is given by the following finite-horizon optimiza-

tion problem: 
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We now detail each of the four components in the above MPC formulation and discuss how they 

affect the system and the resulting optimization problem. 

4.2.1 Cost Function 

The cost function generally serves two purposes: 

• Stability.  It is common to choose the structure of the cost function such that the optimal cost 

forms a Lyapunov function for the closed loop system, and hence will guarantee stability.  

In practice, this requirement is generally relaxed for stable systems with slow dynamics, 

such as buildings, which leaves the designer free to select the cost strictly on a performance 

basis. 

• Performance target. The cost is generally, but not always, used to specify a preference for one 

closed-loop behavior over another, e.g., minimum energy or maximum comfort. 

Several common cost functions are in use, the majority of which are convex, which results in simple 

optimization problems to solve.  Some common choices are shown in Table 4.2. 

 

 

Cost Function Mathematical Description 

Quadratic regulation  

Integral cost  

Probabilistic cost  

Table 4.2:  Some common cost functions. 

Quadratic regulation / tracking. The relative weighting between the states and the inputs provide a 

trade-off between regulation quality and input energy.  If the system has no constraints, or the con-

straints are not active, then such a cost will be equivalent to the classic Linear Quadratic Regulator / 

Linear Quadratic Gaussian controller.  

In the context of building control, such a cost would generally only be used at the lowest level to 

replace, for example, existing PI or rule-based controllers. 

Integral cost. The cost represents the total amount of product used, which would be a common 

choice for minimizing energy. 

Probabilistic cost. If the system is subject to random disturbances, then one may choose to mini-

mize the expected value of an event occurring, or the probability of some condition being violated, 

such as room comfort bounds. 
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4.2.2 Current State 

The system model is initialized to the measured/estimated current state of the building and all future 

(control) predictions begin from a building in this initial state.  Exceptions to this are certain robust 

MPC strategies in which the current state is not assumed to be known exactly, but only to be within 

a bounded set. 

4.2.3 Dynamics 

The system model is a critical piece of the MPC controller.  Several types of models have been con-

sidered in MPC schemes.  A summary is given in Table 4.3. 

 

 

System Model Type Mathematical Description 

Linear  

Input-affine  

Hybrid /  

piecewise affine 

 

Non-linear  

Table 4.3:  Common system model types. 

Linear.  This is the most common model type and the only one that will result in a convex and eas-

ily solvable optimization problem. 

Input-affine.  This model-type can cover a large number of very complex systems and is in general 

very difficult to handle.  However, there are recent theories that can in some circumstances provide 

very simple and stabilizing MPC controllers for this class of system. 

The building model discussed later and in Chapter 5 is of this class, since it contains a bilinear term 

between states and inputs.  In practice, such a model can either be approximated as a hybrid system, 

linearized and treated as a linear system, or considered as a nonlinear system.  In the OptiControl 

project, we repetitively linearized the system around the current operating condition, which simpli-

fies computation while maintaining the benefits of considering the full nonlinear model. 

Hybrid or piecewise affine (PWA).  A hybrid system is one that contains a mixture of discrete and 

continuous components, such as switches or valves in combination with continuous systems.  This 

class of models is extremely general and can be used to approximate any smooth system to an arbi-

trary degree of accuracy.  The optimization problems that result involve mixed-integer values and 

are theoretically very difficult to solve, although many well-tested methods are available. 

Non-linear.  Systems that cannot be classified into one of the above categories are significantly 

more difficult to handle.  If no special structure can be exploited, then there are still methods to con-

trol them in an MPC framework, although confidence in the resulting scheme is diminished and a 

much larger certification/ validation phase would be called for. 
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4.2.4 Constraints 

The ability to specify constraints in the MPC formulation and have the optimization routine handle 

them directly is the key strength of the MPC approach.  Many different types of constraints are used 

in practice, a few of which are listed in Table 4.4. 

 

 

Constraints Type Mathematical Description 

Linear  

Convex quadratic  

Chance constraints ,  

Second order constraint  

Switched constraints  

Non-linear  

Table 4.4:  Common types of constraints. 

Linear/polyhedral.  The most common type of constraint, which is generally used to place up-

per/lower bounds on system variables.  This class of constraints can also be used to approximate 

any convex constraint to an arbitrary degree of accuracy. Linear constraints also result in the sim-

plest optimization problems. 

Convex quadratic.  Bound the state or input to be within an ellipse.  Arises, for example, when 

bounding total input energy amongst several actuators, or in certain formulations of robust MPC. 

Chance constraints.  Bound the probability of a bound being violated.  

Second order cone.  Bound the 2-norm of a linear function of the state or input.  Arises in several 

forms of stochastic MPC. 

Switched constraints.  Set constraints if a given condition is met.  Common in many types of hybrid 

or switched systems. 

Non-linear.  Any form of constraint that doesn’t fit into the above categories.  Is generally very dif-

ficult to incorporate into a solver. 

4.2.5 Certainty Equivalence MPC 

The MPC formulation dubbed Certainty Equivalence MPC in the remainder of this report is exactly 

the MPC formulation given above in which the cost function was taken to be the integral cost (Sec-

tion 2.3.3) of all control actions applied to the building zone investigated.  All constraints were lin-

ear and represented the upper and lower bounds on input energy (Section 2.3.2), possible actuator 

ranges (e.g., blind positioning was restricted from 0 [fully closed] to 100% [fully opened]), or the 

various comfort requirements for the room temperature, the indoor air quality, and the illumination 

(Section 2.4).   
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4.3 Robust/Stochastic MPC 

The above MPC framework implicitly assumes that the provided dynamic model is able to perfectly 

predict the future behavior of the building over the desired control window, or prediction horizon.  

This assumption is clearly not reasonable because there will be both modeling errors and distur-

bances (weather, occupants, etc.) acting on the system over this period.  Robust or stochastic MPC 

schemes work with a model of these disturbances and attempt to compensate for these future un-

known inputs in the formulated plan. 

The basic principle for all of these schemes is that there is no longer a single unique future trajec-

tory of the system, but rather there is a whole set of possible outcomes for each input that might be 

applied.  Handling this set of future possible trajectories modifies how one deals with the cost func-

tion and constraints in the above MPC framework. 

• Cost. One can now minimize a function of the most likely future trajectory (expected value), 

the worst-case against some metric (min-max), or some representative trajectory (nominal). 

• Constraints. The key additional feature of robust MPC is that the constraints must be satisfied 

for all possible disturbances that may occur in the future, or a pre-specified set of the most 

probable ones.  This always has the effect of reducing the size of the constraint sets, or of 

moving the system away from its constraints.  Depending on the system type and formula-

tion chosen, this can be very conservative, or not at all. 

Robust and stochastic MPC techniques are still very much under development and new techniques 

have been created specifically for the OptiControl project [2].  The following two sections detail the 

stochastic MPC formulation used in the OptiControl project. 

4.3.1 Affine Disturbance Feedback 

An MPC controller formulates a plan regarding what inputs will be applied to the building over a 

given time horizon into the future. If we consider a robust or stochastic formulation in which it is 

possible for different disturbances to affect the system in the future, then a single plan will no 

longer do – we must have a plan for each possible disturbance that might occur.  We break our deci-

sions into two parts: those which must be made now and those that do not have to be made until the 

future, at which point we will have more information about disturbances, the ‘wait and see’ inputs.  

This is a classic control setting and can be formulated and solved using dynamic programming 

(DP).  However, solving a DP is computationally intractable except for very special cases, and most 

forms of control (including MPC) are simply computationally tractable approximates of dynamic 

programming.  One such approximation that has been shown to be extremely close to optimal in 

recent years is called the affine disturbance feedback formulation. 

Consider the following linear model 

 

in which xi is the state at time i, ui is the input and wi is an unknown disturbance acting on the sys-

tem.  We choose the input that we will plan to apply at time i in the future to be an affine function 

of the as yet unknown disturbances that will act on the system between now (time 0) and time i: 

 

Instead of optimizing over the inputs ui as in standard MPC, we optimize over the matrices Mij and 

hence make the future planned inputs responsive to the as yet unknown disturbances.  It should be 

emphasized that since the MPC controller is still applied in a receding-horizon fashion that these 
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future plans are never actually applied to the system, but are only used as a computational proce-

dure in order to make good decisions now. 

There are several benefits to using this affine disturbance feedback formulation: 

• The added conservatism that is present in all robust/stochastic MPC approaches is signifi-

cantly reduced from current state-of-the-art methods. 

• The resulting dynamic plan over the future prediction horizon is generally very close to the op-

timal one generated by dynamic programming and hence the performance of the system is 

very good. 

• The resulting optimization problem can be formulated as a convex problem by using a robust 

programming approach.  This is a critical property since it makes computation rapid and 

simple using common commercial codes. 

The main limitation of this formulation is the added computational complexity of optimizing over 

the matrices Mij rather than just the inputs ui.  This can however be mitigated by, for example, re-

stricting the degrees of freedom of the matrices Mij, or by optimizing over weighted sums of a small 

number of pre-computed matrices.  These techniques have been shown to be effective in building 

control while significantly reducing the computational effort. 

4.3.2 Chance Constraints 

The disturbances acting on the building are primarily in the form of uncertainty in the weather pre-

diction. The distribution of error in the prediction can be well modeled as a Gaussian.  Since Gaus-

sian distributions have infinite support, it is no longer possible to guarantee that all possible states in 

the future will satisfy the constraints, since it will always be possible for an arbitrarily large distur-

bance to impact the system (at least in terms of the mathematical formulation).  

In order to cope with this form of uncertainty, we utilized a chance-constrained formulation in 

which we required that the future state of the building satisfies the constraints only with a given 

probability: 

 

This formulation has significant benefits for building control 

• The European standards specify comfort bounds in this manner, so it is now possible to di-

rectly encode the desired specifications into the controller without the need of additional 

tuning. 

• When combined with the affine disturbance feedback discussed in the previous section, it is 

still possible to formulate the resulting optimization as a second order cone problem.  Such 

problems are convex and can be readily solved by existing commercial codes, although they 

can be fairly compute-intensive at larger scales. 

The remainder of this document will refer to the stochastic MPC approach in which comfort bounds 

are expressed as chance constraints and future control input signals are parameterized in terms of an 

affine disturbance feedback as SMPC.  A more detailed description of the SMPC approach can be 

found in [2]. 
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4.4 Performance Bound 

The fundamental challenge in control is to make an optimal decision about an action to take now, 

given that information about the future is not yet available, such as tomorrow’s weather.  If, how-

ever, all future information (including the exact dynamic behavior of the controlled system) were to 

be known, then a perfect decision can be made.  For analysis purposes, it is possible to formulate 

such a non-causal problem for a given building and a given year after the weather has been re-

corded and is therefore known.  

The resulting amount of primary energy (assumed that primary energy use is minimized by the ideal 

control) required to maintain the comfort bounds within the building is truly optimal and cannot be 

beaten by any scheme which has less (i.e. causal) information available.  For this reason, we dub the 

resulting amount of primary energy used the Performance Bound (PB). 

The procedure for computing the PB is exactly the same as that for certainty equivalence MPC, 

with two critical differences:  First, instead of using weather predictions in the formulation, the real 

weather measurements are used. Second, the plan must not be computed in a receding horizon fash-

ion, since no feedback is required, but the optimal sequence for the entire interval considered (e.g., 

one year) can in principle be computed in one shot.  However, due to the presence of a bilinear 

model this was actually found to be impracticable, such that a somewhat modified procedure had to 

be employed (see Section 8.3.1).   

4.5 MPC for OptiControl 

In this section we detail the specific type of MPC formulation that has been used in the OptiControl 

project.  Specifically, we outline how one translates from the various inputs to the controller (Me-

teoSwiss weather predictions, local weather and building measurements, as well as building model 

data) to a mathematical structure that can be processed by standard optimization software. 

An overview of the developed MPC controller is given in Figure 4.2.  In the following sections we 

detail the individual steps. 

4.5.1 Step 1 – Weather Prediction at Building Site 

The output of this block is a prediction of the weather over the future horizon that the controller is 

considering and consists of a time-varying linear model of weather parameters (temperature, radia-

tion, etc) driven by Gaussian disturbances. The resulting model consists of a series of dynamic up-

date matrices and the covariance matrices of the disturbances.   

a) Local measured weather:  Measurements of the current temperature, radiation, etc. 

b) Error model for weather forecast:  Historical weather predictions and corresponding measure-

ments are used to derive a model of how the uncertainty in the forecasts evolves as a function of 

time.  See Chapter 7 for details. 

c) Weather forecast:  Weather forecasts are available from weather services at regular time inter-

vals and for a given number of hours ahead.  In this study we use the 72 hour predictions as 

delivered every 12 hours by the MeteoSwiss COSMO-7 numerical weather prediction model.  

The predictions used are those from the model gridpoint found closest to the building site. 

d) Kalman predictor (local Kalman filter):  Since the weather forecast is not updated continuously 

(e.g., only each 12
th

 hour in case of the COSMO-7 model) it is out of date for the majority of the 

time given the regular measurements at the building.  In addition, the weather forecast is typi-

cally not available for the exact location of the building.  In order to improve the forecast on an 

hourly basis, we fuse it with those measurements.  This is done using a standard Kalman predic-

tor, which uses a linear/Gaussian forecast error model in order to make an optimal update of the 

prediction based on the newly measured local weather conditions.  
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Figure 4.2: Decision flow of the Model Predictive Control strategy developed for the OptiControl project. 
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4.5.2 Step 2 – Modeling 

This block combines the weather prediction model with the dynamic model of the building and lin-

earizes the result. 

The principle of the modeling can easily be described with a 

small example as given in Figure 4.3. The model is based on an 

RC network, where the nodes are the states and these are repre-

senting the room temperature or the temperatures in the wall, 

floor or ceiling.  Then the heat transfer rate is given by 

 

 

 

 

where A is the area, U is depending on the material and de-

scribes the heat transmission, and  and  are the tempera-

tures at node i and e respectively.   

The heat transmission coefficient is computed as 

                                                                

Figure 4.3: Heat transmission 

between two nodes. 

This yields 

 

 

where Ci is the capacity. For each node, i.e. state, such a differential equation is formulated.   

Some of the resistances are however not constant but can be varied, for example the heat transmis-

sion through the windows is not constant but can be varied by opening and closing the blinds. This 

is modeled by splitting the heat transmission into two parts, the first one describing the heat trans-

mission with closed blinds which is again constant, and a second part describing the heat transmis-

sion with partially or fully opened blinds. For the latter the right-hand side of the last equation is 

multiplied with an input u that is between 1 and 0. Please note that the outside air temperature, the 

outside wetbulb temperature and the neighboring room temperature are also nodes in this model but 

are taken as fixed sources. With these assumptions the building can be described with a bilinear 

model of the following form 

 

 

 

 

Thus, the dynamic behavior of the building is nonlinear, in this case bilinear between inputs, states 

and weather parameters. Non-linearities in the dynamic equations of an MPC problem will always 

result in a non-convex optimization, which can be extremely difficult to solve. The approach that 

we take here is a form of Sequential Quadratic Programming (SQP) for solving non-linear problems 

in which we iteratively linearize the non-convex constraints around the current solution, solve the 

optimization problem and repeat until a convergence condition is met. This standard procedure is 
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simplified here because the non-linearites are mild and since the cost is linear, rather than quadratic, 

we have only to solve a series of linear programs, instead of the standard quadratic ones. 

4.5.3 Step 3 – Formulate Constraints 

This block constructs the data required to solve an optimization problem from the incoming time-

varying linear model of the building dynamics and the constraints that the future state should sat-

isfy. 

a) MPC Formulation 

b) Construct Constraints 

Two types constraints are to be enforced: input power limits and room temperature comfort 

bounds (as well as some other output bounds).  Since the model has been linearized, the pre-

dicted room temperature at t time steps in the future is a linear function of the state now (time t 

= 0) and the intervening inputs  and weather  acting on the building. As a result, we can 

write the room temperature  at time t in the future as 

 

for appropriate vectors F, Gi and Hi, which are computed directly from the output of Step 2.  

The critical issue is that the disturbances  are not known exactly, but they are only known to 

be normally distributed with mean  and covariance .  We have considered three methods 

for enforcing bounds on the temperature despite this disturbance:  

i)  Certainty Equivalence (CE) 

This is the standard approach. The idea is to assume that the weather disturbance simply takes 

its mean value. The result is a simple linear constraint of the form 

 

where  and  are the desired upper and lower comfort bounds. 

The primary limitation of certainty equivalence is, of course, the fact that if the weather does not 

actually equal the expected value, then the bound may be violated.  This is most often dealt with 

by artificially tightening the upper and lower bounds, which provides a buffer zone and can be 

effective for small variances. The cost to be paid is the additional energy required to be conser-

vative and hold the temperature further away from the bounds than is strictly required.  See 

Chapter 10 for an analysis of this tuning procedure. 

ii)  Chance Constraints 

One method of automatically determining an appropriate amount to tighten the constraints is to 

formulate them as chance constraints as discussed above.  

 

where  is the desired probability of constraint satisfaction. A classic result by Prékopa [3] al-

lows us to re-write this difficult probabilistic constraint as a linear condition 
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where  is a constant defined as 

 

Despite the complex look of the above equation, it is in fact identical to the tuning of certainty 

equivalence discussed above, where the tightening is set in order to achieve a particular prob-

ability of constraint violation. While this procedure is conceptually appealing, the value  can 

be unnecessarily large and grows quickly with the length of the prediction horizon, which is 

why the procedure discussed in the next section was introduced. 

iii)  Chance constraints with affine disturbance feedback (SMPC) 

A less conservative approach that has been developed for the OptiControl project is a chance 

constraint formulation combined with affine disturbance feedback, as discussed above in Sec-

tion 4.3.1.  In this approach, we set the input equal to an affine function of the as yet unknown 

weather conditions, which changes the probabilistic constraint to 

 

where one can see that we have added the new optimization variable .  This procedure theo-

retically allows us to mitigate the effect of the disturbance to any desired level (note that for 

simplicity we have neglected the fact that  is always zero and so we cannot completely 

compensate for the disturbance).  This mitigation is, however, bounded by the amount of input 

energy available to the controller, since the approach requires that we allocate some input en-

ergy to compensating for the disturbance ( ), and some for steering the system to a desired 

state ( ). 

The above equation can be converted into a set of linear inequalities that are appropriate for an 

optimization routine by using a robust programming approach, which we do not detail here.  

The added complexity arises from the fact that the variable  introduced in the previous section 

is now a nonlinear function of the new optimization variable .  The resulting optimization 

problem is a second order cone problem, which is convex and therefore theoretically simple to 

solve.  However, due to the large number of variables involved, it can be very time consuming 

and as a result somewhat impractical (see Chapter 10 for a detailed analysis).  For this reason, 

we choose these matrices during a pre-processing step and fix them for the entire year, which 

returns the constraints to simple linear inequalities. 

c) Cost function:  The cost functions considered are either Non-Renewable Primary Energy usage 

or the Monetary Cost of energy over the prediction horizon (Section 2.3.3).  Because the weath-

er is not known exactly over this period, it is not possible to know exactly what cost will be 

incurred, but only a probability distribution over possible costs.  We here choose to minimize 

the expected value of this distribution, although it would also be possible to minimize the vari-

ance if desired.  Since the cost is linear and the distribution Gaussian, the expected value is sim-

ple a linear function of the mean values and is therefore simple to formulate.  

d) Soften constraints:  It is not always possible to satisfy all constraints of the building and so a 

relaxation-procedure is required that chooses automatically which constraints are to be violated 

first. This is achieved by adding variables to the optimization routine that allow every constraint 

to be violated. We then penalize these variables very heavily, which forces them to zero, and the 

satisfaction of all constraints, if at all possible. If this is not possible, then these additional vari-
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ables give the optimizer sufficient flexibility to always find a solution that can be applied to the 

building. One can define the relative importance of each constraint by tuning the relevant 

weighting matrices and thereby have the system violate the least important first.   

4.5.4 Step 4 – Solve Linear Program 

Once the constraints and cost have been formulated, the resulting problem can be passed to a stan-

dard optimization routine.  In OptiControl, we have generally made use of the standard commercial 

package CPLEX, since it is extremely effective for the large-scale and sparse problems that result.  

As discussed above, we apply an SQP approach to solving the non-convex optimization problem, 

which requires that we successively re-linearize around the current problem solution until conver-

gence.  The convergence condition is to test when two successive iterations do not change the solu-

tion to the linear program, at which point further iterations would not change the solution and we 

have reached a locally optimal solution (see also Section 8.2.2). 

4.5.5 Step 5 – Apply Control Action 

The optimal solution of the linear program consists of a sequence of planned inputs over a time ho-

rizon into the future. We apply only the first of these inputs to the building, before re-solving the 

entire problem at the next point in time. 

4.6 Discussion 

4.6.1 Benefits of MPC 

Model Predictive Control provides a simple and direct method of describing ‘what’ a controller is 

trying to achieve (minimize energy without loss of comfort), without the requirement of specifying 

‘how’ this is to be done, as is the case with rule-based approaches.  MPC can be interpreted as a 

complex set of rules mapping weather predictions, building knowledge and measurements to opti-

mal control decisions for heating, cooling etc.   

The first key benefit is that these rules do not need to be explicitly enumerated by an expert and 

experience has shown that MPC is generally most effective in situations in which good rules are too 

complicated for such an expert to determine.  

Second, the ability to directly describe ‘what’ a controller is trying to achieve makes tuning rules 

more obvious to the user and easier to manipulate.  For example, the user could easily set a single 

parameter on the fly that adjusts the system between 100% energy minimization and 100% comfort 

maximization. 

To judge the performance of a specific control strategy, a comparison to the corresponding PB 

simulation can be done, which will show the remaining potential of better control strategies.  Noth-

ing can be said about to what extent the potential can be exploited by a feasible control, but the 

sizes of remaining potentials reveal for what applications (building type, HVAC/light/blind system, 

location etc.) further control strategy development may be promising. 
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4.6.2 MPC And Low-Level Control 

The PB assumes perfect knowledge of all disturbances, such that the resulting control actions ap-

proximate an ideal, continuous time, closed-loop low-level control.  This is similar to the low-level 

control employed in the context of strategies RBC-1 to RBC-3 (Section 3.3).   

Differently from the PB, the CE and SMPC strategies are fed with imperfect weather predictions.  

Since they are run without a low-level controller any control actions taken for the time step ahead 

cannot be corrected any more during this time step. 

Due to the suboptimal blind control, the CE and SMPC strategies cannot be meaningfully compared 

against the strategies RBC-2 or RBC-3.  A comparison is, however, possible with strategies RBC-1 

and RBC-4 because for these strategies the adjustment of the blinds is restricted in a similar manner 

as for CE and SMPC.  

Three lines of work are currently pursued in order to augment the CE and SMPC strategies such 

that they can be made to function together with a low-level controller:  

The first approach consists in deriving the needed low-level control inputs (Section 3.3) based on a 

rule-based interpretation of the CE or SMPC solutions.   

The second approach is to use the next predicted room temperature by the MPC procedure as a set-

point for the low-level controller.   

The third approach incorporates a model of the low-level controller in the overall MPC model, and 

has the MPC controller generating all needed low-level control inputs directly.   

4.6.3 Estimation Of States And Parameters 

MPC controllers rely on a state-estimator in order to determine the temperature of all building ele-

ments (walls etc.).  The effect of such an estimator has been neglected the OptiControl project so far 

such that the reported results for MPC will be degraded somewhat in a more realistic setting.   

MPC controllers do not generally involve a large number of ‘tuning’ parameters per se.  However, 

there are many parameters that must be set, most of which will have physical meaning.  These con-

sist of the building model, the disturbance model used in the Kalman filter, the energy cost of each 

actuator and the desired probability of constraint violation. All of these have physical meaning and 

can reasonably be determined from building data, save for the constraint violation probability.  

While this term has physical and mathematical meaning, it is more likely to be used as a direct and 

simple tuning knob by the user to adjust the system between ‘high comfort/high energy’ mode to 

‘low comfort/low energy’ mode.  
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4.7 Conclusions 

MPC can be adapted for building control, and extensions of the approach are possible in order to 

account for uncertainty in weather predictions (and other disturbances) in a mathematically rigorous 

and physically consistent way.   

As a side-product, MPC can also be used to estimate a given building system’s energetic or mone-

tary Performance Bound.  The latter provides an absolute benchmark for assessing the performance 

of any controller.   

The control strategies specifically developed for the OptiControl project share all typical benefits of 

the MPC approach:  intuitive appeal, high flexibility, possibility to relate control actions to a physi-

cally based model of the building, and optimality of solutions (at least at a good approximation) 

even for complex control problems that involve a bilinear building model, time-dependent con-

straints and many actuators. 

These advantages are obtained at the cost of having to determine a sufficiently accurate and realistic 

model of the building and its automated subsystems.   

An additional effort needed in the practical application of MPC is that the model parameters and the 

system’s current state must be estimated by means of appropriate procedures.   

In summary, MPC is a promising approach for building control.  Its performance in real applica-

tions can be expected to vary with the quality of the model and the available input data (model pa-

rameters, system states, weather predictions etc.) to an extent that remains to be investigated. 
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5.1 Introduction 

The application Integrated Room Automation (IRA) deals with the simultaneous control of common 

HVAC and building systems like heating, cooling, ventilation, blinds and lighting.   

In order to be able to assess different control strategies by simulation – but also for the development 

of Model Predictive Controllers (MPC) – the building’s thermal dynamics and its technical installa-

tions need to be incorporated into a corresponding simulation model.   

Here we report on the selection of a suitable modeling approach, and on the derivation and testing 

of a corresponding model of a single building zone or room that was specifically developed for the 

OptiControl project.   

The accuracy of the used approximations and linearizations, the computing requirements as well as 

maintenance effort and versatility of the model are also discussed. 

5.2 Choice of Building Modeling Approach 

Our choice of modeling approach was based on the following requirements:  

• The model should be detailed enough to provide a reliable simulation of the building’s 

dynamics and all control relevant processes. To this end a temporal resolution of one 

hour or less was considered necessary.  

• The model should be simple enough to be incorporated in an MPC controller. As de-

scribed in Section 4.5 the MPC approach imposed the restriction of a bilinear model. 

• The model should be usable for large-scale simulation studies, i.e. have reasonable in-

put data needs and be computationally efficient. 

Many different building models of varying complexity are available to date that were evaluated for 

the task at hand.  It is in this context that we developed a classification of building models that is 

reported in Table 5.1. 

 

 

Modeling 

Level 

Characteristics and (example) Characteristics – Scope 

L1 Verbal model Easily understandable characterization of a building – 

communication with non-specialists. 

L2 Correlation model 

(Energy signature, [1]) 

Linear correlation between average power use and exter-

nal temperature – design and rough energy demand calcu-

lations. 

L3 Linear dynamical model 

(Simple 3-node thermal  

RC network, [2]) 

Simplest possible representation of a building’s thermal 

dynamics – design and energy demand calculations of 

buildings  

L4 Bilinear dynamical model 

(Detailed multi-node thermal  

RC-network) 

Representation of building physical processes at interme-

diate precision and detail –  reliable energy and comfort 

simulations. 

L5 Detailed model based on building simu-

lation software libraries (e.g. TRNSYS) 

Best possible representation and detailed simulation of 

building physical processes. 

Table 5.1: Hierarchy of building models.  RC = Resistance-Capacitance. 

 

The newly derived model was the one defined on the level L4.  It is described below. 
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5.3 Model Overview 

Figures 5.1 and 5.2 give an overview of the model’s components and of the chosen thermal Resis-

tance-Capacitance (RC) network, respectively.   

 

 

• Floor heating (hPowSlab) 

• TABS: Thermally activated building system for heat-
ing (hPowSlab) and cooling (cPowSlab) 

• Slow ceiling for cooling (cPowSlab) 

• Free cooling with wet cooling tower (fcUsgFact) act-
ing through cooled ceiling or TABS 

• Radiator (hPowRad)  

• Mechanical ventilation 
with energy recovery (nMevE, nMev0), heating 
(hPowMev) and cooling (cPowMev) 

• Hybrid ventilation: 
working hours (nMevE, nMev0) -  
non working hours (nNav) 

• Blinds (bPos) 

• Artificial lighting (eLighting) 

• Indoor air quality (CO2) 

Figure 5.1:  Overview and abbreviations of subsystems considered for modeling.  

 

Figure 5.2:  Thermal Resistance-Capacitance (RC) network model.  Note, for illustration all supported 

subsystems are shown simultaneously. 
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Note, for illustration both Figures contain all subsystems that occur in Building System variants S1 

to S5 (see Section 2.3).  A separate representation for each of the 5 subsystem variants considered 

in this study can be found in the Appendix A. 

The model of the building is constructed around the central room node .  Thereby the massive 

structure of the building consists of a combined floor/ceiling slab, a façade wall with integrated 

windows and an internal wall representing all walls to neighbouring rooms. These rooms are as-

sumed to have identical boundary conditions which in turn means that there is no influence of 

neighbouring rooms to the modelled room.  

The different heating and cooling systems are acting either on the room node or – depending on the 

chosen slab system – on one of the slab nodes (floor heating: node 1, TABS: node 3, cooled ceiling: 

node 5). Internal gains from persons, equipment and lighting as well as solar gains are also trans-

ferred to the room node. 

5.4 Description of Subsystems 

This section contains the most important information concerning modeling, restrictions, approxima-

tions and parameters of HVAC and other system parts of the model. The mathematical formulation 

and analysis of approximations can be found in Appendix A. 

5.4.1 Mechanical ventilation 

Mechanical ventilation systems provide the room with fresh air to guarantee indoor air quality. Two 

operation modes of ventilation are implemented: a) non-air quality controlled ventilation with con-

stant minimal airflow rate and b) CO2-controlled ventilation with variable minimal airflow rate 

(CO2-sensor).  

In the case of non-air quality controlled ventilation (ntbW1; Variant V in Table 2.8) the system is 

operated based on a working hour time schedule. Ventilation starts 1 h before the beginning of work 

and runs until 1 h after the end of work: 06:00 - 19:00 local time [3]. The minimal air change rate 

during on-times is kept constant and set to the design value for maximum occupancy. 

In the CO2-controlled ventilation (ntbOccup; Variant W in Table 2.8) the 

minimal air change rate is adapted so that the indoor air quality require-

ments are met. CO2 production is proportional to the presence of persons 

(15 l/hP). The amount of CO2 exchange through ventilation depends on the 

CO2 concentration gradient to outside air and on the air change rate. As 

CO2 exchange processes run much faster than heat transfer, the CO2 calcu-

lations would need a much smaller time step than used for the thermal 

model. As an approximation we use the occupancy profile (Section 2.5) to 

calculate a minimum air change rate. The resulting CO2-concentration in the room is then calculated 

only in a separate post processing step. Tests showed that this is a conservative approach.  

The analysis of simulation results has shown that most cases fulfil class I comfort requirements in 

the case of non-air quality controlled ventilation whereas with CO2-control typically only class II is 

reached (Appendix B.4). 

In order to prevent draught risk the maximum air change rate is limited to n = 4.0 h
-1

. 
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Mechanical ventilation can also be used for heating, cooling and for cooling by mechanical night-

time ventilation. The thermal energy of the exhaust air can be 

recovered by an air to air heat exchanger (efficiency ! = 0.8), e.g. 

with a rotary heat exchanger or a counter current heat exchanger 

with bypass. With heating and cooling registers the supply air can 

be further warmed up or cooled down to reach the required inlet 

temperature. The power demand of the ventilator (mevGe+mevG0) 

is accounted for in the thermal balance. In order to maintain thermal 

comfort upper and lower bounds for room inlet air temperature 

(!mev) are limited to 16°C and 40°C. As the thermal balance for the supply air temperature is not a 

bilinear function, the heating and cooling power reserves (for which the temperature bounds are 

reached) are calculated and limited instead of the temperature itself. Tests showed that this is a con-

servative approach (Appendix B.3). 

5.4.2 Hybrid ventilation / natural ventilation 

Hybrid ventilation is the combination of mechanical ventilation during occupancy hours and natural 

ventilation (through window opening, thermally driven) for night-time cooling. Natural ventilation 

by single sided window opening can be modeled with a physical correlation in which the air change 

rate is proportional to the square root of the difference between room and outside air temperature 

[4]. We can not use this model in the controller, because the model for heat flow has to be linear or 

bilinear in room temperature and outside air temperature. Instead we limit the maximum air change 

rate to 3 h
-1

 and the controller chooses a value below this limit. Within post processing we check if 

the required air change rate can be supplied. Tests showed that at low temperature differences (es-

pecially during summer periods) heat transfer is modelled with reasonable accuracy, but at high 

temperature differences heat flux is highly underestimated. As this shortcoming can be compen-

sated by a prolongation of the operating hours during such high cooling potential periods the ap-

proximated model can nevertheless be used for the purposes of the potential assessment simula-

tions. If controlling a real building, undercooling of the building has to be prevented by a low level 

controller (Appendix B.2). 

5.4.3 Radiator: direct room heating 

The radiator heating system is modeled as direct power input to the room node !r. As in the room 

model combined heat transfer coefficients for convection and radiation are used, this modeling ap-

proach corresponds quite well to a real situation with typical radiator devices (fractions of approxi-

mately 35% and 65% of convective and radiant dissipation of heat). As the losses of a distribution 

system would also be dissipated within the building, it is acceptable that no distribution system is 

considered.  

5.4.4 Ceiling slow: heating and cooling 

“Slow ceilings” are cooling ceilings which are directly mounted to the ceiling surface, e.g. capillary 

tube systems embedded in a gypsum layer. Because of their thermal connection to the building 

structure a considerable part of the system power is transferred directly to the building mass and 

therefore is released only with delay to the room. Compared to suspended chilled ceilings such sys-

tems react “slowly” concerning the power release to the room.  
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As it can be assumed that for heating and for mechanical cooling the necessary temperatures can be 

achieved by the respective generation systems at any time, the corresponding heating and cooling 

powers (hPowSlab, cPowSlab) can directly be fed into the slab node where the piping system is 

located. As the energy consumption for the distribution pumps is typically small compared to the 

transferred thermal energy in these cases this energy consumption is accounted for in the definition 

of the overall system efficiencies.  

Free cooling with a wet cooling tower is modeled using the free-cooling link (cf. Section 5.4.7). The 

resistance describing the system characteristics for “ceiling slow” is chosen according to a typical 

system layout of a capillary tube system with a wet cooling tower. The corresponding value of Rfc5 

is 0.29 [m
2
K/W]. As described in Section 5.4.7 the representation of the system with only one sys-

tem value is a rather rough approximation. Nevertheless the most important influences are consid-

ered. 

5.4.5 TABS: heating and cooling 

Thermally activated building systems (TABS) is the generic term for systems for heating and cool-

ing of buildings which incorporate the building mass as thermal energy storage ([5], [6]). In a clas-

sical TABS-setup the tube system – by which the storage is activated with – is located near the cen-

ter of the slabs. In the building model the TABS is therefore connected to the slab node number 3. 

As the system “ceiling slow” is just a sub-variant of TABS, the same statements concerning model-

ing, approximations and usability are valid also for the classical TABS. 

In the free-cooling case the overall system efficiency of a typical layout of a TABS combined with 

a wet cooling tower is Rfc3 = 0.33 [m
2
K/W].  

5.4.6 Floor heating: heating and cooling 

Floor heating and cooling are modeled as direct power input to the slab node number 1 of the build-

ing model. As it can be assumed that the generation systems are dimensioned well and therefore the 

required system temperatures can be hold this is an acceptable assumption to represent the real be-

havior of this system. 

5.4.7 Free cooling with a wet cooling tower 

Free cooling with a wet cooling tower is modeled using a correlation developed in the framework of 

the TABS-project [5]. The corresponding formula (8-14) out of this handbook reads as follows:  

    

The fraction in this equation describes the heat transfer between the free cooling temperature  

(TfreeCool) and the medium core temperature of the slab  where the piping system is located 

(e.g. temperature of slab node number 5 in the case of the slow ceiling system). The following sys-

tem parts are contained in this correlation: 
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 System characteristics, mass flow and fluid properties of the slab piping system 

 System characteristics, mass flow and fluid properties of the wet cooling tower 

 System characteristics of the heat exchanger between cooling tower and piping system 

The system characteristic  of the slab piping system has thoroughly been tested within the TABS-

project and was proofed to be reliable for typical TABS and TABS-kind applications. 

Also the description of the system characteristics of heat exchangers by the means of their tempera-

ture efficiency  is common and reliable for this type of unit.  

In contrast to this, the system characteristic  of the wet cooling tower in reality is nonlinear and 

had to be linearized for its use within the model.  Whereas the errors of this linearization are small 

within a large region around the dimensioning point of the cooling tower, the power output of the 

system is overestimated by up to around 15% when operated in conditions far away from the di-

mensioning point (e.g. at low wet bulb temperatures). In addition the influence of part load oper-

ation on the system efficiency is neglected. 

Nevertheless it can be stated that with this mathematically simple approach the overall behavior of 

the free cooling system can be represented quite well, as the most important influencing factors are 

considered. Moreover the individual dimensioning of each system part – narrow or rather broad 

layout – in total can be much more decisive concerning energy consumption than the errors through 

model approximations. 

The latter is also the reason, why for each system (slow ceiling, TABS) and dimensioning variant 

(cf. chapter 3.3.2) only one typical dimensioning has been chosen independently of other experi-

ment boundaries like internal gains level, window area fraction or site. 

5.4.8 Blinds and lighting 

Blind position can be set between fully closed and fully opened by pulling up and down or rotating 

the slats (bPos between 0 and 1). In corner offices both expositions have identical blind positions.  

Room illuminance implies heat gain to the room trough solar gains and 

artificial lighting (eLighting) [7]. Solar gains and illuminance are sepa-

rated into two parts: through closed blinds (SolG, illum) and difference 

to fully open blinds (dSolG, dIllum). 

Room illuminance is composed of natural lighting and artificial lighting. 

The artificial part is proportional to power demand of artificial lighting 

(! = 70 lm/W).  

5.5 Model Validation 

The validation of the developed models against detailed building and system simulators such as 

TRNSYS was to some extent hampered by the fact that an implementation of the used control 

strategies in these programs would have been necessary. 

However, based on ample experience gathered in other projects (e.g. TABS-Control) we could rea-

sonably assume that the chosen L4-model contained the most important characteristics of a building 

and that therefore the dynamic behavior of the building is well represented.  
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A quantitative check was performed with the aid of the “L5“ (cf. Table 5.1) Helios validated build-

ing simulation program for selected cases.  The results showed good consistency of the calculated 

room temperatures when the same model parameters and input data were used.  We concluded that  

the new building model is implemented correctly (Appendix B.1).  

 
Figure 5.3:  Validation of room temperature by comparison with the HELIOS model. 

Error analysis for natural ventilation (which is crucial in terms of modeling) showed only small 

deviations in transferred cooling energy even if the temporal ventilation pattern in part differed sig-

nificantly from achievable air change rates in reality. 

Consistency of the numerous and interdependent parameters of site, building and HVAC model was 

assured by thorough cross check of the inputs and the generation of the parameter sets through an 

automated procedure (BuSy Server/OCBDB). 

5.6 Conclusions  

A bilinear dynamical model for a single building zone has been newly developed.  The model is 

based on a detailed multi-node RC network.  It is suitable to simulate the building zone’s dynamical 

behavior, in particular the joint dynamics of room temperature, illumination and CO2-concentration.  

The model also supports several technical systems typically present in modern office buildings. 

In order to achieve an acceptable computational performance a reduction of complexity and some 

bilinear approximations had to be made.  Based on experience and validation exercises it has been 

shown that the model nevertheless delivers accurate and reliable results. 

Thanks to its computational efficiency and bilinear structure the newly derived model is suitable as 

a plant system model for large-scale simulation studies and in particular also as a controller model 

for Model Predictive Control.  
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6.1 Introduction 

A benefit from the use of weather forecasts in building automation applications may be taken for 

granted by an interested user of building climate control solutions. However, as will be shown in 

this report, its ultimate value is highly dependent on the nature of the building, the building automa-

tion system, the ambient weather and climate, and the control strategy applied.  

One prerequisite common to all predictive control applications is a high quality local weather fore-

cast, particularly of the outside air temperature, the incoming solar radiation and some measure of 

humidity as an indicator of the intrinsic energy potential in the surrounding air. Therefore, the main 

focus of this chapter is devoted to providing the best available local predictions of the weather vari-

ables in question.  

Numerical weather prediction (NWP) models are particularly appealing for this application as they 

can deliver regularly updated time series of near surface weather variables. High performance com-

puters solve fundamental nonlinear partial differential equations describing the dynamic of the at-

mosphere numerically on a finite three-dimensional grid with a certain spatial and temporal resolu-

tion. Typical sub-grid scale processes such as convection or turbulence need to be represented by 

suitable parameterizations being inevitably simplifications of the underlying physics. Limited area 

models nested within global NWP models allow for increasing the spatial resolution and hence the 

finer simulation of the atmospheric evolution and its interaction with the earths’ surface. However, 

small scale processes that are triggered and controlled by certain local conditions might still not be 

represented sufficiently on the model grid or by the implemented parameterizations. In addition, 

each grid point of the model is to be interpreted as the spatial average over the entire grid cell. As a 

result, the comparison of surface point measurements with model predictions at a neighboring grid 

point may reveal undesired discrepancies that, depending on the requirements of the application, 

may possibly compromise the use of NWP models for local weather predictions. 

One way to further improve local numerical predictions is based on modeling the difference be-

tween the predicted values at one (or more) suitable grid point of the model grid and the local 

measurements a posteriori (e.g. Glahn & Lowry 1972). For this, past model forecasts and observa-

tions are analyzed statistically in order to identify an appropriate error model that can be used to 

correct the future predictions. Most of these post-processing approaches use regression techniques 

in the widest sense and they mainly differ in the complexity of the respect models, and in the extend 

of the underlying database used for identification and calibration. Here, we will make use of a linear 

error model that will be updated recursively as soon as new observations become available (Persson 

1989, Cattani 1994). This approach based on a linear Kalman filter has been successfully imple-

mented at MeteoSwiss several years ago and has been permanently extended and improved in the 

course of the OptiControl project. 

In the following sections, we present the NWP model COSMO that operationally computes weather 

forecasts for Switzerland and a large part of Europe. We have selected ten case study sites that serve 

as climatological representations of typical European areas of high population densities that are 

particularly interesting for office buildings with indoor climate control. Several years of meteoro-

logical observations and corresponding COSMO predictions furnish the database compiled for a 

large simulation study to investigate the use of weather forecasts in building climate control. A sec-

ond part of this chapter is devoted to the statistical post-processing method and its beneficial effect 

on the performance of the weather predictions. 
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6.2 The Numerical Weather Prediction Model COSMO 

Highly resolved limited area NWP models are seen to be the superior choice for the prediction of 

near surface local weather variables in particular in complex topography. MeteoSwiss runs a pair of 

NWP models COSMO (COnsortium of Small scale Modelling, www.cosmo-model.org) that is 

driven by the global NWP model IFS (Integrated Forecasting System) of the European Centre of 

Medium Range Weather Forecasting (ECMWF). The current setup includes two models with a 

horizontal grid size of 6.6 km (COSMO-7) and of 2.2 km (COSMO-2) and 60 vertical levels de-

scribing the atmospheric states and their temporal evolution. The respect subdomains of the two 

COSMO models are shown in Figure 6.1. Several sub-models and parameterization schemes de-

scribing turbulence, cloud formation, moist convection, radiation and soil-to-surface interactions 

complement the numerical core of the model. The derivation of near surface weather parameters 

such as temperature in 2m height or wind speed in 10m height above ground is based on interpola-

tion algorithms between the lowest atmospheric level and the surface (for further information on the 

COSMO model see Steppeler et al. 2003 and the documentation on www.cosmo-model.org). The 

sub-models and parameterization schemes are subject to constant further developments and im-

provements. For instance, the 2m temperature diagnostic has been substantially improved and im-

plemented in June 2008 (Buzzi 2008). 

 

 

Figure 6.1: Subdomains of the two deterministic COSMO models (COSMO-7 on the left, COSMO-2 on 

the right) run operationally by MeteoSwiss. The boundary conditions for the COSMO-7 forecasts are 

provided by the global NWP model Integrated Forecasting System (IFS) of the European Centre for 

Medium Range Weather Forecasting (ECMWF) in Reading, UK. The crosses on the left indicate the 

location of the selected case study sites for the OptiControl project (see later). 

COSMO-7 is issued twice a day at 00UTC and at 12UTC and runs integrations for 72 hours into the 

future. Simultaneously, atmospheric and soil surface observations are permanently assimilated in 

order to somewhat synchronize model states with observed states. Every three hours, a 24-hour 

forecast is issued with COSMO-2 that is nested within the COSMO-7 grid. All model forecasts are 

computed on high performance computer at the Swiss National Supercomputing Centre at Manno, 

Switzerland (www.cscs.ch). For a particular local forecast, a special algorithm identifies the best 

suited model grid point within a certain search radius around the station in question. In brief, the 

height difference between measurement site and model topography is given the highest weight fol-

lowed by the spatial distance. 
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In addition to the two deterministic COSMO schemes operated by MeteoSwiss, the COSMO con-

sortium also runs a limited area ensemble prediction system (COSMO-LEPS, Marsigli et al. 2005). 

The objective of global ensemble prediction systems is to account for the uncertainties in our 

knowledge about the true states of the atmosphere and errors in NWP model formulations by run-

ning a forecast model with varying initial conditions and perturbed physics. The resulting ensemble 

provides a measure for the predictability of the future weather evolution given our limited knowl-

edge and allows for a probabilistic approach to weather forecasts. COSMO-LEPS as a high resolu-

tion counterpart (horizontal grid mesh of 10km) is nested within the IFS ensemble and therefore 

combines the probabilistic approach and high resolution NWP. As will be discussed later, probabil-

istic COSMO-LEPS products particularly of global radiation forecasts might provide an appealing 

alternative to deterministic forecasts for the OptiControl application. 

6.3 Data Description 

For the various simulation studies performed in this project, local forecasts and observations of the 

relevant weather variables were required for a number of locations that can be seen to represent the 

climate conditions in Switzerland and the European subdomain covered by the COSMO models. 

6.3.1 Selected Case Study Sites & Observation Data 

In addition to the overall aim to represent the European climate, the choice of the case study sites 

mainly depended on the availability of high quality long-term hourly observations of the most im-

portant weather variables for building control applications. Also, sites being located well within the 

COSMO-7 and COSMO-2 domain have been preferably chosen. Given these requirements and rec-

ommendations of the National Weather Services in charge, ten meteorological measurement sites in 

five different European countries have been selected for OptiControl investigations (Table 6.1, see 

black and red crosses in Figure 6.1 for their geographical distribution). 

 

 

Table 6.1: Overview of the case study sites selected for the simulation study in OptiControl along with a 

short description of the ambient weather and climate and their geographical heights. Selected sites for 

the buildings simulations (see later) in bold. 
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Figure 6.2 shows the seasonal climate characteristics of the ten case study sites as temperature-

radiation diagrams compared to long-term seasonal means at 17 European capital cities (Me-

teonorm, version 6.0.2.4). The range of possible European temperature-radiation relations is largely 

covered by the case study sites missing only the area of cold temperatures and low radiation input. 

However, the associated cities are located outside the COSMO domains (capitals of Scandinavian 

countries and Moscow) and therefore cannot be included in this study. For this report, again four 

representative sites (Zurich, Lugano, Marseille, Vienna, see also red crosses in Figure 6.1 and bold 

sites in Table 6.1) from the 10 presented locations were selected (green markers in Fig 6.2) in order 

to accomplish the numerous aspects of the control problem under investigation. 

     

Figure 6.2: Pairs of seasonal mean temperature and seasonal mean global radiation for the selected 

case study sites (blue and green markers) compared to long-term averaged values of 17 capital cities of 

Europe (black and red markers). Green markers highlight the climate of the four sites out of the 10 

OptiControl sites selected for the building control simulations. Red markers denote locations outside 

the COSMO-7 domain. European capitals shown: Amsterdam, Berlin, Bern, Brussels, Dublin, Hel-

sinki, Copenhagen, Lisbon, Ljubljana, London, Madrid, Oslo, Rome, Sarajevo, Stockholm, Warsaw, 

Vienna. 

6.3.2 Derived Weather Variables & Design Reference Years 

The radiation budget and its impact on the indoor climate of buildings are particularly sensitive to 

the orientation of the windows in the building. Therefore, radiation conversion models have been 

applied to the observations as well as the COSMO models’ forecasts that first disaggregate the 

global radiation into a direct and a diffuse component (Perez et al. 1992) and second that derive the 

incident radiation on vertical surfaces with orientation (Perez et al. 1987, Zelenka 1988).  

For the potential assessment of the predictive building climate control, representative annual data 

sets of the weather variables of interest and case study sites (design reference year, DRY) have been 

provided. Their compilations follow the standards of the SIA Merkblatt 2028 (2008) that has been 

particularly designed for building physics, energy and building technology. 
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6.3.3 Database for OptiControl 

An OptiControl Weather and occupancy DataBase (OCWDB) has been developed in order to facili-

tate an automatic and targeted access to the data required for the specific simulation in question. It 

contains all available hourly observation datasets as well as COSMO-7 predictions for the relevant 

weather variables, for the years 2006 and 2007 and all sites. For the COSMO-7 predictions, the di-

rect model output (prior to any statistical correction) and results of several correction algorithms are 

stored in order to be in the position to analyze the sensitivity of the control solution to variations in 

the weather predictions’ accuracy (see Stauch et al. 2008). In total, 474 data files in the OCWDB 

version 1.7 (release date, 09.02.2009) were made available for building control simulations.  

6.4 Local forecast correction 

Statistical adaptation of NWP model outputs to local conditions of a location of interest has been 

successfully established in the meteorological community as an efficient top down solution to 

model the systematic differences between model predictions, ZDMO and observations, ZOBS (termed 

forecast error in the following). Given the various sources and complex composition of these fore-

cast errors, flexible post processing methods are required that constantly adapt to new conditions. 

To accommodate this, a recursive estimation procedure is applied using a suitable linear error 

model and a Kalman filter (Kalman 1960) to update the coefficients dynamically once new observa-

tions become available. While the forecast error of temperature predictions has been intensely stud-

ied in the past, local radiation forecasts have experienced less attention. Therefore, we will first fo-

cus on the characterization of the different forecast errors and then discuss their improvement of 

statistical post-processing. 

6.4.1 State-space formulation for forecast correction 

The correction model applied here assumes a forecast error, ,  that is linearly 

dependent on the predicted variable, ZDMO, itself. The linear coefficients, xi(t), are assumed to 

evolve with time following a random walk process: 

 with ,      [1] 

 with .        [2] 

[1] and [2] are the observation equation and the system equation of the implemented Kalman filter 

and  and  are the zero mean serially uncorrelated observation and system noise with the 

time dependent variances R(t) and Q(t) to account for changes in  and the resulting dynamics of 

the changes in the coefficients xi. The temporal evolution of the observation variance R predomi-

nantly originated by the changing error structure depending on the current weather situation is inte-

grated within the prediction-correction algorithm proposed by Smith (1967). This adaptation is 

mapped onto Q via a fixed noise variance ratio, NVR, that has been optimized for each variable over 

the entire year in order to avoid filter divergence. 
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The latest update of model [1] and [2] is then used to predict the expected error for the entire fore-

cast horizon (72 hours for COSMO-7), i.e. the coefficients xi are held constant for the prediction. 

Obviously, this assumption becomes less likely to be true with lead time. The COSMO-7 forecast 

correction implemented here includes 24 separate daily prediction-correction schemes for each 

weather variable to account for the pronounced daily cycle of the errors. This way, each hourly pre-

diction step is taken only three times in order to make a robust 72-hour weather forecast correction. 

6.4.2 Forecast evaluation and discussion 

This forecast error correction has been applied to all available data sets and weather variables in the 

database. However, its effect on the forecast performance will be different for the air temperature 

and wetbulb temperature on the one hand and for the radiation variables on the other hand, due to 

their very different error characteristics. While the temperature forecasts are mainly biased with a 

reasonably small variability (the magnitude of the standard deviation of the error is very similar to 

the bias), the radiation forecast errors are particularly characterized by a high variability and a com-

parably small systematic component.  

Figure 6.3 illustrates the two forecast error structures for three-days ahead predictions with a sub-

sample of the Zurich data for 2007. The forecast correction has - by design - the largest positive 

effect on biased forecasts. As a result, the temperature predictions are substantially improved after 

the correction leading to unbiased forecasts even with a slightly reduced variability. In contrast, 

although the correction on the radiation components again reduces the bias in the prediction, the 

effect is somewhat blurred by the large variability of the error. For comparison, a persistence fore-

cast is also shown as it will be used later in the simulation studies. The variability of the persistence 

errors increases more with forecast time than the NWP predictions as expected.  

To elaborate the impact of the correction on the DMO for all selected locations, Figure 6.4 shows 

the relationship between the seasonal bias and the standard deviation of the errors for all available 

predictions averaged over the first 24 hours (all sites, variables, years) before (left panels) and after 

the correction (right panels). As expected, the correction affects most notably the bias while the 

standard deviation remains nearly unchanged. The figure also illustrates a major difference in the 

error characteristics of the temperature variables compared to the radiation components (two left 

panels). The magnitudes of the standard deviation and the bias for the temperature variables are 

very similar whereas the standard deviations to bias ratios of the radiation components range to up 

to 100. 

The overall effect of the correction on the forecast performance for the first 24 hours is discussed by 

means of the improvement expressed by the relative differences in the root mean square errors 

(!RMSE) of the direct model output forecasts and the corrected forecasts. This normalization al-

lows to intercomparing the different variables. The RMSE for a certain variable evaluates both, the 

bias and the variability of the prediction error. For an unbiased forecast, RMSE equals the standard 

deviation of the error. 

,  

with the subscript ‘MOD’ being either DMO or the correction, KF1. The !RMSE for the evaluation 

of the post-processing scheme is then calculated as follows, 

. 
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a. 

 

b. 

 

c. 

 

d. 

 

Figure 6.3 Summary verification results for the four weather variables temperature, TA (a.), wetbulb 

temperature, TW (b.), global radiation, RG (c.), global radiation south orientation, RGS (d.) for the en-

tire year 2007 at Zurich. OBS are the mean observations, DMO is the direct COSMO-7 model output, 

PER shows the persistence forecast taking the latest measurements available and project them into the 

future, KF1 is the Kalman filter correction and KF1s is the standard deviation of the forecast error of 

KF1. ! in the bottom panels denotes the standard deviation of the forecast error. 
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Figure 6.4 Summary verification results for all seasons, sites and years available for the air tempera-

ture and wetbulb temperature (top panels) and all radiation components (bottom panels) for the first 24 

hours of predictions. Shown is the relationship between the mean absolute bias and the mean standard 

deviation of the error (predictions – observations) for the direct model output (DMO, left panels) and 

after correction (KF1, right panels). The color code for DMO is the same as for KF1. TA, 2m tempera-

ture; TW, wetbulb temperature; RG, global radiation; RGE, global radiation east orientation; RGS, 

global radiation south orientation; RGW, global radiation west orientation; RGN, global radiation 

north orientation. 

As the controllers’ actions are derived from the optimization of a temporally integrated cost func-

tion, the quality of the weather forecasts integrated over the entire prediction horizon used for this 

optimization is also investigated. For this, temperature variables are averaged and radiation vari-

ables are summed over the first 24 hours. Figure 6.5 compares the distribution of !RMSE values of 

all sites and seasons of 2007 for the different weather variables. Not surprisingly, the effect of the 

correction is different for the variables of interest being highest for air and wetbulb temperature 

(TA: 20-30%, TW: 35-45%). Given the correction algorithm removes the systematic biases, negative 

values of the !RMSE indicate that this correction has been done at the cost of an increased variabil-

ity. The effect of the correction highly varies with season and site. The global radiation with north 

orientation shows the largest benefit from the correction because the standard deviation of the fore-
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cast error prior to the correction is already small. On the contrary, the mean effect of the correction 

on the radiation with south orientation is even negative. The differences in the relative improve-

ments between hourly and daily averaged data are small. However, the daily forecast performance 

improvement is derived from hourly values and only reflects the effect of averaging/summation. 

Further improvement should be achieved if a correction is applied directly on the daily values. 

 

 

Figure 6.5: Distribution of the relative improvement of KF1 correction over the direct model output for 

all weather variables based on hourly data (left panel) and daily integrated data (right panel). Shown 

are the !RMSE values for all seasons and sites in 2007. TA, 2m air temperature; TW, 2m wetbulb 

temperature; RGE, global radiation east orientation; RGS, global radiation south orientation; RGW, 

global radiation west orientation; RGN, global radiation north orientation. 

 

Interestingly, the distribution of the !RMSE is highly stratified by season. Figure 6.6 reveals that 

the correction for summer and winter has negative effects on the radiation components and large 

positive effects in spring and autumn. This result might suggest that the assumption of a fixed noise 

variance ratio (NVR) does not apply to the filter problem at hand. Instead, further investigation is 

focused on how to better constrain the estimation with non-constant NVRs. 

 

Figure 6.6: Distribution of the relative improvement of KF1 correction over the direct model output for 

all weather variables in summer and winter (left panel) and in spring and autumn (right panel). 
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The high variability in the radiation forecasts will very likely cause problems for the predictive con-

trol of indoor building climate.  One possibility to handle this might offer the use of COSMO-LEPS 

predictions with their instantaneous probabilistic information. On the other hand, if forecasts with 

only a short prediction horizon are required (system variants 1 and 2 in particular), the building 

simulations might benefit from the 3hour update cycle and the higher horizontal resolution of the 

COSMO-2 model. A study for air temperature forecasts showed that the local predictions could be 

further improved by more than 5% for 60 Swiss locations. 

6.5 Conclusions 

The performance of COSMO-7 predictions is dependent on site, season, weather situation and 

weather variable in question. The forecast error can be divided into a systematic component (bias) 

and a random component (uncertainty). We have shown that the systematic errors in the COSMO-7 

predictions can be successfully removed on a seasonal basis by the application of an appropriate 

statistical post-processing procedure. 

The weather variables of interest as well as the associated COSMO-7 forecast errors have very dif-

ferent statistical properties. While the temperature and wetbulb temperature evolve relatively 

smoothly in space and time on an hourly basis, the radiation variables are characterized by a par-

ticularly pronounced temporal and spatial variability. This variability is originated from the natu-

rally high variability of cloud cover and their formation and distribution within the vertical atmos-

pheric layers above the surface. Therefore, overall improvements of the DMO are largest for the 

temperature predictions (~20-30%) and wetbulb temperature predictions (~35-45%) for the first 24 

hours of the prediction. On the contrary, the success of the statistical correction of the radiation 

components as it is implemented to date is highly dependent on the season. Improvements range 

between 10 and 60% for spring and autumn and are even negative (~ -10%) in winter and summer. 

This discrepancy might originate from a constant noise variance ratio assumed for the Kalman filter 

and could be tackled with a seasonally varying NVR currently under investigation. 

From these results, we have composed a database containing local observations and best available 

weather predictions as input for a comprehensive simulation study that evaluates the potential bene-

fit of using weather forecasts in predictive control of indoor building climate. Further investigations 

will analyze the potential of the high resolution COSMO-2 predictions with a three hourly update 

on the one hand, and the possible advantages of the probabilistic information in COSMO-LEPS on 

the other hand at the cost of the spatial resolution. 
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7.1 Introduction 

The present Chapter pursues two interrelated goals:  

The first goal is to assess the sensitivity of control costs for Integrated Room Automation (IRA) to 

the following variations in the boundary conditions for control:   

(1) the choice of the building system and of the optimization target (money vs. energy);   

(2) the introduction of night/weekend set-backs (a reduction of the thermal comfort when the 

building is not used);   

(3) a widening of the thermal comfort range width (a general reduction of thermal comfort); and 

(4) the introduction of CO2-controlled ventilation (use of CO2-sensors).  

The decisions (1) are typically taken by architects and HVAC designers at an early building design 

phase.  We do this investigation because to our knowledge not much work has been published on 

this issue so far.  The variations (2)–(4) correspond to advanced control functionalities that are of 

interest because they can contribute to reducing building energy demand at relatively low invest-

ment cost;  this is because they do not require major construction work, or any major retrofitting or 

changes in the installed energy systems. 

The effects (1)-(4) are studied with the aid of Performance Bound calculations (PB, Section 4.4).  

By relying on the PB we ensure that any found differences in the control costs (energy or money) 

reflect but the effect of the prescribed variations in the boundary conditions and are not distorted by 

the shortcomings of a particular control algorithm.   

The second goal is to explore the theoretical energy savings potentials of the rule-based, non-

predictive control algorithms RBC-1 to RBC-4 (Chapter 3), and to compare them to the energy sav-

ings obtained from (1)–(4). 

The savings potentials are determined based on the approach outlined earlier (Section 1.4):  first the 

Performance Bound (PB) is calculated as an absolute benchmark, and then the control costs as ob-

tained from a given RBC algorithm are compared to the PB.  The difference to the PB presents a 

theoretical number that indicates the savings that could be achieved if that algorithm were replaced 

with optimal control and perfect disturbance predictions. 

Initial studies indicated that the absolute and comparative performance of control algorithms varied 

drastically with several factors such as the building standard, construction type, location etc.  To 

deal with this issue we conducted a large-scale factorial simulation study that investigated a large 

number of building cases.   

A second problem was that the quality of control can not be readily assessed by the cost criterion 

alone since a given algorithm may save costs at the expense of comfort.  Therefore, selected thermal 

(dis)comfort statistics were also considered.   

In Section 7.2 we first describe the design, set-up, and analysis of our simulations.  Section 7.3 pro-

vides: (i) the PB simulation results from investigations (1)-(4);  (ii) the performance of the four 

RBC algorithms as compared to the PB and with each other;  and (iii) an overall comparison of the 

results from (i) and (ii).  Our findings are discussed in Section 7.4.  Our conclusions are given in 

Section 7.5. 
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7.2 Material & Methods 

7.2.1 Overview 

For our study we considered a large number of individual simulation runs that differed systemati-

cally in one or several “factors” (or key assumptions) from each other, as explained later.  Each 

simulation run was done for the length of one year.  

The simulated plant model (a model of the building plus its heating, cooling, ventilation etc. subsys-

tems) was the continuous-time, bilinear model described earlier in Chapters 4 and 5.  The model 

was transformed to a discrete time model using a sampling time of 1 h.  This was also the time step 

used for computation of the control inputs, the updating of the model’s state, and the monitoring of 

the simulation results. 

In the PB simulations the plant model was driven with control inputs that were determined from a 

Model Predictive Control (MPC) procedure (see below).  In all other simulations the control inputs 

were derived by a low-level control algorithm that was based on the modes delivered by one of the 

rule-based controllers RBC-1 to RBC-4 (see Chapter 3).  

Below we first provide details on the procedure used to estimate the PB.  Then we proceed with the 

description of the simulation experiments, analysis procedure, and used software. 

7.2.2 Performance Bound Estimation 

By definition, for the estimation of the PB it was assumed that the plant’s dynamical behavior is 

perfectly known, i.e. the model used for MPC was identical to the model that was used to simulate 

the plant behavior.  The same also applied to the used weather and internal gains predictions – the 

used predictions at any given point in time were identical to the data that was used to drive the plant 

model in the time steps ahead.   

The standard application of MPC employs a receding horizon procedure (see Chapter 3).  In our 

case this would have involved 8760 optimizations (one per hour of the year).  Moreover, in order to 

account for the availability of perfect knowledge on the future weather and internal gains, each such 

optimization would have needed to consider a “sufficiently” long prediction horizon of length TH.   

Since this procedure is computationally very expensive an alternative approach was considered that 

exploits the fact that in the PB simulations the plant model and the plant system’s state at begin of 

each optimization step are also perfectly known.  This makes it in principle possible to determine 

the optimal sequence of control inputs and the associated system states all at once, by solving a sin-

gle optimization problem over a prediction horizon TH = 8760 hours.   

Unfortunately, this approach proved impractical due to the presence of the bilinearities in the model 

used for MPC.  The bilinearities make it necessary that the optimal solution is determined by means 

of an iterative procedure (see Chapter 4.5), and for the “single optimization” approach the iteration 

procedure was found to converge only very slowly.  As a result, the original gain in efficiency was 

jeopardized by the need to solve a large number of very large (entire year) optimization problems.   

Therefore the following intermediate solution was adopted:  the MPC algorithm was run once every 

TOL = 48 h (2 d), with a prediction horizon of TH = 144 h (6 d).  The subscript “OL” stands for 

“open loop” and this refers to the fact that the control inputs during the 48 hours following an opti-

mization were precisely the ones delivered by this optimization, i.e. during these 48 hours the con-

trol inputs were directly applied to the plant model without any feedback to the controller.   
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The numerical values for TOL and TH were chosen according to the following procedure:  First, we 

performed PB simulations for a large number of building cases using a receding horizon strategy 

with TH  = 6, 12, …72 h.   Then the annual total Non-Renewable Primary Energy (NRPE) usage 

was evaluated as a function of TH.  It was found that – even for the most extreme cases – an in-

crease in TH beyond 60–70 h did not affect the NRPE value by more than 1% (some of these results 

are reported in [1]).  From this investigation it was concluded that when using TH > THmin = 72 h 

(3 d) the optimal control inputs for the first TOL = TH-THmin time steps can be used without the need 

to conduct a new optimization within that time interval.   

However, the simulated cases that were used to obtain this result did not assume the presence of 

night/weekend set-backs.  Allowance for weekend set-backs introduces a strong change in the con-

straints for the room temperature for a duration of 48 h (2 d).  To account for this effect we finally 

chose TH = 144 h (6 d) and increased THmin to 96 h (4 d), i.e. TOL = 48 h (2 d).  

The iterative procedure for solving the bilinear optimization problem was terminated when the fol-

lowing condition was met:  (MAX(Xi-Xi-1) ! 0.1 ºC) OR (|(ci-ci-1)/ci-1| ! 1.0e
-3

), i > 1.  Here, i de-

notes the iteration number, Xi denotes the matrix containing the controlled system’s predicted states 

over the entire optimization horizon from the i-th iteration, MAX(M) is the maximum of all ele-

ments of matrix M, and ci is a scalar denoting the total cost of all control actions over the entire op-

timization horizon from the i-th iteration.  The maximum allowed number of iterations was set to 

10.  If this number was reached the found optimal solution from the very last iteration was used.   

7.2.3 Factors and Experiments Sets 

Table 7.1 summarizes the factors that were varied in our simulation experiments.  There was a total 

of fourteen different factors that fell into the following groups:  definition of building technical sys-

tem and cost function (factors no. 1–4);  boundary conditions for control (no. 5–7);  weather condi-

tions (no. 8–9);  and general building characteristics (no. 10–14).  Further information on the indi-

vidual factors can be found in Chapters 2 and 6.   

The simulation experiments conducted for a given control strategy (PB or RBC-1 to RBC-4) and 

particular combination of factors 1–7 (in particular the Building System variant, Cost Function vari-

ant, Thermal Comfort variant and Ventilation Strategy) were grouped into so-called “Experiments 

Sets”.  Each Experiments Set covered all possible combinations in the factors no. 8–14.   

Table 7.2 summarizes the Experiments Sets considered, and Table 7.3 shows the numbers of simu-

lations present in an Experiments Set per Buildings Class (Table 2.2) and Building Standard. 

Performance Bound simulations were conducted for both Cost Function variants, and for all Ex-

periments Sets (E1–E10), i.e. there were 7’168 simulations per Cost Function variant. 

Simulations with the rule-based controllers RBC-1 to RBC-4 were conducted only for the Cost 

Function variant NRPE, and only for the Experiments Sets E1–E3.  This corresponded to 2’304 

simulated cases per controller.   
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Table 7.1: Overview of factors varied in the simulations experiments.  *: Building System variant S1 

has no ventilation subsystem ,  Ventil. Strategies V and W apply to variants S2–S5 only. 

 
Experiments  
Set Identifier 

Building System  
Variant 

Thermal 
Comfort 

Ventilation 
Strategy 

E1 S1 Aw - 

E2 One of S2–S5 Aw V 

E3 One of S2–S5 Aw W 

E4 S1 Bw - 

E5 One of S2–S5 Bw V 

E6 One of S2–S5 Bw W 

E7 S1 An - 

E8 One of S2–S5 An V 

E9 S1 Bn - 

E10 One of S2–S5 Bn V 

Table 7.2:  Overview of Experiments Sets. 

 
Buildings Class Passive House Swiss Average 

I 16 16 

II 112 48 

III – 64 

Total 128 128 

Table 7.3:  Numbers of simulation experiments per Experiments Set. 

No Factor Variants Considered # Vari-
ants 

Further 
Information 

1 Building System S1, S2, S3, S4, S5 5 Table 2.3 

2 Energy System Heat: earth coupled heat pump 
Cold: mechanical (compression) chiller 

1 Table 2.5 

3 Dimensioning Strategy Ds – Scant 1 Table 2.4 

4 Cost Function NRPE – Non-Renewable Primary Energy usage 
MC – Monetary Cost (diurnally varying tariff) 

2 Table 2.4 

5 Thermal Comfort Aw – No set-back, wide comfort range  
Bw – Set-back allowed, wide comfort range 
An – No set-back, narrow comfort range  
Bn – Set-back allowed, narrow comf. range 

4 Table 2.4 

6 Ventilation Strategy none – No ventilation         (S1) 
V –  non-air quality controlled ventil.   (S2–S5) 
W – CO2-based control            (S2–S5) 

   1 * 
2 
 

Table 2.5 

7 Illuminance Comfort Occupancy dependent, bright 1 Section 2.4.3 

8 Site SMA – Zürich-Fluntern 
LUG – Lugano 
WHW – Wien Hohe Warte  
MSM – Marseille-Marignane 

4 Chapter 6  

9 Weather Data Set DM – Average Design Reference Year 1 Chapter 6  

10 Façade Orientation N, S, SW (corner room), SE (corner room) 4 Table 2.1 

11 Construction Type h – heavyweight 
l – lightweight   

2 -“- 

12 Building Standard sa – Swiss average 
ph – Passive house 

2 -“- 

13 Window Area Fraction  wl – low 
wh – high 

2 -“- 

14 Internal Gains Level il – low 
ih – high 

2 Table 2.6 
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7.2.4 Analysis Procedure 

7.2.4.1 Standard Procedure 

The following data were archived for each individual simulation run: (i) all parameter values and 

settings determining the run’s execution and results;  (ii) the hourly values of the plant model’s state 

(x), input (u), output (y), and diagnostic output (z) vectors (cf. Appendix A);  (iii) the hourly values 

of the control costs (c) and cumulative control costs (cc) vectors;  (iv) the hourly values of the sys-

tem outputs’ upper and lower constraints vectors (ymin, ymax);  and (v) the number of bilinearity 

iterations employed for each optimization within the simulation run.  

From the hourly cost data of each simulation run were computed the monthly, seasonal and annual 

total cost of all control actions and of each individual control action (e.g. radiator heating, free cool-

ing etc.).   In order to assess the sensitivity of the control costs to the Cost Function definition the 

following additional analyses were done for various PB simulations:  the hourly control outputs 

obtained when optimizing for NRPE usage (respectively MC) were re-evaluated to compute the 

associated MC (respectively NRPE usage).  For these alternative costs again corresponding 

monthly, seasonal and annual totals were computed. 

The simulated hourly system output values were post-processed in two steps, as follows: 

First, from the hourly y, ymin and ymax data were calculated the following annual, seasonal, and 

monthly indices related to comfort and the simulated systems’ behavior:  a) Room temperature: 

cumulative sum of deviations below (above) the lower (upper) comfort range bound (in K!h), and 

numbers of violations of the upper and lower bound, respectively, by at least 0.0, 0.1, 0.5 and 1 ºC;  

b) Room illuminance: cumulative sum of deviations below (above) the lower (upper) comfort range 

bound (in lux!h), and numbers of violations of the upper and lower bound, respectively, by at least 

10, 50, and 100 lux;  c) Ceiling surface temperature (condensation control, only for systems with 

cooled ceiling present): cumulative sum of deviations below lower prescribed bound (in K!h), and 

numbers of violations of the lower bound by at least 0.0, 0.1, 0.5 and 1 ºC;  and d) Total air change 

rate (only for systems with ventilation system present): cumulative sum of deviations below (above) 

the lower (upper) comfort range bound (in h
-1
!h), and numbers of violations of the upper and lower 

bound, respectively, by at least 0.0, 0.01, 0.1 and 0.25 h
-1

;  e) various statistics for the mechanical 

ventilation air change rate plus the mechanical ventilation’s heating and cooling reserve. 

The second post-processing step was as follows: all annual statistics from one or several Experi-

ments Sets were collected into a so-called “data collection”.  Depending on the question investi-

gated for the further analysis considered were either all data points from this data collection or their 

pairwise differences to the corresponding data points from a second data collection reflecting a 

variation in a specific factor (e.g., narrow vs. wide thermal comfort range width).   

The resulting data points were then stratified by the following factors:  Control Costs variant 

(NRPE usage or MC), Building System variant (S1–S5), Building Standard (Passive House or 

Swiss Average), and Building Class (I–III).  Finally, for each factor combination corresponding 

summary statistics (e.g. boxplots) were derived.  

In this Chapter we focus but on annual results: annual costs (NRPE usage or MC) and selected an-

nual comfort and electrical lighting (see below) statistics.  More detailed analyses considering some 

of the monthly and hourly results are reported in Chapter 8. 
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7.2.4.2 Electric Lighting Analysis 

After performing a large number of PB simulations was detected that for electrical lighting no upper 

bound had been specified.  Given that the room illuminance level was also unlimited (Section 2.4.3) 

this had the following consequence:  whenever there was a limitation in “normal” heating power the 

MPC optimization algorithm employed electrical lighting for heating.  This occurred in several in-

stances because maximum non-electrical heating power had been specified based on a scant dimen-

sioning procedure (Table 2.4).   

In order to ensure comparability of the PB results we decided to allow for this extra electrical light-

ing in all PB simulations.  (Note, this problem did not occur in the simulations with the rule-based 

controllers, because in these cases electrical lighting was always limited correctly).  The extra elec-

trical lighting power and costs were evaluated for each individual PB simulation as follows:   

In a first step were detected all hours with extra lighting present as the hours for which held the 

condition (Er-ErMin > 0.1) AND (uEL > 0.01), where Er is the current and ErMin is the minimum re-

quired room illuminance level (both given in lux), and uEL is the electrical lighting power (in 

W/m
2
).   

In a second step was evaluated the condition !!uEL " ErMin, where ! is the luminosity efficacy of 

electrical lighting.  If this condition was found to be true the power for extra lighting was estimated 

to be equal to uEL, i.e. it was assumed that ErMin had been reached thanks to illuminance input 

through the windows, such that all lighting power was assumed to be extra power.  Otherwise the 

extra power was set to the power needed to reach the current illuminance level above the minimum 

level, i.e. uEL-ErMin/!.   

In a third step, the cost of the extra electrical lighting power was evaluated for all found cases using 

the current Cost Function.  At last, the annual total extra electrical lighting cost and further annual 

statistics were calculated.  

7.2.5 Software And Databases 

All simulations were done with the BACLab software, a specialized building modeling and simula-

tion software that was developped within the OptiControl project.  The software version used for 

the PB simulations was BACLab v1.1.  For the simulations with the rule-based controllers we used 

BACLab v1.2 (extra electrical lighting bug fixed).  The post-processing was done with BACLab 

v1.8pre to v1.91pre (versions with enhanced post-processing functionality).   

The weather and occupancy data were those from the OptiControl occupancy and weather database 

OCWDB v1.7.  The building and building systems parameters were accessed via the server soft-

ware BuSyServer v1.1 from the database BuSyDB v2.4. 
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7.3 Results 

7.3.1 Choice of Building System and Optimization Target  

Here we investigate what are the savings in control costs when there is no ventilation system (build-

ing system variant S1), and in as far buildings systems that serve the same purpose (variants S2–S5) 

result into different control costs.  We also investigate the use of different optimization targets 

(monetary vs. energetic cost), an issue of interest to energy planners and energy providers. 

Figure 7.1 juxtaposes the annual NRPE usage and MC for the five Building System variants S1–S5 

and Buildings Class I.  Summary statistics for Buildings Classes I–III are given in Table 7.4.  

Graphical results for Buildings Classes II and III and further statistics are reported in Appendix D.1.   

Building Standard:  From Figure 7.1 can be seen that median values (red lines) for NRPE usage or 

MC were always lower for the Passive House Building Standard (left panels) as compared to the 

Swiss Average standard (right panels).  The same was found to hold also for Buildings Class II 

(Table 7.4).  On average over the Classes I and II NRPE usage between the two Building Standards 

differed by a factor of two, whereas for annual MC was obtained a factor of 1.6 (Table 7.4).   

Building System variant:  As expected, for both Cost Functions and all Building Classes the variant 

S1 yielded on average the lowest cost.  Variant S3 (heating/cooling with ventilation only) yielded 

the highest costs.  Variants S2, S4 and S5 generally showed intermediate and generally very similar 

average costs (Figure 7.1, Table 7.4).   

Buildings Class:  Both, average NRPE usage and MC showed a clear dependence on Buildings 

Class:  Class I always had the lowest average costs, followed by Class II and then by Class III (Ta-

ble 7.4).   

Figure 7.2 reports the found absolute differences in PB annual total costs for Buildings Class I when 

different optimization targets/Cost Functions were used for control cost optimization and evalua-

tion.  Average relative differences for all Buildings Classes are reported in Table 7.5.  Further 

graphical representations and statistics can be found in Appendix D.2.   

Building Standard:  The choice of alternative Cost Functions was found to matter less for the Pas-

sive Houses as compared to the Swiss Average cases: the found overall average relative differences 

for NRPE usage amounted for Passive Houses to 2.4% and for the Swiss Average cases to 5.4%;  

for MC the corresponding values were 3.1% and 8.4%, respectively (Table 7.5).  

Building System variant:  Variant S3 showed the highest average absolute and relative sensitivities 

to the choice of Cost Function.  However, in two cases the most sensitive variant in both, absolute 

and relative terms, was found to be variant S5 (for MC, Swiss Average Building Standard, Build-

ings Classes II and III): the obtained average MC-increases when the control was optimized for 

NRPE were no less than 13.6% and 20.2%, respectively.  The lowest average absolute and relative 

sensitivities were always found for Building System variant S4 (Table 7.5, Appendix D.2). 

Buildings Class:  There was a clear dependency on Buildings Class, with increasing average abso-

lute and relative differences through Classes I to III. 

Cost Function:  From Table 7.5 can be seen that MC responded for Buildings Class I in 9 out of 10 

cases more sensitively to the use of an alternative Cost Function than NRPE usage.  For Class II the 

average relative differences were highest for MC and NRPE usage in 5 cases each. 

Note, the relative differences for the individual building cases showed large deviations from the 

average values reported in Table 7.5 (cf. Figure 7.2).   The most extreme relative differences ob-

tained amounted to 31% for NRPE usage and 46% for MC (Appendix D.2). 
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                            Passive House                                     Swiss Average 

NRPE 

 

MC 

 

Figure 7.1:  Overview of Performance Bound results for annual total costs and Buildings Class I.  

NRPE: Non-Renewable Primary Energy usage;  MC: Monetary Cost;  S1–S5: Building System vari-

ants.  For each Cost Function were considered Experiments Sets E1–E6, respectively.  On each box, 

the central mark is the median, the edges of the box are the 25th and 75th percentiles, and the whisker 

covers ca. 99% of the simulated cases for the particular Cost Function, Building Standard, and Build-

ing System variant.  Outliers are drawn as single points.  Note the different y-axis ranges. 

 

  Passive House   Swiss Average Cost 

Function 

Buildings 

Class   S1 S2 S3 S4 S5 Mean   S1 S2 S3 S4 S5 Mean 

I  15.8 24.7 28.2 23.3 24.7 23.3  33.7 44.9 50.3 43.7 44.6 43.4 

II  19.8 28.5 32.8 27.6 28.9 27.5  45.0 55.6 66.3 58.6 59.2 56.9 

III  – – – – – –  63.9 74.8 93.7 84.2 85.1 80.3 

NRPE 

[kWh/m
2
/a] 

Mean I+II   17.8 26.6 30.5 25.4 26.8 25.4   39.3 50.3 58.3 51.1 51.9 50.2 

I  1.22 2.04 2.19 2.01 2.03 1.90  2.31 3.22 3.50 3.16 3.15 3.07 

II  1.49 2.29 2.52 2.30 2.28 2.18  2.63 3.53 4.12 3.53 3.43 3.45 

III  – – – – – –  3.38 4.30 5.34 4.37 4.17 4.31 

MC 

[CHF/m
2
/a] 

Mean I+II   1.35 2.16 2.36 2.16 2.16 2.04   2.47 3.37 3.81 3.35 3.29 3.26 

Table 7.4:  Mean Perfomance Bound results for annual total costs.  NRPE: Non-Renewable Primary 

Energy usage. MC: Monetary Cost.  S1–S5: Building System variants.  For each Cost Function were 

considered Experiments Sets E1–E6, respectively.  Shown are average values from all simulated cases 

for the respective Cost Function, Buildings Class, Building Standard, and Building System variant.   
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Figure 7.2:  Overview of absolute differences in annual total Performance Bound costs for Buildings 

Class I when using different Cost Functions for control cost optimization and evaluation.  !NRPE: 

difference in Non-Renewable Primary Energy (NRPE) usage when control was optimized for Mone-

tary Cost (MC);  !MC: difference for MC when control was optimized for NRPE usage;  NRPEMC: 

NRPE usage obtained after optimization for MC;  MCNRPE: MC obtained after optimization for NRPE;  

S1–S5: Building System variants.  For each Cost Function were considered Experiments Sets E1–E6, 

respectively.  Each box was derived from all simulated cases for the respective Cost Function, Build-

ings Class, Building Standard, and Building System variant. 

 

  Passive House   Swiss Average Cost 

Function 

Buildings 

Class   S1 S2 S3 S4 S5 Mean   S1 S2 S3 S4 S5 Mean 

I  1.2 1.1 4.0 0.8 0.8 1.6  2.7 3.2 8.1 1.2 1.3 3.3 

II  3.1 2.6 8.0 1.2 1.5 3.3  8.3 8.7 13.7 2.8 3.5 7.4 

III  – – – – – –  11.1 11.2 13.0 4.5 5.3 9.0 

!NRPE% 

Mean I+II   2.2 1.9 6.0 1.0 1.1 2.4   5.5 6.0 10.9 2.0 2.4 5.4 

I  4.1 1.7 6.2 0.6 1.5 2.8  6.7 6.3 12.0 4.2 6.6 7.2 

II  4.5 2.1 6.1 1.1 2.8 3.3  9.4 8.1 10.6 6.9 13.6 9.7 

III  – – – – – –  10.6 9.0 9.7 8.9 20.2 11.7 

!MC% 

Mean I+II   4.3 1.9 6.2 0.9 2.1 3.1   8.1 7.2 11.3 5.5 10.1 8.4 

Table 7.5:  Mean relative differences in annual total Performance Bound costs when using different 

Cost Functions for control cost optimization and evaluation.  !NRPE%: rel. difference for Non-

Renewable Primary Energy (NRPE) usage when control was optimized for Monetary Cost (MC);  

!MC%: rel. difference for MC when control was optimized for NRPE usage;  S1–S5: Building System 

variants.  For each Cost Function were considered Experiments Sets E1–E6, respectively.  Shown are 

percentage values averaged over all simulated cases for the respective Cost Function, Buildings Class, 

Building Standard, and Building System variant. 
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7.3.2 Assessment of Low-Cost Energy Saving Measures 

7.3.2.1 Effect of Night/Weekend Set-Back 

This investigation is of interest to control equipment suppliers and energy performance contractors.  

It shows the savings potential of an ideal Optimal Start/Stop Control (OSSC) function.  

Figure 7.3 shows boxplots of absolute differences in annual total PB costs for Buildings Class I 

from the pair-wise comparison of cases with (thermal comfort variant Bw) and without (variant Aw) 

set-back.  The average relative differences in NRPE usage and MC are given in Table 7.6.  Further 

graphical results and more detailed statistics are reported in Appendix D.3.   

Building Standard:  The Swiss Average cases always yielded larger average absolute (Figure 7.3) 

and relative (Table 7.6) differences than their Passive House counterparts. 

Building System variant:  For both Building Standards the largest average absolute differences were 

obtained for variant S3 (Figure 7.3, Appendix D.3), and the largest average relative differences for 

variants S3 and S1.  The least sensitive Building System variants were S5 and S4 (Table 7.6).   

Buildings Class:  The set-back effect for the Passive Houses of Buildings Class I (Figure 7.3, left 

panels) was generally small (at most a few percent) and showed a skewed distribution, i.e. there 

were many cases with practically no effect present.  Buildings Class II yielded similarly skewed 

distributions as Class I (Appendix D.3), but the differences obtained were generally much larger 

than for Class I (Table 7.6, Appendix D.3).  For the Swiss Average Building Standard average rela-

tive differences were again small for Buildings Class I (Figure 7.3, right panels) and increasingly 

larger for Classes II+III (Table 7.6).   

Cost Function:  In all cases MC yielded the smallest, and NRPE usage the largest average relative 

differences (Table 7.6). 

 

7.3.2.2 Effect of Thermal Comfort Range Width 

This investigation is of interest to building users/owners, operators/facility managers, and also per-

formance contractors.  It shows the control costs savings potential of reduced thermal comfort. 

The found effects due to the change in comfort range width from “narrow” to “wide” are illustrated 

for Buildings Class I in Figure 7.4.  Average relative effects for all Buildings Classes are reported in 

Table 7.7.  Further results on the thermal comfort range width effect can be found in Appendix D.4. 

Building Standard:  The average absolute effects were always larger for the Swiss Average cases as 

compared to their Passive House counterparts (Figure 7.4, Appendix D.4).  The average relative 

effects were also larger for the Swiss Average Building Standard in 3 out of 10 cases for Buildings 

Class I, and in 9 out of 10 cases for Class II (Table 7.7).   

Building System variant: Variant S3 gave for Buildings Class I throughout the largest average abso-

lute and relative effects (Figure 7.4, Appendix D.4), the only exception being a slightly larger aver-

age relative MC effect by variant S4 (Table 7.7).  For Classes II and III the largest average absolute 

effects were obtained for variants S3 or S4 (Appendix D.4), and the largest average relative effects 

for variants S1 or S4 (Table 7.7).  The smallest average absolute effects were obtained for variants 

S1, S2 or S5 (Figure 7.4, Appendix D.4), and the smallest average relative effects for variants S2 or 

S5 (Table 7.7). 

Buildings Class:  The average absolute and relative effects showed a clear dependence on Building 

Class, with increasing values from Class I through Class III (Appendix D.4, Table 7.7). 

Cost Function:  In most cases MC was found to yield smaller average relative effects than NRPE 

usage.  The only two exceptions occurred for the Swiss Average Building Standard, variant S5, 

Buildings Classes II and III (Table 7.7).  
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Figure 7.3:  Overview of absolute differences in annual total Performance Bound costs for Buildings 

Class I due to allowance of night/weekend set-back.  !NRPE: difference in Non-Renewable Primary 

Energy usage;  !MC: difference in Monetary Cost;  Aw: no night/weekend set-back allowed, wide com-

fort range;  Bw: set-back allowed, wide comfort range;  S1–S5: Building System variants.  Each box 

was derived based on the pair-wise comparison of individual simulations from Experiments Sets pairs 

E1-E4, E2-E5, and E3-E6 for the respective Cost Function.  

 

  Passive House   Swiss Average Cost 

Function 

Buildings 

Class   S1 S2 S3 S4 S5 Mean   S1 S2 S3 S4 S5 Mean 

I  0.4 0.7 0.7 0.1 0.2 0.4  3.7 3.5 4.0 1.0 1.0 2.6 

II  5.7 4.7 5.5 4.6 3.9 4.9  17.5 15.4 17.8 10.2 9.2 14.0 

III  – – – – – –  30.6 27.6 29.3 20.2 19.1 25.4 

!NRPE% 

Mean I+II   3.1 2.7 3.1 2.4 2.0 2.7   10.6 9.4 10.9 5.6 5.1 8.3 

I  0.2 0.2 0.3 0.0 0.1 0.2  1.7 1.3 2.0 0.7 0.5 1.2 

II  3.4 2.4 2.9 2.5 2.0 2.6  11.5 8.9 10.9 8.5 6.5 9.3 

III  – – – – – –  23.1 18.9 21.2 19.0 15.8 19.6 

!MC% 

Mean I+II   1.8 1.3 1.6 1.3 1.0 1.4   6.6 5.1 6.4 4.6 3.5 5.2 

Table 7.6:  Mean relative differences in annual total Performance Bound costs due to allowance of 

night/weekend set-back.  !NRPE%: rel. difference in Non-Renewable Primary Energy usage;  !MC%: 

rel. difference in Monetary Cost;  S1–S5: Building System variants.  For each Cost Function were 

considered pair-wise comparisons of individual simulations from Experiments Sets pairs E1-E4, E2-

E5, and E3-E6, respectively.  Shown are percentage values averaged over all comparisons for the re-

spective Cost Function, Buildings Class, Building Standard, and Building System variant. 
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 Figure 7.4:  Overview of absolute differences in annual total Performance Bound costs for Buildings 

Class I due to change in comfort range width.  !NRPE: difference in Non-Renewable Primary Energy 

usage;  !MC: difference in Monetary Cost;  Narrow: Thermal Comfort variant An or Bn;  Wide: 

Thermal Comfort variant Aw or Bw;  S1–S5: Building System variants.  Each box was based on the 

pairwise comparison of individual simulations from Experiments Sets pairs E1-E7, E2-E8, E4-E9, and 

E5-E10 for the corresponding Cost Function. 

 

  Passive House   Swiss Average Cost 

Function 

Buildings 

Class   S1 S2 S3 S4 S5 Mean   S1 S2 S3 S4 S5 Mean 

I  10.4 6.6 11.5 6.6 6.6 8.3  8.9 5.9 9.1 6.8 6.1 7.3 

II  15.2 9.4 13.2 10.9 9.9 11.7  16.1 11.2 13.0 13.6 12.5 13.3 

III  – – – – – –  16.9 12.9 14.1 14.7 14.0 14.5 

!NRPE% 

Mean I+II   12.8 8.0 12.4 8.7 8.2 10.0   12.5 8.6 11.1 10.2 9.3 10.3 

I  5.9 3.4 7.2 6.1 3.2 5.2  5.3 3.4 6.2 6.4 3.3 4.9 

II  13.0 6.8 9.9 10.0 6.0 9.1  15.3 9.8 11.5 14.1 9.7 12.1 

III  – – – – – –  16.7 11.9 13.5 17.0 12.9 14.4 

!MC% 

Mean I+II   9.5 5.1 8.6 8.1 4.6 7.2   10.3 6.6 8.9 10.3 6.5 8.5 

Table 7.7:  Mean relative differences in annual total Performance Bound costs between comfort range 

widths “Narrow” and “Wide”.  !NRPE%: rel. difference in Non-Renewable Primary Energy usage;  

!MC%: rel. difference in Monetary Cost;  S1–S5: Building System variants.  For each Cost Function 

were considered pairwise comparisons of individual simulations from Experiments Sets pairs E1-E7, 

E2-E8, E4-E9, and E5-E10, respectively.  Shown are the values “100(Narrow-Wide)/Narrow” 

averaged over all comparisons for the respective Cost Function, Buildings Class, Building Standard, 

and Building System variant. 



OptiControl Two Years Report                                                         Chapter 7 

   92 

7.3.2.3 Effect of Ventilation Strategy 

This analysis is of interest to control suppliers, ventilation equipment suppliers and energy perform-

ance contractors.  It shows the benefit of introducing air quality controlled ventilation. 

Figure 7.5 shows for Buildings Class I boxplots of differences in NRPE usage (top panels) and MC 

(bottom panels) due to the use of alternative Ventilation Strategies.  Average relative effects are 

reported in Table 7.8.  Further results are documented in Appendix D.5. 

Building Standard:  Average absolute differences were found to be always slightly smaller for the 

Passive House cases as compared to the Swiss Average cases (Figure 7.5, Appendix D.5).  Average 

relative differences where however always larger for the Passive House standard (Table 7.8).   

Building System variant: Average absolute differences generally did not differ very much between 

Building System variants (e.g., Figure 7.5 bottom).  Nevertheless, for the Passive House Building 

Standard the largest absolute differences were always obtained for variant S4, and for the Swiss 

Average Building Standard always for variant S2; the smallest average absolute differences were 

obtained almost always for variant S3 (Appendix D.5).  Average relative differences were largest 

for variants S4 (mainly for the Passive Houses) or S2 (mainly for the Swiss Average cases).  The 

average relative differences were always smallest for variant S3.   

Buildings Class: Average absolute differences were found to increase slightly from Class I through 

to Class III (Appendix D.5).  On the contrary, average relative differences tended to decrease with 

increasing class number (Table 7.8).   

Cost Function:  Average relative differences generally did not vary much between Cost Functions.  

However, NRPE showed in almost all cases smaller differences than MC.  The only exceptions oc-

curred for the case Passive House/S4 where MC yielded clearly larger values (Table 7.8). 

 

 

7.3.3 Electric Lighting And Thermal Comfort Analysis 

7.3.3.1 Usage of Extra Electric Lighting For Heating 

As already stated in Section 7.2.4.2 electric lighting was unintendendly made available for heating 

in the PB simulations. Here we report on the extra electric lighting control costs.   

Table 7.9 gives for the two Cost Function variants considered the found numbers of cases where the 

ratio of annual total extra electric lighting costs to annual total costs in the Performance Bound 

simulations exceeded a given percentage value (N>x%).  Further results related to the usage of elec-

tric lighting for heating can be found in Appendix D.6. 

Building Standard: Extra electric lighting was used much less in the Passive House simulations as 

compared to the Swiss Average simulations.  From a total of 2304 cases analyzed for each Cost 

Function and Building Standard extra electric lighting exceeded 1% of annual total NRPE usage in 

16% of all Passive House cases, as opposed to 50% of all Swiss Average cases.  For MC the corre-

sponding numbers were 6% and 36%, respectively (Table 7.9). 

Building System variant:  Extra electric lighting occurred most frequently for variant S4, with 

N>1% being the case in 27% of all Passive House and in 77% of all Swiss Average simulations.  

Variants S5, S3 and S1 showed intermediate extra lighting usage.  The least extra electric lighting 

usage occurred for variant S2, with N>1% in 0.5% of all Passive House and in 9% of all Swiss Av-

erage simulations.  
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                            Passive House                                       Swiss Average 

!NRPE 

(V-W) 

 

!MC 

(V-W) 

 

Figure 7.5:  Overview of absolute differences in annual total Performance Bound costs for Buildings 

Class I due to use of different Ventilation Strategies.  !NRPE: difference in Non-Renewable Primary 

Energy usage;  !MC: difference in Monetary Cost;  V: two-stage ventilation control;  W: CO2-based 

control;  S1–S5: Building System variants.  Each box was based on the pairwise comparison of indi-

vidual simulations from Experiments Sets pairs E2-E3, and E5-E6 for the corresponding Cost Func-

tion.  

 

  Passive House     Swiss Average   Cost 

Function 

Buildings 

Class   S2 S3 S4 S5 Mean   S2 S3 S4 S5 Mean 

I  28.5 22.1 31.7 28.6 27.7  21.0 16.1 21.5 20.9 19.9 

II  27.8 20.2 29.5 27.5 26.2  19.5 13.0 17.9 18.2 17.1 

III  – – – – –  16.0 9.8 13.8 14.3 13.5 

!NRPE% 

Mean I+II   28.2 21.1 30.6 28.1 27.0   20.3 14.5 19.7 19.6 18.5 

I  29.1 26.0 29.9 29.1 28.5  21.8 19.9 21.7 21.8 21.3 

II  29.2 25.0 28.9 29.1 28.1  22.8 18.4 21.3 22.5 21.2 

III  – – – – –  20.2 14.7 18.6 19.9 18.3 

!MC% 

Mean I+II   29.1 25.5 29.4 29.1 28.3   22.3 19.2 21.5 22.1 21.3 

Table 7.8:  Mean relative differences in annual total Performance Bound costs between Ventilation 

Strategies “V” (two-stage ventilation control) and “W” (CO2-based control).  !NRPE%: rel. difference 

in Non-Renewable Primary Energy usage;  !MC%: rel. difference in Monetary Cost;  S1–S5: Building 

System variants.  For each Cost Function were considered pairwise comparisons of individual simula-

tions from Experiments Sets pairs E2-E3, and E5-E6, respectively.  Shown are the values “100(V-

W)/V” averaged over all comparisons for the respective Cost Function, Buildings Class, Building 

Standard, and Building System variant. 
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  Passive House   Swiss Average Cost 

Function 

Buildings 

Class 

 

Statistic   S1 S2 S3 S4 S5   S1 S2 S3 S4 S5 

NRPE I N   32 64 64 64 64   32 64 64 64 64 

  N>1%  0 0 3 6 0  3 0 21 22 18 

  N>2.5%  0 0 0 0 0  0 0 5 2 2 

  N>5%  0 0 0 0 0  0 0 0 0 0 

 II N   224 448 448 448 448   96 192 192 192 192 

  N>1%  23 5 39 184 99  35 25 82 156 115 

  N>2.5%  3 0 10 73 38  8 1 54 106 78 

  N>5%   0 0 0 32 11   0 0 8 62 55 

 III N   – – – – –   128 256 256 256 256 

  N>1%  – – – – –  50 62 140 219 203 

  N>2.5%  – – – – –  29 26 103 146 141 

   N>5%   – – – – –   9 1 64 99 85 

MC I N   32 64 64 64 64   32 64 64 64 64 

  N>1%  0 0 0 0 0  0 0 0 16 0 

  N>2.5%  0 0 0 0 0  0 0 0 0 0 

  N>5%  0 0 0 0 0  0 0 0 0 0 

 II N   224 448 448 448 448   96 192 192 192 192 

  N>1%  0 0 0 89 38  0 0 25 151 113 

  N>2.5%  0 0 0 16 2  0 0 4 81 51 

  N>5%   0 0 0 3 0   0 0 0 22 5 

 III N   – – – – –   128 256 256 256 256 

  N>1%  – – – – –  7 3 94 225 196 

  N>2.5%  – – – – –  0 0 53 163 138 

   N>5%   – – – – –   0 0 7 89 79 

Table 7.9:  Numbers of simulated cases (N) and numbers of cases where the ratio of annual total extra 

electric lighting costs to annual total costs in the Performance Bound simulations exceeded a given 

percentage value (N>x%). NRPE: optimization was done for Non-Renewable Primary Energy usage;  

!MC: optimization was done for Monetary Cost; S1–S5: Building System variants.  For each Cost 

Function were considered Experiments Sets E1–E6, respectively. 

Buildings Class: Extra electric lighting usage increased with Buildings Class.  For Passive Houses 

N>1% was obtained in 2% and 12% of all Class I and Class II simulations, respectively.  For the 

Swiss Average Building Standard and Classes I-III the corresponding numbers were 14%, 41% and 

52%, respectively. 

Cost Function:  MC clearly showed the smaller number of simulations with extra electric lighting 

present (Table 7.9). 

 

7.3.3.2 Thermal Comfort Violations 

Figure 7.6 reports annual sums of Kelvin-hours (Kh) where the room temperature exceeded (SU) or 

fell below (SL) the prescribed thermal comfort range in the PB simulations.  Further statistics re-

lated to thermal comfort violations are reported in Appendix D.7.   

From Figure 7.6 can be seen that the obtained SU values were generally below 30 Kh, and the SL 

values generally above -30 Kh, respectively.   

Building Standard:  Altogether, comfort violations were smaller for the Passive House (left panels) 

as compared to the Swiss Average (right panels) Building Standard.   

Building System variant:  Violations were on average largest for Building System variants S3 and 

S4 and smallest for variants S1 or S5.   
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Figure 7.6:  Overview of thermal comfort violations in the Performance Bound simulations.  NRPE: 

Optimization was done for Non-Renewable Primary Energy usage;  MC: optimization was done for 

Monetary Cost;  SU, SL: annual sums of Kelvin-hours (Kh), measuring deviations of the room tempera-

ture above the comfort range’s upper bound, respectively below its lower bound;  I-III: Buildings 

Classes;  S1–S5: Building System variants.  For each Cost Function were considered Experiments Sets 

E1–E6, respectively.  Each box shows statistics from all simulated cases for the respective Cost Func-

tion, Buildings Class, Building Standard, and Building System variant. 
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Buildings Class:  The violations increased through Buildings Classes I to III.   

Cost Function:  Both SU and SL were smaller in the MC as compared to the NRPE simulations 

A closer analysis showed that the found SU and SL values were typically caused by many small de-

viations < 0.1 K rather than a few large ones (Appendix D.7).   

7.3.4 Potential Assessment  

Table 7.10 summarizes the results from the savings potentials analysis of the four rule-based control 

algorithms RBC-1 to RBC-4.  Shown are the average theoretical relative savings potentials 

(ATRSP) for annual total NRPE usage, plus median values of the annual SU and SL thermal comfort 

statistics.  Each data point was computed from all simulated cases for the respective Building Stan-

dard, Building System variant, and Buildings Class.   

From Table 7.10 can be seen that the ATRSP  values varied widely.  For the Passive House Build-

ing Standard the found range was 1%–45%.  For the Swiss Average Building Standard and the 

Building System variants S1–S3 was obtained a range of 4% to 47%;  for variants S4 and S5, where 

all four RBC algorithms showed large thermal comfort violations, the range was -7% to +33%.   

The largest ATRSP  were obtained for the Passive House Building Standard for RBC-1 (in 6 out of 

10 cases = five Building System variants ! two Buildings Classes) and RBC-4 (4 cases).  For the 

Swiss Average Building Standard the largest ATRSP  were obtained for RBC-1 (in 10 out of 15 

cases), RBC-2 (4 cases) and RBC-4 (1 case).  The smallest ATRSP  were always obtained for RBC-

3.   

The smallest SU median values were obtained generally for RBC-2 and RBC-3, and the largest ones 

for RBC-4.  Only in one case (Passive House, Building System variant S3, Buildings Class I) the 

largest SU median value was found to occur for RBC-1.   

The least negative SL median values were obtained for the Passive Houses for RBC-3, RBC-1 or 

RBC-4, and for the Swiss Average cases for RBC-3 or RBC-4.  The most negative SL median val-

ues were mostly obtained for RBC-2. 

Building Standard:  For RBC-1, RBC-3 and RBC-4 the ATRSP  were generally larger for the Pas-

sive House as compared to the Swiss Average cases.  For RBC-2 the opposite was generally found 

to be the case, except for Building System variant S5 and Buildings Class II.  The SU median values 

were in general smaller for the Passive Houses as compared to the Swiss Average cases; exceptions 

occurred for the RBC-4 algorithm and Buildings Class I for all Building System variants, and in 

several cases for variant S3.  The SL statistics were in all cases more favorable for the Passive 

House as compared to the Swiss Average Building Standard. 

Building System variant:  For the Passive House Building Standard the smallest ATRSP  were al-

ways obtained for variant S4.  The largest ones were obtained for RBC-1, RBC-2 and RBC-4 al-

ways for variants S1, and for RBC-3 always for variant S5.  Forthe Swiss Average Building Stan-

dard we compare only the variants S1–S3 that showed comparable levels of thermal comfort viola-

tions: the smallest ATRSP  were obtained for variant S2 (Buildings Classes I and II), or for vari-

ant S3 (Classes II+III);  the largest ASRP were always found for variant S1. All in all, thermal com-

fort violation levels were comparable for variants S1–S3, but clearly larger for variants S4 and S5. 

Buildings Class: For the Passive House Building Standard and Class I were always obtained 

smaller ATRSP  values as compared to Class II.  For the Swiss Average Building Standard and al-

gorithms RBC-1, RBC-2, and RBC-4 the ATRSP  generally increased through Classes I to III (the 

only exceptions occurred for RBC-2 and Building System variant S5, and RBC-4 and Building Sys-

tem variant S1, where the largest ATRSP  were obtained for Class II, respectively).  Ranking by 
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    Passive House     Swiss Average Building 

System 

 

Statistic 

Buildings 

Class   RBC1 RBC2 RBC3 RBC4   RBC1 RBC2 RBC3 RBC4 

I  40 29 12 39  30 30 9 21 

II  42 35 16 45  39 38 10 40 

(X-PB)/X 

[%] 

III   – – – –   47 42 7 39 

I  1 0 2 70  1 0 3 4 

II  6 1 3 87  19 3 5 255 

SU 

[Kh] 

III   – – – –   574 4 8 3980 

I  -2 -5 -2 -8  -54 -57 -39 -42 

II  -19 -20 -11 -17  -61 -65 -44 -64 

S1 

SL 

[Kh] 

III   – – – –   -86 -92 -56 -61 

I  32 25 9 29  26 26 7 16 

II  35 31 12 36  34 35 8 34 

(X-PB)/X 

[%] 

III   – – – –   41 39 6 39 

I  0 0 2 15  1 0 2 4 

II  3 1 2 12  17 2 4 30 

SU 

[Kh] 

III   – – – –   252 4 7 1181 

I  -7 -15 -7 -13  -59 -64 -44 -46 

II  -20 -27 -12 -21  -61 -68 -46 -57 

S2 

SL 

[Kh] 

III   – – – –   -77 -90 -57 -72 

I  32 22 6 29  28 28 7 16 

II  35 30 8 31  34 35 5 26 

(X-PB)/X 

[%] 

III   – – – –   37 38 4 27 

I  20 10 8 107  12 11 6 8 

II  24 10 9 52  22 8 7 81 

SU 

[Kh] 

III   – – – –   335 6 7 1624 

I  -7 -17 -3 -1  -75 -80 -53 -56 

II  -23 -30 -8 -7  -75 -94 -56 -60 

S3 

SL 

[Kh] 

III   – – – –   -107 -140 -72 -80 

I  21 10 1 26  19 18 1 12 

II  28 22 5 28  27 27 2 19 

(X-PB)/X 

[%] 

III   – – – –   31 28 1 14 

I  4 1 1 140  6 4 1 7 

II  15 5 3 220  28 7 4 394 

SU 

[Kh] 

III   – – – –   346 6 5 3229 

I  -66 -140 -13 -17  -517 -569 -338 -343 

II  -162 -228 -46 -44  -674 -875 -455 -497 

S4 

SL 

[Kh] 

III   – – – –   -925 -1157 -651 -618 

I  34 27 15 31  28 28 12 19 

II  36 34 18 38  31 32 6 27 

(X-PB)/X 

[%] 

III   – – – –   33 30 -7 29 

I  1 0 6 68  2 0 9 15 

II  19 2 15 69  78 15 25 108 

SU 

[Kh] 

III   – – – –   550 23 42 1366 

I  -12 -29 -23 -26  -1101 -1855 -610 -643 

II  -70 -120 -48 -63  -1624 -1808 -1090 -1560 

S5 

SL 

[Kh] 

III   – – – –   -3351 -3460 -1948 -2918 

Table 7.10:  Overview of average theoretical relative savings potentials ([X-PB]/X) and of median val-

ues of two thermal comfort indicators (SU, SL) as obtained for the rule-based control algorithms 

RBC1–RBC4.  Savings potentials refer to the annual total Non-Renewable Primary Energy (NRPE) 

usage.  X: NRPE usage by a given RBC algorithm;  PB: Performance Bound.  SU and SL give annual 

sums of Kelvin-hours (Kh) and measure deviations of the room temperature above the comfort range’s 

upper bound, respectively below its lower bound.  For each controller were considered Experiments 

Sets E1–E3, respectively.  Individual numbers were derived from all simulated cases for the respective 

Building System variant, Buildings Class, Building Standard, and control algorithm.  

Buildings Class showed a less clear pattern for RBC-3 where ATRSP  values did not differ much 

between Classes.   In almost all cases and independently of Building Standard the SU and SL median 

values indicated increasing levels of thermal comfort violations with increasing Class number. 
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Figure 7.7:  Overview of absolute theoretical savings potentials (X-PB) for the rule-based control algo-

rithms RBC1–RBC4 (abbreviated as R1–R4) for Building System variants S1–S3 and Buildings 

Class I.  The savings potentials refer to Non-Renewable Primary Energy (NRPE) usage.  X: NRPE us-

age by RBC algorithm;  PB: Performance Bound.  For each control algorithm were considered 

Experiments Sets E1–E3, respectively.  Shown are statistics from all simulated cases for the respective 

Building System variant, Building Standard and control algorithm.  Note the different y-axis scalings.   

The found absolute savings potentials for Building System variants S1–S3 and Buildings Class I are 

summarized in Figure 7.7.  It can be seen that for both Building Standards the smallest absolute 

savings potentials were always obtained for RBC-3, followed by RBC-2 for the Passive House and 

RBC-4 for the Swiss Average cases.  The potentials were always higher for the Swiss Average as 

compared to the Passive House Building Standard.  The data also showed a high case-to-case vari-

ability, in particular for RBC-4 for the Passive House and for RBC-1 and RBC-2 for the Swiss Av-

erage cases.  Further results on absolute and relative theoretical savings potentials can be found in 

Appendix E. 
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  Passive House   Swiss Average 
Building 

System 

Buildings 

Class 
  

N 

 

RBC3-PB 

[kWh/m
2
/a] 

(RBC3-PB)/RBC3 

[%]   

N 

 

RBC3-PB 

[kWh/m
2
/a] 

(RBC3-PB)/RBC3 

[%] 

I  16 (16) 0.8–3.3 5–22  12 (16) 1.1–5.3 3–19 

II  112 (112) 1.6–5.6 6–29  31 (48) 2.6–6.3 5–21 

S1 

III   – – –   24 (64) 3.0–7.8 5–28 

I  32 (32) 0.4–4.5 1–17  20 (32) 0.6–6.1 1–17 

II  224 (224) 1.2–6.6 4–22  59 (96) 2.2–6.2 3–17 

S2 

III   – – –   45 (128) 3.0–7.6 4–19 

I  32 (32) 0.8–2.7 2–11  15 (32) 2.9–4.6 6–12 

II  223 (224) 1.0–4.4 2–14  40 (96) 2.7–4.4 4–11 

S3 

III   – – –   18 (128) 2.1–5.9 3–16 

I  23 (32) -0.1–1.0 -1–4  4 (32) 0.5–1.2 2–5 

II  117 (224) -0.1–2.5 0–9  0 (96) – – 

S4 

III   – – –   0 (128) – – 

I  20 (32) 0.6–8.2 3–27  0 (32) – – 

II  90 (224) 0.9–8.1 2–23  0 (96) – – 

S5 

III   – – –   0 (128) – – 

Table 7.11:  Ranges (10
th

–90
th

 percentile) of absolute and relative theoretical savings potentials for the 

rule-based controller RBC3.  All numbers refer to annual total Non-Renewable Primary Energy 

(NRPE) usage.  Statistics refer to the subsets of cases from Experiments Sets E1–E3 for which the 

RBC3 simulations satisfied the condition “SU < 50 Kh and SL > -50 Kh” for the respective Building 

System variant, Buildings Class, and Building Standard.  SU and SL are annual sums measuring devia-

tions of the room temperature above the comfort range’s upper bound, respectively below its lower 

bound.  N: sample size (numbers in brackets give the number of all simulated cases from Experiments 

Sets E1–E3, cf. Table 7.3).  PB: Performance Bound. 

Table 7.11 summarizes the obtained ranges for the absolute and relative savings potentials of the 

best performing RBC algorithm, RBC-3.  Note the results shown refer to the subset of cases where 

violations for both, the upper and lower thermal comfort bound amounted to less than 50 Kh.   

It can be seen that the smallest 10
th

 percentile values for the absolute and relative savings potentials 

were around zero.  The highest 90
th

 percentiles were around 8 kWh/m
2
/a and 28%, respectively.  

For Building System variants S4 and S5 and the Swiss Average Building Standard there were prac-

tically no cases available that satisfied the thermal comfort requirements. 

Building Standard:  The 90
th

 percentiles for the absolute (respectively relative) savings potentials 

were for the Passive House cases mostly below (respectively above) those for the Swiss Average 

Building Standard. 

Building System variant: The highest 90
th

 percentile values for the absolute savings potentials were 

obtained for the Passive House Building Standard for variant S5 followed by variant S2, and for the 

Swiss Average Building Standard for variant S2 or S1.  The highest 90
th

 percentiles for the relative 

savings potentials occurred for variants S1 or S5 (Passive House) and S1 (Swiss Average). 

Buildings Class:  In almost all cases the 90
th

 percentiles for the absolute and relative savings poten-

tials increased with Buildings Class number. 

The average absolute (respectively relative) savings potentials for the Passive House Building Stan-

dard, Buildings Classes I+II and Building System variants S1–S5 for the cases shown in Table 7.11 

were 2.6 kWh/m
2
/a (respectively 9.2%). The average 10

th
–90

th
 percentile intervals resulting from 

Table 7.11 were 0.7–4.7 kWh/m
2
/a (respectively 2–18%). 

For the Swiss Average Building Standard, Classes I+II and variants S1–S3 the average savings po-

tentials for the cases shown in Table 7.11 were 3.8 kWh/m
2
/a (9.7%).  The average intervals were 

2.0–5.5 kWh/m
2
/a (4–16%). 
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7.3.5 Comparison  

Figure 7.8 draws together the results from the previous Sections by juxtaposing the average relative 

effects due to the various changes in boundary conditions for control with the RBC-3 average rela-

tive savings potentials.   

It can be seen that generally the variations in the Ventilation Strategy showed the largest effect.  On 

average over Buildings Classes I+II and Building System variants S2–S4 the found relative changes 

amounted to ~27% for the Passive House and ~18% for the Swiss Average Building Standard, re-

spectively.   

The second and third most important effects for Buildings Class I (top panels in Figure 7.8) were 

obtained for the RBC-3 savings potentials (~9% on average over variants S1–S5) and the variations 

in the thermal Comfort Range width (~8%), respectively .   

 

                                  Passive House                                    Swiss Average 

 

 

 

I 

  

 

 

 

II 

  

Figure 7.8:  Comparison of average relative changes in annual total Non-Renewable Primary Energy 

(NRPE) usage due to variation in different factors (1–4) with average relative savings potentials for the 

rule-based control algorithm RBC-3 (cf. Table 7.11).  I, II:  Buildings Class;  S1–S5: Building System 

variant;  1 – Effect of using alternative Cost Functions for control cost optimization and evaluation (cf. 

Table 7.5);  2 – Effect of allowance for night/weekend set-back (cf. Table 7.6);  3 – Effect of change in 

Thermal Comfort range width (cf. Table 7.7);  4 – Effect of different Ventilation Strategies (cf. Ta-

ble 7.8).  *: Value not available (Building System variant S1) or intentionally omitted (excessive ther-

mal comfort violations, variants S4 and S5).   

For Buildings Class II and the Passive House Building Standard (bottom left panel in Figure 7.8) 

the second most important effect after the choice of Ventilation Strategy was given by the thermal 

Comfort Range width variations (~12%).  The third largest relative deviations were obtained for the 

RBC-3 savings potentials (10%). 

For Buildings Class II and the Swiss Average Building Standard (bottom right panel) second came 

the set-back effect (~14%), followed by the thermal Comfort Range width variations (13%) and the 

RBC-3 savings potentials (~9%). 
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7.4 Discussion 

7.4.1 Key Assumptions 

The results presented here depended on a series of key assumptions (Table 7.1) whose variation 

could affect the found sensitivities (Section 7.3.1–2) and savings potentials (Section 7.3.4), as well 

as the quantitative ranking of all results (Section 7.3.5).  Here we comment on four selected issues: 

A first key factor that determined our results was the dimensioning of the building system compo-

nents.  It can be expected that the used scant dimensioning procedure (Section 2.3.2) lead to rather 

conservative estimates of the cost savings due to night/weekend set-backs (Figure 7.3, Table 7.6).  

This is because the smaller is the maximum available heating power the slower can the system re-

cover the room temperature from a set-back without thermal comfort violations, i.e. the smaller 

becomes the possible set-back amplitude and the associated cost savings.   

Secondly, our comparison of different thermal comfort requirements assumed a difference of 1 ºC 

in comfort range width during winter and of up to 2 ºC during summer (Figure 2.3).  The magnitude 

of the found effects (Figure 7.4, Table 7.7) clearly depended directly on this particular assumption.   

Thirdly, the found large differences in costs when using alternative ventilation strategies (Fig-

ure 7.5, Table 7.8) depended strongly on the chosen (in the case of CO2-based control: occupancy 

dependent) air change rates.  This was because the latter determine the costs for fan operation.  A 

closer analysis showed that in particular for the CO2-based control the assumed air change rate for 

unoccupied rooms was probably too small to guarantee proper mixing of the air (s.a. Section 5.4.1).  

Moreover, the CO2-based control yielded generally higher CO2-concentrations than the non-air 

quality controlled ventilation (Appendix B.4) such that, again, higher air change rates would have 

been required to obtain a comparable air quality for the two ventilation strategies.   

One could therefore argue that the obtained cost savings are probably larger than what could be 

attained in practice.  However, our simulations also assumed a simplified linear (instead of quad-

ratic or cubic) increase of energy usage with ventilation rate.  This probably lead to a counteracting 

effect, an underestimation of the energy usage by the non-air quality dependent control and thus 

also of the energy savings due to its replacement by CO2-based control. 

Finally, in all our simulations the maximum room illuminance levels were not restricted, assuming 

that occupants could obtain glare protection through manual adjustment of an internal blind.  For all 

control algorithms this translated into the possibility of keeping the blinds at any time fully open in 

order to make maximum use of solar gains.  Quite differently, if we had assumed a need for glare 

protection this would have made it necessary for the controllers to use the blinds for blocking of 

direct solar irradiation in case of a room being occupied, with corresponding limitations in maxi-

mum possible solar gains.  The overall effect on the sensitivities and savings potentials considered 

here is far from obvious and can probably only be estimated with the aid of further simulations.   

Note that all relative savings potentials reported here refer to annual total NRPE usage, i.e they in-

cluded energy usage for heating, cooling, ventilation and lighting.  Higher relative savings would 

have been obtained if we had excluded the lighting costs from our calculations, as this has often 

been the case in other studies. 
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7.4.2 Performance of RBC Strategies 

The performance of the four RCB algorithms differed largely in terms of both, NRPE usage and 

comfort violations (Table 7.10, Figure 7.7).   

The amount of comfort violations in the RBC simulations provided a measure of the algorithm’s 

(in)adequacy for the control task at hand.  The fact that the PB showed throughout small amounts of 

comfort violations (Figure 7.6) suggests that in spite of the used scant dimensioning procedure the 

available control power was in principle sufficient to achieve the required thermal comfort, at least 

for the cases wher no extra lighting was used for heating. 

All four RBC algorithms considered in this study were actually tailored to the comparatively fast 

reacting Building System variants S1–S3.  It was thus no surprise that the largest comfort violations 

were found to occur for Building System variants S4 and S5 (Table 7.10) that involved two very 

slow components in the form of floor heating and TABS, respectively.  Specialized control algo-

rithms for these systems are available (e.g., [2]) and should be used in future work. 

The differences in savings potentials between the RBC algorithms were mainly due to the use of 

different approaches for blinds control (cf. Chapter 3).  The particularly good performance of the 

RBC-3 algorithm as compared to the other three algorithms was due to both, ideal luminance con-

trol with the aid of the blinds, and the allowance for time-continuous as well as unrestricted (no 

fixed blind positions) variation of the blind transmission value.   

The importance of the time-continuous adjustment becomes apparent in the comparison with algo-

rithm RBC-4 (e.g., Figure 7.7) that was identical to RBC-3, except that in RBC-4 the blind move-

ment was restricted to once per hour.   

In practice, occupants will not accept a time-continuous adjustment of the blinds as it was assumed 

in the RBC-3 algorithm.  Also, the assumed luminance control by blinds is typically not feasible in 

practice.  RBC-3 was considered in this study mainly because it had exactly the same freedom in 

blind movement as the PB calculations, such that its savings potentials provided a very conservative 

measure of the utility of predictive control.  The RBC-3 results indicate substantial energy savings 

potential thanks to the use of electrochromic windows that one day might enable more or less con-

tinuous control of solar gains in a manner that could be accepted by most users. 

An alternative to the usage of the RBC-3 algorithm for assessing the potential of predictive control 

would have been to compare the PB with instantaneous optimal control.  The latter uses the cur-

rently cheapest control action to keep the room temperature, illuminance and air quality within the 

prescribed comfort range, without using any information on past control actions, disturbances or 

states.  This control strategy was investigated in [1] and was found to perform clearly worse then 

RBC-3.  Indeed, we are not aware of any other non-predictive control algorithm that performs better 

than RBC-3.  Again, this suggests that our RBC-3 results give a conservative estimate of the poten-

tial of predictive control.   

The practical feasibility of all investigated measures for reducing NRPE usage (Figure 7.8) can be 

expected to vary strongly from case to case.  For instance, energy savings due to a wider thermal 

comfort range imply a reduction in thermal comfort that may not be readily accepted by all occu-

pants, or the introduction of air-quality control for ventilation makes additional sensors and control 

equipment necessary. For the many found cases with substantial savings potentials (Figure 7.7, Ta-

ble 7.11) the use of predictive control could present a comparatively cost-effective option to reduce 

control costs, given that appropriate (cf. Section 1.3) control algorithms to exploit these potentials 

become available.   
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7.4.3 Problems And Limitations 

Our assessment of RBC savings potentials was to some extent distorted by the thermal comfort vio-

lations in the RBC simulations and by the use of electrical lighting for heating in the PB simula-

tions.  However, there are two reasons why we believe that the savings potentials were in general 

under- rather than overestimated: 

Firstly, if we had assumed a more ample dimensioning of the building energy systems the RBC-3 

algorithm would have used the additionally available heating and cooling power to avoid the ther-

mal comfort violations at the expense of additional energy usage.  Indeed, the RBC-3 average sav-

ings potentials for the sub-sample of cases with small comfort violations (Table 7.11) were found to 

be as large as, or slightly larger than, the whole-sample average values reported in Table 7.10 

(analyses not shown).   

Secondly, the use of electrical lighting for heating in the PB simulations generally tended to inflate 

the total cost since light is the most expensive heating source.  If additional heating power for the 

cheaper heating sources would have been available, the PB optimization procedure would have rec-

ognized that and would have yielded lower costs than reported here.   

However, an interesting exception should be noted that was detected in some cases for the Building 

System variant S4: the PB calculations were found to use electric lighting simultaneously with floor 

heating while the latter was not fully turned on.  The reason related to the delayed response of the 

floor heating system and the associated slow increase of room temperature.  The longer warming-up 

phase resulted into higher transmission losses through the building envelope and thus proved over-

all less economic than the more rapid heating with the aid of electric lighting in the PB calculations.  

This result suggests that in some instances the installation of fast auxiliary devices (e.g., electrical 

heating) can be appropriate to improve the overall efficiency of slow heating systems. 

A distinctive feature of our results was that the effects of varying boundary conditions for control 

(Section 7.3.1) were investigated using strictly the PB.  Accordingly, our results only state what 

differences could be expected to occur if perfect control would apply, whereas the results obtained 

in practice will also depend on the properties of the particular control algorithm employed.  It can 

be expected that the more the control costs of a given algorithm deviate from the PB (cf. Figure 7.7) 

the less representative will be the theoretical estimates reported in this work.   

Finally note that our study did not consider entire buildings, but only isolated building zones.  Fol-

lowing a commonly used procedure [3] the whole-building control costs can be estimated as a 

weighted average of the individual zone costs.  Since Buildings Class I represents zones with Fa-

çade Orientations N and S, and Buildings Class II stands for Façade Orientations SE and SW our 

results can be used to estimate sensitivities or savings potentials for the quite frequent case of build-

ings with a rectangular ground plan and large N- and S-facing facades:  depending on the building’s 

exact geometry (number of corner vs. number of non-corner offices) the whole-building values 

should lie somewhere between the Class I and Class II results. 

7.5 Conclusions 

From our investigation of the four rule-based, non-predictive control algorithms RBC-1 to RBC-4 

we conclude that the largest savings potentials for annual total Non-Renewable Primary Energy 

(NRPE) usage occur, in descending order, for the algorithms RBC-1, RBC-4 and RBC-2.  The algo-

rithm RBC-3 shows the best energetic performance and yields the smallest NRPE savings poten-

tials.  Average differences between different control strategies are large, clearly showing that con-

trol is essential in energy efficient building operation. 
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Relative savings potentials for RBC-3 are generally higher for the Passive House as compared to 

the Swiss Average Building Standard, and they are on average smallest for Buildings Class I (most 

frequent buildings cases), larger for buildings Class II (less frequent cases) and largest for Build-

ings Class III (exotic cases). 

Average absolute and relative savings potentials for the Passive House Building Standard, the 

Buildings Classes I+II, and the Building System variants S1–S5 amount to 2.6 kWh/m
2
/a or 9.2%, 

respectively.  For the Swiss Average Building Standard, Classes I+II and variants S1–S3 the aver-

age savings potentials are 3.8 kWh/m
2
/a (9.7%).  Savings potentials are highly case-dependent.  In 

10% of the cases investigated the absolute (relative) savings potentials exceed 4.7 kWh/m
2
/a (18%) 

for the Passive House and 5.5 kWh/m
2
/a (16%) for the Swiss Average Building Standard. 

Theoretical average relative savings potentials for the RBC-1 and RBC-4 controllers (building 

classes I and II, building system variants S1–S5) are 34% and 33% for the PA, and 30% and 23% 

for the SA building standard, respectively.   

The found average relative savings potentials for RBC-3 were typically smaller than the effect ob-

tained due to the introduction of (i) ventilation with air quality control.  The RBC-3 average relative 

savings potentials were comparable to the effects of (in descending order of importance): (ii) a wid-

ening of the thermal comfort range by ~1.5 ºC, (iii) the allowance for night/weekend room tempera-

ture set-backs, and (iv) the choice of alternative cost functions for optimization of control costs.   

Sensitivity to (i) is smaller for the Swiss Average as compared to the Passive House Building Stan-

dard; smallest for the Building System variant S3 (ventilation-only system); and it decreases with 

Buildings Class number.  For the sensitivities to factors (ii)–(iv) hold exactly the opposite trends, 

with Building System variant S3 showing the highest sensitivity from all five Building System vari-

ants investigated. 

Clearly, somewhat different results could have been obtained under other assumptions than the spe-

cific ones adopted in the present study.  The relevance of our findings draws from the high quality 

of the used models and algorithms, the careful selection of building cases, technical systems and 

operation types that defined our experimental set-up, and the wide range of situations covered in our 

large-scale, systematic simulation study.   

Some problems occurred due to (i) the unintended usage of electrical lighting for heating in the Per-

formance Bound simulations, (ii) partially large thermal comfort violations by the rule-based con-

trol algorithms due to scant dimensioning of the building technical systems, and (iii) the restricted 

applicability of the rule-based algorithms for Building System variants S4 and S5, in particular for 

the Swiss Average Building Standard.  Nevertheless, our estimates of NRPE savings potentials are 

in general on the conservative side.   

Our analysis was restricted to investigating the influence of but three selected out of several factors 

that defined the individual buildings cases’ responses:  Building Standard, Building System variant, 

and Buildings Class.  A more detailed analysis considering the effect of all factors involved could 

provide a better insight into the mechanisms responsible for the encountered, wide range of sensi-

tivities and potentials.  Such work, centered on the savings potentials of the RBC-3 algorithm, is 

reported in the following Chapter.  
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8.1 Introduction 

In the previous chapter the performances of the four rule-based control strategies RBC-1 to RBC-4 

were compared among each other and with the Performance Bound (PB).  RBC-3 turned out to be 

the best performing strategy that generally showed the lowest annual total Non-Renewable Primary 

Energy (NRPE) usage and the best thermal comfort statistics (Table 7.10).   

In the present Chapter we analyze in more detail the differences in NRPE usage between the RBC-3 

results and the PB.  We focus on Buildings Classes I and II of Building System variants S1 to S3 

because for these cases thermal comfort violations with the RBC-3 strategy stayed within a reason-

able range (Table 7.10, Appendix E).   

The differences or “savings potentials” represent the maximum possible (i.e., theoretical) savings 

that could be achieved by some better strategy than RBC-3. Since RBC-3 is the best performing 

non-predictive control strategy known to us any cases with large savings potentials indicate situa-

tions were major improvements might be only possible with the aid of predictive control.   

The aims of the present Chapter are  

(i)  to identify key factors associated with large savings potentials for the strategy RBC-3, 

(ii) to provide some insight on the mechanisms responsible for these potentials, and 

(iii) to investigate the effect of control strategy choice on peak electricity demand. 

The analyses (i) and (ii) are done with the following hypotheses on the possible added value of ad-

vanced/predictive control in mind: 

• “The importance of advanced control increases with the complexity of the  

building technical system under consideration” 

• “Intelligent control is particularly favorable in the presence of high energy fluxes” 

• “Predictive control is more useful for ‘heavy’ as opposed to ‘light’ buildings” 

• “Predictive control is particularly advantageous during the transition seasons” 

With analysis (iii) we introduce peak electricity demand as an additional quantitative criterion for 

the assessment of controller performance next to the two dimensions NRPE usage and comfort.  

Peak electricity demand can be expected to become increasingly important for electricity companies 

and building owners with increasing use of electrical energy for heat/cold generation (e.g. heat 

pumps), of co- or polygeneration in buildings, and of renewable energy sources.   

In all our simulations we have been considering an energy system that uses electricity for heat/cold 

production, ventilation and lighting (Table 2.5).  Here we aim at providing a first insight on the be-

havior of the PB and of the RBC-3 controllers with regard to electric power consumption based on 

the analysis of selected cases.  Note that peak electricity demand has not been considered in the 

formulation of the control strategies so far. 

The chapter is structured as follows:  In Section 8.2 we describe the data used and the analysis pro-

cedures employed.  Section 8.3 first gives an overview of the database and then proceeds with a 

statistical analysis of the found savings potentials, with the aim of answering (i).  Then we identify 

representative cases that are subsequently analyzed in more detail in order to shed light on (ii) and 

(iii).   Section 8.4 discusses the results, followed by the conclusions in Section 8.5. 
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8.2 Material & Methods 

8.2.1 Data 

All analyses were based on the annual PB and RBC-3 simulations described earlier in Chapter 7.  

As shown in Chapter 7, due to the used scant dimensioning procedure the strategy RBC-3 was 

found to perform only poorly in terms of comfort for Buildings Class III and Building System vari-

ants S4 and S5 (see Table 7.11.  Therefore these cases were excluded from the analysis.   

The simulations analyzed were defined by the following settings/factors (cf. Table 7.1):  Energy 

System: earth coupled heat pump plus mechanical (compression) chiller;  Dimensioning Strategy: 

Scant;  Cost Function: NRPE;  Thermal Comfort: Aw (no set-back, wide comfort range);  Ventila-

tion Strategy: none for S1, V (non-air quality controlled ventilation) or W () for S2 and S3;  Illumi-

nance Comfort: Occupancy dependent, bright. 

For the Passive House Building Standard the Buildings Classes I+II covered 128 cases: 4 Building 

Sites, 4 Façade Orientations, 2 Construction Types, 2 Window Area Fractions, and 2 Internal Gains 

Levels (see Table 7.1).  For the Swiss Average Building Standard there were only 64 cases since 

with Buildings Classes I+II only one type of Window Area Fraction (low, “wl”) was considered.   

8.2.2 Analysis of Variance  

Analysis of variance (ANOVA) is a statistical procedure to partition an observation into compo-

nents due to explanatory variables or “factors”.  The latter are categorical variables that are used to 

distinguish a series of characteristics or “levels”.  We used ANOVA to analyze sources of variation 

in the savings potentials as follows: 

The observations (Y) were given by the NRPE savings potentials, 

! 

Y
i
= RBC3

i
" PB

i
 [kWh /(m

2
a)], 

where the subscript i denotes the i-th case entering the analysis, 

! 

RBC3
i
 denotes the annual NRPE 

usage of the RBC-3 strategy for case i, and 

! 

PB
i
 is the corresponding Performance Bound value.   

The factors and factor levels considered for Building System variant S1 and the Swiss Average 

Building Standard were as follows:  Building Site, S ! {LUG, MSM, SMA, WHW};  Façade Orien-

tation, FO ! {N, S, SE, SW};  Construction Type, CT ! {h, l}; and Internal Gains Level, IGL ! {ih, 

il} (cf. Table 7.1).  For Building System variant S1 and the Passive House Building Standard was 

considered in addition the factor Window Area Fraction, WAF ! {wh, wl}.  For Building System 

variants S2 and S3 the above sets of factors were enhanced by the factor Ventilation Strategy, VS ! 

{V, W}. 

We used ANOVA to establish one statistical model per Building Standard and Building System 

variant that estimated the 

! 

Y
i
 as a function of the factor levels.  As one example below is shown the 

model for the Passive House Building Standard and Building System variants S2 or S3: 

! 

Y
i
= µ + a

(S( i ))
+ b

(FO( i ))
+ c

(CT( i ))
+ d

(IGL( i ))
+ e

(VS( i ))
+"

i
                          Eq. 1 

Here, µ is the average of all cases considered in the analysis, a(!)–e(!) are coefficient vectors denoting 

factor- and level-specific deviations (") from µ, and " denotes a residual term that accounts for un-

explained variability.   

The significance of a given factor was measured by the p-value of the null hypothesis that the factor 

has no effect, i.e. that the found differences between the coefficient vector elements for that particu-

lar factor were only due to a chance event.  Large coefficient values in combination with a small p-

value for a given factor suggest that variations in that factor are important in explaining deviations 

from the sample mean µ.   
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8.2.3 Analysis of Solar Gains  

The savings potentials were also investigated as a function of solar gains and further variables by 

means of multiple linear regression.   

The solar gain potential of each case entering the analysis was first estimated by means of the spe-

cific (with reference to floor area) solar gain area, defined as  

! 

S =
gAwin

Afloor

                                                         Eq. 2 

where g is the window’s solar gain factor (total solar heat transmittance), Awin is the total area of all 

transparent window parts, Afloor denotes the building zone’s floor area. 

For the absolute savings potentials, Y, was firstly considered a linear model of the form 

! 

Y
i
=" + # $ S

i
R
i( ) + %

i
                                                Eq. 3 

where ! and " are the regression coefficients, R denotes the annual average of the hourly means of 

all relevant vertical global radiation components (up to two components for corner offices), and # is 

the regression’s error term.   

Note that the term Si!Ri accounts for the joint effect of the factors Building Site, Façade Orientation, 

and Window Area Fraction.   

The above regression model (Eq. 3) was then stepwise enhanced by two binary explanatory vari-

ables, the Construction Type (light = 0, heavy = 1) and the Internal Gains Level (low = 0, high = 1). 

8.2.4 Analysis of Peak Electricity Demand 

Peak electricity demand is usually considered for a whole building but such values were not readily 

available from our simulations.  In this study we therefore considered the electricity demand of the 

simulated individual rooms or building zones.  

Our analysis was based on hourly mean electric power demand (EPD) values that were estimated 

from the hourly total delivered energy (DE) as follows: 

! 

DE
(h )

= (
i=1

nDevices

" NRPEi(h )
/ fNRPE )  +  DEEquip(h )

 [Wh /m
2
]                       Eq. 4 

! 

EPD(h ) = DE
(h )

/"t       [W /m
2
],  "t = 1 [h]                                  Eq. 5 

According to Equation 4 the hourly DE for each device (index i; heat pump, chiller etc.) was calcu-

lated by dividing the device’s hourly total NRPE usage with the conversion factor 

! 

fNRPE  (see Ta-

ble 2.6).  The power demand of the office equipment (

! 

DEEquip , see Figure 2.4, right) was also con-

sidered.  EPD (Equation 5) was finally obtained by dividing DE by the length of the discrete time 

step used in the simulations, in this case one hour. 

8.3 Results 

8.3.1 Overview of Savings Potentials 

Figure 8.1 shows the absolute savings potentials as a function of the corresponding PB values, sepa-

rately for the Passive House (left, 128 cases) and the Swiss Average (right, 64 cases) Building  
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                          Passive House                               Swiss Average 

S1 

  

S2 

  

S3 

  

Figure 8.1:  Comparison of Performance Bound (PB) values and absolute savings potentials for the 

Passive House (left) and the Swiss Average (right) Building Standards.  S1–S3: Building System vari-

ant.  C: RBC-3 simulations satisfying the thermal comfort requirement “SU < 50 Kh and SL > -50 Kh”, 

where SU and SL are annual sums measuring deviations of the room temperature above the comfort 

range’s upper bound, respectively below its lower bound;  D: RBC-3 simulations with thermal discom-

fort (above requirement not satisfied). 

Standards and for each of the Building System variants S1–S3.  Data points involving RBC-3 

simulations that did not satisfy the thermal comfort requirements (cases with amount of violations 

of the upper and lower comfort bound exceeding 50 Kh/a and/or falling below -50 Kh/a, 

respectively) are shown in orange. 

It can be seen that in general a wide range of theoretical savings potentials was obtained for any 

given PB value.   

Some systematic variation was found for the PB as a function of Building System variant:  average 

PB values for the Passive House Building Standard and for the Building System variants S1, S2 and 

S3 amounted to 19.8, 28.7 and 33.1 kWh/(m
2
a), respectively.  For the Swiss Average Building 

Standard the corresponding numbers were 45.7, 56.8 and 67.7 kWh/(m
2
a), respectively.   
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                          Passive House                               Swiss Average 

S1 

  

S2 

  

S3 

  

Figure 8.2:  Same as Figure 8.1, but for relative savings potentials. 

 

With regard to the savings potentials the largest values were found on average for variant S2, fol-

lowed by S1 and then by S3:  the mean potentials amounted to 3.6, 3.4 and 2.5 kWh/(m
2
a) for the 

Passive Houses, and 4.1, 4.1 and 3.6 kWh/(m
2
a) for the Swiss Average houses, respectively.   

The largest found absolute savings potentials for the two Building Standards were 8.5 kWh/(m
2
a) 

and 7.7 kWh/(m
2
a), respectively.  They both occurred for Building System variant S2 (Figure 8.1). 

Figure 8.2 gives an overview of the relative savings potentials.  It can be seen that they were gener-

ally larger for the Passive Houses than for the Swiss Average houses.  The average relative savings 

potentials for Building System variants S1–S3 amounted for Passive Houses to 16%, 12% and 8%, 

and for Swiss Average houses to 10%, 8%, and 6% respectively. The largest relative savings poten-

tials for the two Building Standards were found for Building System variant S2 and they amounted 

to 37% and 25%, respectively. 
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Since the absolute and relative saving potentials were positively correlated (not shown), and be-

cause in the end the absolute potentials are probably the most important ones, for all subsequent 

analyses we focused on the absolute figures. 

8.3.2 Investigation of Key Factors 

Figure 8.3 summarizes the coefficient vectors from the ANOVA for the two Building Standards and 

the three Building System variants considered.  Several features can be discerned: 

The factor Façade Orientation yielded in general the largest coefficient values.  The only exception 

was the Swiss Average/S3 case (bottom right panel in Figure 8.3), where the orientation effect was 

found to be small and insignificant (p = 0.19).  In all other cases strongly reduced savings potentials 

were obtained for the offices with N-orientated facades, whereas above-average potentials were 

obtained for the SW and SE corner offices.   

The Building Site factor was less important, and its influence varied with Building System variant.  

For variants S1 and S2 and both Building Standards average savings potentials were found to be 

smallest for site SMA and largest for site WHW.  For variant S3 the smallest average potential was 

obtained for site LUG, and the largest one for sites MSM (Passive House) and, again, WHW (Swiss 

Average). 

The factor Construction Type showed opposite responses depending on Building Standard.  In the 

Passive House cases heavy buildings showed a below-average, and light ones an above-average 

savings potential.  For the Swiss Average cases exactly the opposite was found to be the case. 

The factor Window Area Fraction was only relevant for the Passive House Building Standard (note, 

all Swiss Average cases entering the analysis had a low Window Area Fraction).  A high Window 

Area Fraction was found to lead to above-average savings potentials. 

With regard to the factor Internal Gains Level all statistical models showed enhanced savings poten-

tials under high internal gains.  The only exception was the Passive House/S3 case where this fac-

tor’s influence was negligible and insignificant (p = 0.76). 

The factor Ventilation Strategy was generally found to have small and/or insignificant effects.  The 

only exception was the Passive House/S3 case, where the use of CO2-controlled ventilation lead to 

slightly higher savings potentials as opposed to non-air quality controlled ventilation. 

The total proportion of variance explained by the ANOVA models was 70–75% for Building Sys-

tem variants S1 and S2 and ca. 60% for variant S3. 
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                                   Passive House                               Swiss Average 

S1 

  

S2 

  

S3 

   

Figure 8.3:  ANOVA results for absolute savings potentials.  ANOVA was performed separately for 

Building System variants S1–S3 (from top to bottom) and for the Passive House (left) and the Swiss 

Average (right) Building Standards.  Analyses were done for Thermal Comfort definition Aw (no set-

back, wide comfort range) and Buildings Classes I+II (see Table 2.2).  The µ  values in the top left of 

each panel denote the average savings potential (in kWh/m
2
/a) of all cases entering the respective 

analysis.  Bars show ANOVA factor level coefficients (deviations ! from µ) for the following factors:  

Building Site (levels: LUG, MSM, SMA, WHW);  Façade Orientation (N, S, SE, SW);  Construction 

Type (h, l);  Window Area Fraction (wl, wh);  Internal Gains Level (il, ih);  Ventilation Strategy (V, W)  

(see also Table 7.1).  The p-values quantify the statistical significance of the found differences between 

levels for a given factor;  p < 0.01 denotes that the found factor level coefficients would occur by 

chance less than once in 100 times if the saving potentials were equal across all factor levels. 
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Figure 8.4:  Goodness-of-fit statistics for the prediction of absolute savings potentials from selected 

variables.  Shown are the proportions of variances explained (100·r
2
) by different linear regression 

models for Building System variants S1–S3 and for the Passive House (left) and the Swiss Average 

(right) Building Standards.  Each group of three bars refers to models using the following predictor 

variables:  SR: product of specific solar gain area and of the annual average of the mean of the rele-

vant vertical global radiation components;  +CT: Construction Type added as a second explanatory 

variable;  +IGL: Internal Gains Level added as a third explanatory variable.  

The goodness-of-fit statistics from the second statistical analysis performed, the multiple linear re-

gression analysis, are shown in Figure 8.4.  It can be seen that in general the variable S!R explained 

around 50% of the variance in savings potentials.  A notable exception was, however, the case 

Swiss Average/S3 where S!R showed no explanatory power at all.   

Figure 8.4 further illustrates that when the linear regression models were enhanced by both vari-

ables Construction Type (CT) and Internal Gains Levels (IGL) the proportions of explained vari-

ances for Building System variant S1 increased by totally 17% (Passive Houses) and 13% (Swiss 

Average houses).  For variant S2 the overall increases in explained variance were smaller and 

amounted to 3% and 10%, respectively.  For variant S3 and for the Passive House case it was found 

that inclusion of CT and IGL did not contribute anything to the explanation of the savings poten-

tials.  Very differently, for the Swiss Average case the proportion of explained variance by the two 

variables was 34%. 

Figure 8.5 shows the absolute savings potentials as a function of S!R and CT.  It can be seen that 

the savings potentials tended to increase with increasing S!R.  The only exception was again the 

case Swiss Average/S3 (bottom right panel in Figure 8.5).   

From Figure 8.5 can further be seen that the effect of varying CT depended on S!R:  Under low S!R 

values heavy buildings showed generally lower savings potentials as compared to light buildings.  

For large solar gains the opposite was found to be the case. 

Note that the analysis for the Passive Houses included many cases with high S!R values, but that no 

such cases were available for the Swiss Average Building Standard where all considered buildings 

had a low Window Area Fraction. 
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Figure 8.5:  Absolute savings potentials as a function of S·R and Construction Type (heavy/light).  

S: specific solar gain area;  R: annual average of the mean of the relevant vertical global radiation 

components;  Passive House, Swiss Average: Building Standards;  S1–S3: Building System variant.  
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8.3.3 Analysis of Selected Cases  

8.3.3.1 Case Selection 

The selection of representative cases for more detailed analyses was based on the following consid-

erations:  Firstly, the cases should be relevant in practice, i.e. they should represent widespread 

situations in the present building stock.  Secondly, in order to facilitate the study of the underlying 

mechanisms they should show substantial (but not necessarily extreme) savings potentials.  And 

thirdly, they should include variations in all major factors that are influencing the savings potentials, 

in order to enable the analysis of factor-specific effects.   

These considerations lead to the selection of the 18 cases summarized in Table 8.1 (sorted by Build-

ing System Variant [BSV] and Building Site).  The reasoning behind this selection is explained 

with the aid of Figures 8.6 to 8.9. 

Figures 8.6 and 8.7 show the absolute and relative savings potentials, respectively, of all investi-

gated cases for Buildings Class I and Building System variants S1–S3.  The numbers at the top of 

the panels indicate the cases selected.   

The two cases labeled no. 7 and no. 9 in Figures 8.6 and 8.7 were chosen as the “base cases” for the 

Passive House and the Swiss Average Building Standards, respectively.  Both cases represent 

Building System variant S2, Ventilation Strategy “CO2-controlled ventilation”, Building Site 

“SMA/Zurich-Fluntern”, Façade Orientation “South”, Construction Type “heavy”, and Internal 

Gains Level “high”.  The only difference between the two cases – next to the Building Standard – 

was the use of a “high” Window Area Fraction for the Passive House case and a “low” one for the 

Swiss Average case. 

Cases 1, 3, and 12 (also shown in Figures 8.6 and 8.7) resulted from Case 9 by varying the Building 

Site SMA/Zurich-Fluntern to LUG/Lugano, MSM/Marseille-Marignane and WHW/Wien Hohe 

Warte, respectively.   

Cases 2 and 10 resulted from Cases 1 (“warm” site) and 9 (“cool” site), respectively, by using in-

stead of ventilation strategy W (CO2-controlled ventilation) the strategy V (non-air quality con-

trolled ventilation).  

Case 13 was derived from Case 9 by modifying the Building System Variant from S2 to S3. 

The derivation of some further cases is illustrated with the aid of Figures 8.8 and 8.9 that show the 

found absolute and relative savings potentials, respectively, for Buildings Class II and Building 

System variant S2.   

Cases 4 and 8 were derived from Cases 3 (“warm” site) and 7 (“cool” site), respectively, by varying 

the construction type from “heavy” to “light”.   

Cases 5 and 6 resulted from Cases 7 and 9, respectively, by changing the façade orientation from 

“South” to “Southwest” (corner room).   
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Savings Potential PB RBC-3 No Site BSV BS FO CT WAF IGL VS 

kWh/m
2
/a % SU SL SU SL 

1 LUG S2 sa S h wl ih W 5.8 17 1 -1 2 -20 

2 LUG S2 sa S h wl ih V 6.0 13 2 -2 1 -19 

3 MSM S2 sa S h wl ih W 4.2 14 2 0 8 -10 

4 MSM S2 sa S l wl ih W 5.8 16 4 -2 15 -13 

5 SMA S2 pa SW h wh ih W 6.2 21 2 -4 0 -29 

6 SMA S2 sa SW h wl ih W 6.0 7 3 -11 0 -73 

7 SMA S2 pa S h wh ih W 3.7 14 1 0 1 -8 

8 SMA S2 pa S l wh ih W 4.8 16 2 -1 1 -14 

9 SMA S2 sa S h wl ih W 4.3 10 1 -4 1 -41 

10 SMA S2 sa S h wl ih V 4.4 8 1 -4 0 -44 

11 WHW S2 pa SW h wh ih W 6.3 24 3 -2 7 -21 

12 WHW S2 sa S h wl ih W 5.3 15 2 -3 7 -27 

13 SMA S3 sa S h wl ih W 4.5 9 2 -5 1 -46 

14 WHW S3 pa SW h wh il W 4.9 20 4 -5 5 -32 

15 LUG S4 sa S h wl ih W 1.8 6 1 -2 2 -85 

16 SMA S4 pa S h wh ih W 0.1 0 1 0 0 -10 

17 SMA S5 pa S h wh ih W 7.6 25 1 0 2 -24 

18 WHW S5 pa S h wh ih W 8.3 28 2 0 49 -24 

Table 8.1:  Selected cases for detailed analyses.  The “base cases” no. 7 and 9 are highlighted.   

BSV: Building System variant;  BS: Building Standard;  FO: Façade Orientation;  CT: Construction 

Type;  WAF: Window Area Fraction;  IGL: Internal Gains Level;  VS: Ventilation Strategy;  PB: Per-

formance Bound;  RBC-3: Rule-based control strategy no. 3;  SU, SL: Annual sums of Kelvin-hours 

(Kh), measuring deviations of the room temperature above the comfort range’s upper bound, respec-

tively below its lower bound.  For further abbreviations see Table 7.1.  Absolute and relative (%) sav-

ings potentials refer to annual total Non-Renewable Primary Energy (NRPE) usage and were calcu-

lated as RBC3-PB and 100·(RBC3-PB)/RBC3, respectively, where PB and RBC3 denote the annual 

Performance Bound and the annual total NRPE usage by the RBC-3 control strategy, respectively.  

Case 11 was selected as a high savings potential case for Buildings Class II.  

Finally, the Cases 14–18 (Table 8.1) were selected according to the following criteria:   

Case 14: a further high potential case for Buildings Class II (similar to Case 11, but representing 

Building System variant S3 and Internal Gains level “low”);   

Cases 15 and 16: same as Cases 1 (“warm” site) and 7 (“cool” site), respectively, but employing 

Building System variant S4 (natural ventilation) instead of S2.   

Case 17: same as Case 7, but using Building System variant S5 (TABS) instead of S2. 

Case 18: same as Case 17, but for a further “cool” site, WHW/Wien Hohe Warte, instead of 

SMA/Zurich-Fluntern. 
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Figure 8.6:  Absolute savings potentials for control strategy RBC-3, Thermal Comfort definition Aw 

(no set-back, wide comfort range), and Buildings Class I.  S1, S2, S3: Building System variant; 

-, W, V: Ventilation Strategy;  N, S, SE, SW: Façade Orientation;  sa, pa: Building Standard; 

l, h: Construction Type;  wl, wh: Window Area Fraction;  il, ih: Internal Gains Level;  LUG, MSM, 

SMA, WHW: Building Site  (see also Table 7.1).  Blue boxes indicate cases selected for more detailed 

analyses (cf. Table 8.1).  

 
Figure 8.7:  Same as Figure 8.6, but for relative savings potentials. 
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Figure 8.8:  Absolute savings potentials for control strategy RBC-3, Building System variant S2, 

Thermal Comfort definition Aw (no set-back, wide comfort range), Buildings Class II, and Ventilation 

Strategy W (CO2-controlled ventilation).  N, S, SE, SW: Façade Orientation;  sa, pa: Building Stan-

dard;  l, h: Construction Type;  wl, wh: Window Area Fraction;  il, ih: Internal Gains Level; LUG, 

MSM, SMA, WHW: Building Site (see also Table 7.1).  Blue boxes indicate cases selected for more de-

tailed analyses (cf. Table 8.1).  

 
Figure 8.9:  Same as Figure 8.8, but for relative savings potentials. 
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8.3.3.2 Annual Cycles of Savings Potentials 

Figures 8.10 and 8.11 compare monthly PB values and absolute savings potentials for a subset of 

eight selected cases that all refer to Building System variant S2.  Displayed is the total NRPE usage 

by all subsystems (left panels), as well as the NRPE usage associated with heating only (middle 

panels) or cooling only (right panels).   

According to the definition of Building System variant S2 the heating NRPE usage was given by 

the sum of heating energy consumed by the mechanical ventilation and by the radiators.  The cool-

ing NRPE usage consisted of the energy used for cooling by mechanical ventilation plus the energy 

usage by a mechanical chiller or a wet cooling tower for operation of the cooled ceiling.   

Note, total NRPE usage by all subsystems (left panels in Figures 8.10 and 8.11) included the energy 

usage by electric lighting and fan operation.  These subsystems are however not detailed in Fig-

ures 8.10 and 8.11 because they showed practically no savings potentials for the cases considered 

here.  The NRPE usage by the lighting and fans is examined in the next Section in more detail.  

Figure 8.10 displays results for the Passive House Building Standard.  It can be seen that the total 

NRPE usage by the PB (left panels, dark grey portion of the bars) showed for all cases a distinct 

annual cycle.  The total usage reflected a larger NRPE demand for heating during the winter half 

year (middle panels, brown portion of the bars) as opposed to a generally smaller NRPE demand for 

cooling during the summer half year (right panels, dark blue portion of the bars).  Note the different 

y-axis ranges between panels on the same row. 

The PB for heating NRPE usage was found to be highest for the corner offices (Cases 5 and 11), 

whereas for the other two cases (Cases 7 and 8) there was hardly any heating demand in the PB 

calculations.  Cooling NRPE usage occurred for the PB in all cases.   

Quite differently from the total NRPE usage in the PB calculations the total NRPE savings poten-

tials (left panels, light grey portion of the bars) showed very jagged annual cycles.  They resulted 

from the superposition of heating savings potentials for the period October through April (middle 

panels, orange portion of the bars), and cooling savings potentials throughout the year with gener-

ally higher values during summertime (right panels, light blue portion of the bars).   

Figure 8.11 presents a similar analysis as is shown in Figure 8.10, but for the Swiss Average Build-

ing Standard, and with emphasis on the variation between sites.   

From Figure 8.11 (left panels) can be seen that the total NRPE usage of the two warmer sites 

(Cases 1 and 3) showed a less pronounced annual cycle as compared to the two cooler sites (Cases 9 

and 12).  This behavior was due to the combination of a modest heating demand (middle panels) 

with an elevated cooling demand (right panels) at the warmer sites, while at the cooler sites there 

was generally a much stronger, seasonally varying heating demand.   

The total NRPE savings potentials shown in Figure 8.11 (left panels, light grey portion of the bars) 

again exhibited irregular annual cycles, as this was the case for the results reported in Figure 8.10. 

A further common result that can be discerned from Figures 8.10 and 8.11 is that the control strat-

egy RBC-3 was always found to lead to longer heating (middle panels) and cooling seasons (left 

panels) as compared to the PB.  
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         Total NRPE usage          Heating NRPE usage         Cooling NRPE usage 

Case 5 

SMA 

pa 

SW 

l 

(21%) 

   

Case 7 

SMA 

pa 

S 

h 

(14%) 

   

Case 8 

SMA 

pa 

S 

l 

(16%) 

   

Case 11 

WHW 

pa 

SW 

h 

(24%) 

   

Figure 8.10:  Comparison of monthly Performance Bound values (PB, dark portions of bars) and of 

monthly savings potentials (RBC3-PB, light portions of bars) for selected cases representing Building 

System variant S2 and the Passive House (pa) Building Standard.  NRPE: Non-Renewable Primary 

Energy;  SMA, WHW: Building Sites;  S, SW: Façade Orientations;  h, l: Construction Types.  Num-

bers in brackets at the left hand side give annual total relative savings potentials 100·(RBC3-

PB)/RBC3, where RBC3 and PB denote the annual Performance Bound and the annual total NRPE 

usage for the RBC-3 control strategy, respectively. 
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         Total NRPE usage          Heating NRPE usage         Cooling NRPE usage 

Case 1 

LUG 

sa 

S 

h 

(17%) 

   

Case 3 

MSM 

sa 

S 

h 

(14%) 

   

Case 9 

SMA 

sa 

S 

h 

(10%) 

   

Case 12 

WHW 

sa 

S 

h 

(15%) 

   

Figure 8.11: Comparison of monthly Performance Bound values (PB, dark portions of bars) and of 

monthly savings potentials (RBC3-PB, light portions of bars) for selected cases representing Building 

System variant S2 and the Swiss Average (sa) Building Standard.  NRPE: Non-Renewable Primary 

Energy;  LUG, MSM,  SMA, WHW: Building Sites;  S: Façade Orientation;  h: Construction Type. 

Numbers in brackets at the left hand side give annual total relative savings potentials 100·(RBC3-

PB)/RBC3, where RBC3 and PB denote the annual Performance Bound and the annual total NRPE 

usage for the RBC-3 control strategy, respectively.  
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8.3.3.3 Allocation to Subsystems  

Figure 8.12 illustrates for all 18 cases from Table 8.1 how the NRPE savings potentials were dis-

tributed across the various technical subsystems.  Note, the energy demand associated with the op-

eration of blinds was neglected in all cases.  Cases 15 and 16 involved energy usage for the opera-

tion of the night-time natural ventilation subsystem, and this contribution to the total NRPE usage 

was also neglected. 

It can be observed that for Cases 1–12, i.e. all cases related to Building System variant S2, the larg-

est savings potentials were always associated with radiator heating (rH) and free cooling (fC) usage.  

The only exception was Case 4 where a substantial savings potential was found for the cooling of 

the ceiling through a mechanical chiller (cC).  Case 4 was the only one that represented the Con-

struction Type “light” at a “warm” site.  Some savings potentials for the cC subsystem were also 

found for the Cases 3, 11 and 12. 

Cases 13 and 14 represented the Building System variant S3 (ventilation-only system).  Here, sig-

nificant savings potentials were found for the NRPE usage associated with fan operation (v) and 

with the heating via the ventilation subsystem (vH). 

Cases 15 and 16 referred to Building System variant S4 that involved floor heating (fH).  For 

Case 15 the fH subsystem was identified as the only relevant source of possible NRPE savings.  For 

Case 16 the RBC-3 strategy was in terms of NRPE usage very close to the PB such that there were 

no savings potentials present.  

The last two cases reported in Figure 8.12, Cases 17 and 18, related to the Building System variant 

S5 that employed TABS.  In both cases substantial savings potentials were detected for the ventila-

tion (vH) and free cooling (fC) subsystems.  Some potential was also found with regard to fan op-

eration (v).  

Cases 1–2 and 9–10 enable a comparison of the role of ventilation strategies W (CO2-controlled 

ventilation) and V (non-air quality controlled ventilation) at a warm (LUG/Lugano) and a cool site 

(SMA/Zurich Fluntern), respectively.  From both comparisons can be seen that strategy W (Cases 1 

and 9) required much less energy for fan operation (v) than strategy V (Cases 2 and 10).  Also, the 

found total savings potentials were somewhat larger for strategy W (17% for site LUG, and 10% for 

site SMA) as compared to strategy V (13% and 8%, respectively).  However, for all cases the larg-

est savings potentials were found for the radiator (rH) and free cooling (fC) subsystems. 
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Figure 8.12:  Distribution of annual Performance Bound values (PB, grey) and annual savings poten-

tials (RBC3-PB, colored) across building technical sybsystems.  Shown are data for Non-Renewable 

Primary Energy (NRPE) usage and for 18 selected cases representing different Building System vari-

ants and Building Standards (cf. Table 8.1).  Cases 1-12: Building System variant S2;  Cases 13-14, 

15–16, 17–18: Building System variant S3, S4 and S5, respectively.  NRPE usage is shown for the fol-

lowing subsystems (data points omitted if subsystem not present for the respective Building System 

variant): e: electric lighting;  v: fan operation for mechanical ventilation;  vH, vC: heating and cooling 

by mechanical ventilation, respectively;  fH: floor heating;  rH: radiator heating; cC, fC: cooled ceil-

ing operated through a mechanical chiller or a through free cooling, respectively.  Numbers in brack-

ets on top of each panel give annual total relative savings potentials 100·(RBC3-PB)/RBC3, where 

RBC3 and PB denote the annual Performance Bound and the annual total NRPE usage for the RBC-3 

control strategy, respectively.  
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8.3.3.4 Mechanisms 

In this section we investigate the mechanisms behind the found NRPE savings for heating and cool-

ing.  To this purpose we examine the hourly simulations results of two selected cases in more detail.   

The first analysis refers to Case 8.  As reported earlier (Figure 8.10) this case showed for February a 

substantial savings potential for heating, but also some savings potential with regard to cooling.   

Figure 8.13 shows hourly simulation results for a 16-day time window during February.  The simu-

lations were based on the Average Design Reference Year (DRY) weather data for the site 

SMA/Zurich Fluntern.  The February data used in the DRY were actually those from the year 1992.  

The top panel of Figure 8.13 summarizes the outdoor meteorological conditions and the room’s 

occupancy status, while the remaining panels juxtapose the simulation results obtained from the PB 

calculation (blue) with those from the RBC-3 simulation (orange).  Note, the x-axis labels and ver-

tical gridlines in all panels mark the beginning of the respective day at 00:00 UTC. 

The second panel of Figure 8.13 compares the simulated room temperatures (Troom).  It can be 

seen that the temperatures from the PB were mostly above those from the RBC-3 simulation.  In 

particular, the simulated temperatures under the RBC-3 control often lied at the lower bound 

(21 ºC) of the thermal comfort range, while the PB temperatures floated within it most of the time.   

In order to guarantee thermal comfort the RBC-3 controller repeatedly employed radiator heating 

(hPowRad, fourth panel), for instance during February 17
th

 and into the morning of February 18
th

, a 

period during which outside air temperatures (Tair, top panel) coincided with very low radiation 

input (RGS) and low internal gains due to the room not being occupied (occup).  In contrast to this 

control behavior, the PB required most of the time no radiator heating at all. 

The main reason was due to differences in blind operation (bPos, third panel of Figure 8.13):  the 

PB kept the blinds much more open than the RBC-3 algorithm, thus making better use of the inci-

dent radiation for (pre-)heating of the room.  Quite differently, RBC-3 aimed at reducing heating 

power by stronger use of energy recovery as compared to the PB (ercUsgFact, last panel). 

A further consequence of the optimal blind control by the PB was the avoidance of situations where 

energy was required for cooling.  E.g., it can be seen that during the night of February 13
th

 to 14
th

 

the PB kept the blinds open in order to pre-cool the room in anticipation of the solar (RGS) and 

internal gains (occup) that were expected for the next day.  The pre-cooling was also supported by 

the shown reduction in the energy recovery usage factor (ercUsgFact) that resulted into a lower inlet 

air temperature.   

In contrast, the RBC-3 strategy managed to keep the room temperature below the upper comfort 

limit of 25 ºC only with the aid of occasional free cooling pulses (fcUsgFact, second bottom panel 

of Figure 8.13), as this was e.g. the case during the afternoon of February 14
th

. 

Our second analysis related to summertime cooling and here we considered the simulation results 

from a 16-day period for Case 1 in August (see also Figure 8.11).  The simulations were based on 

the Average DRY data set for the site LUG/Lugano; the August data were those from the year 1998. 

Figure 8.14 summarizes the prevailing meteorological conditions (top panel) plus selected simula-

tion results (remaining panels).  In contrast to the previous analysis the blinds positioning is not 

detailed here because for this control variable the PB and the RBC-3 simulation were found to yield 

very similar results: both control strategies turned out to avoid solar gains as much as possible by 

opening the blinds only just as much as needed in order to achieve the minimum required illumi-

nance level when the room was occupied.   
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Figure 8.13:  Comparison of hourly simulation results for Case 8 (see Table 8.1) in February.  PB: 

Performance Bound simulation;  RBC-3: simulation using rule-based control RBC-3.  Tair: outdoor 

air temperature;  RGS: global radiation component on a south-facing vertical suface;  occup: occu-

pancy status (gray = office working hours);  Troom: room temperature;  bPos: blinds position (0 = 

blinds closed);  hPowRad: radiator heating power;  fcUsgFact: free cooling usage factor (0 =  free 

cooling deactivated);  ercUsgFact: energy recovery usage factor (0 = energy recovery deactivated).  De-

livered power for hPowRad refers to Non-Renewable Primary Energy.   

The second panel of Figure 8.14 juxtaposes the simulated room temperatures (Troom).  It can be 

seen that the room temperature from the PB was generally below the one from the RBC-3 simula-

tion.  During the two sunny and increasingly warmer periods of August 6
th

–10
th

 and 14
th

–16
th

, re-

spectively, the PB temperatures successively approached the ones simulated under RBC-3. 

The third and fourth panel of Figure 8.14 show the cooling power consumed by the mechanical ven-

tilation (cPowMev) and the mechanical chiller (cPowSlab), respectively.  It can be seen that as op-

posed to RBC-3 the PB managed to almost completely avoid the usage of these two energy-

intensive devices. 

The reason can be seen from the last two panels that illustrate the free cooling usage (fcUsgFact) 

and the energy recovery intensity (ercUsgFact), respectively:  The PB used the free cooling much 

more extensively than RBC-3 and at different points in time, namely for pre-cooling of the room 

(e.g., Aug 5
th

–7
th

 and 12
th

–14
th

).  To the same purpose the PB also made more extensive use of the 

energy recovery for cooling than RBC-3.  Salient examples are the energy recovery usage peaks of 

August 4
th

–6
th

 and 11
th

–12
th

, where the PB exploited the fact that nighttime outside air temperature 

was below the room temperature.   
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Figure 8.14:  Comparison of hourly simulation results for Case 1 (see Table 8.1) in August.  PB: Per-

formance Bound simulation;  RBC-3: simulation using rule-based control RBC-3.  Tair: outdoor air 

temperature;  RGS: global radiation component on a south-facing vertical surface;  occup: occupancy 

status (gray = office working hours);  Troom: room temperature;  cPowMev: cooling power by me-

chanical ventilation;  cPowSlab: cooling power of mechanical chiller for cooled ceiling;  fcUsgFact: 

free cooling usage factor (0 =  free cooling deactivated);  ercUsgFact: energy recovery usage factor (0 

= energy recovery deactivated).  Delivered power for cPowMev and cPowSlab refers to Non-Renewable 

Primary Energy. 

8.3.4 Analysis of Peak Electricity Demand 

Figure 8.15 compares the distributions of simulated hourly mean total electric power demand (EPD) 

between the PB and RBC-3 simulations for the 18 cases given in Table 8.1.  It can be seen that for 

Cases 1–4, 8, 11, 12, 14 and 15 the RCB-3 simulations yielded higher extreme values than the PB.  

Only in one case, Case 13, the PB gave higher extremes.  In the remaining eight cases no notable 

differences were found between the respective distribution’s upper tails.   

The 98-, 99- and 100-Percentile (maximum) values of all distribution pairs are compared in Fig-

ure 8.16.  Again, the aforementioned cases stick out, and it can be seen that the largest relative dif-

ferences occurred for the annual maximum values and amounted up to 30% (or ca. 6 W/m
2
).   

A closer analysis (not shown) of the nine cases where the RBC-3 simulations showed more extreme 

EPD distributions than the PB revealed that the largest EPD values occurred always during the 

warm season.   
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Figure 8.15:  Quantile-quantile plots of hourly mean total electric power demand for 18 selected cases 

representing different Building System variants and Building Standards (cf. Table 8.1).  PB: power 

demand values from the whole-year Performance Bound simulation;  RBC-3: power demand values 

from corresponding simulation using the RBC-3 control strategy.  Sample size n = 8759.  Cases 1-12: 

Building System variant S2;  Cases 13-14, 15–16, 17–18: Building System variant S3, S4 and S5, re-

spectively.    
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Figure 8.16:  Relative differences for the 98-, 99- and the 100-Percentile (MAX) of hourly mean total 

electric power demand.  RBC-3: percentiles from a whole-year simulation using the RBC-3 control 

strategy;  PB: percentiles from the corresponding Performance Bound simulation.  Sample size n = 

8759, i.e. one percent represents 88 hourly values.  Shown are results for 18 selected cases representing 

different Building System variants and Building Standards (cf. Table 8.1).   

Figure 8.17 illustrates a typical summertime episode with extreme EPD values in the RBC-3 simu-

lation.  The top panel shows the used meteorological data (site MSM/Marseille-Marignane, year 

2006) together with the occupancy status, while the second panel juxtaposes the simulated room 

temperatures.  It can be seen that the RBC-3 simulations yielded generally higher room tempera-

tures, whereas for the PB the room temperature started from a pre-cooled state and warmed succes-

sively throughout the week (cf. Figure 8.14).   

The third panel in Figure 8.17 compares the computed hourly mean total EPD values.  Both simula-

tions yielded a double-peaked diurnal profile with increasing peak levels throughout the week.  

Note, the shown EPD values contained a contribution from electric lighting in the early morning 

hours of working days, but this component is not detailed here because it was comparatively small 

(peak value of 1.2 W/m
2
) and identical in the two simulations.  The double-peak shape of total EPD 

was attributable to the operation of the equipment (see Figure 2.4, right).   

From the bottom panel of Figure 8.17 can be seen that the trend in the EPD peaks was caused by the 

increasing power consumption by the mechanical chiller throughout the week.  Due to the generally 

higher room temperature level that was closer to the upper comfort bound of 27 °C this trend was 

more pronounced in the RBC-3 as compared to the PB simulations.   

Now we turn to the special Case 13 that referred to Building System variant S3 (ventilation-only 

system).  Here, the highest EPD values were found to occur in the PB simulations, and during win-

tertime (analysis not shown).   

Figure 8.18 shows selected simulation results for a typical winter episode.  The used weather data 

(top panel) were from site SMA/Zurich Fluntern and the year 2003.   

From the second panel of Figure 8.18 can be seen that the two simulations yielded similar room 

temperatures at the beginning and towards the end of the week.  However, in the period January 9
th

–

11
th

 that had particularly cool outdoor conditions and almost no solar gains (top panel) the daytime 

room temperatures showed strong differences.   

The simulated hourly mean total EPD values are detailed in the third panel of Figure 8.18.  Total 

EPD contained identical contributions from electric lighting in both simulations (peak values of 2.2 

W/m
2
) that are not shown here.  Otherwise it can be discerned that the PB simulation showed con-

sistently higher daytime and lower nighttime EPD than the RBC-3 simulation.   
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Figure 8.17:  Comparison of hourly simulation results for Case 3 (see Table 8.1) in June.  PB: Per-

formance Bound simulation;  RBC-3: simulation using rule-based control RBC-3.  Tair: outdoor air 

temperature;  RGS: global radiation component on a south-facing vertical surface;  occup: occupancy 

status (gray = office working hours);  Troom: room temperature;  EPD: hourly mean total electric 

power demand;  EPD-cSlab: electric power demand of mechanical chiller for cooled ceiling.   

 

Figure 8.18:  Comparison of hourly simulation results for Case 13 (see Table 8.1) in January.  PB: 

Performance Bound simulation;  RBC-3: simulation using rule-based control RBC-3.  Tair: outdoor 

air temperature;  RGS: global radiation component on a south-facing vertical surface;  occup: occu-

pancy status (gray = office working hours);  Troom: room temperature;  EPD: hourly mean total elec-

tric power demand;  EPD-hMev: electric power demand for heating by mechanical ventilation.   

The reason relates to the very different operation of heating by means of mechanical ventilation in 

the two simulations (Figure 8.18, bottom panel).  Apparently, the energy-optimal solution by the PB 

consisted in pre-heating the room during daytime (with the aid of internal gains) whereas the RBC-

3 controller minimized daytime heating at the cost of having to use more heating power during 

nighttime and in the early morning hours of the next day.  Note that the average power consumption 

(cf. third panel) over the entire week was lower in the PB (8.9 W/m
2
) as compared to the RBC-3 

simulation (9.6 W/m
2
).  
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8.4 Discussion 

The found savings potentials for the RBC-3 control strategy were highly case-dependent (Fig-

ures 8.1, 8.2 and 8.6–8.12).  Moreover, it was found that the individual potentials can not be easily 

predicted from the defining factors such as building site, façade orientation or construction type 

(Figures 8.3–8.5).  These results on the one hand highlight that appropriate modeling and simulation 

tools are indispensible for the assessment of alternative control strategies on a per-case basis.  On 

the other hand they also confirm our approach of exploring the savings potentials with the aid of a 

large-scale simulation study.   

The database analyzed included some PB simulations that used extra electric lighting for heating 

(Section 7.3.1.5), and several RBC-3 simulations that showed violations of the upper and lower 

thermal comfort bounds by up to +38 Kh/a and -198 Kh/a, respectively (Appendix E; see also Fig-

ures 8.1 and 8.2).  The first problem tended to inflate the NRPE usage by the PB in some cases by 

up to a few percent (Section 7.3.1.5), whereas the second one was associated with reduced NRPE 

usage by the RBC-3 controller.  The net effect was a conservative estimation of savings potentials.  

We therefore believe that our overall results were not too much affected by these problems.   

The conducted statistical analyses allow us to comment on the hypotheses stated in the introduction: 

Hypothesis 1:  “The importance of advanced control increases with the complexity of the building 

technical system under consideration”.  The rationale behind this statement is that the more com-

plex a given system the more difficult it is to determine a “simple” rule-based strategy (including 

generic tuning rules, cf. Chapter 3) that comes close to the Performance Bound (PB).  Our results 

support this view to some extent, because on average the largest absolute potential savings were 

obtained for the most complex Building System variant, variant S2.  Interestingly, for this variant 

the absolute savings potentials also showed the largest variation (Figure 8.1).  This result is com-

patible with the fact that rule-based control is normally tuned to “average” conditions, such that for 

increasingly complex technical systems the rules can be expected to perform poorly for an increas-

ing fraction of the cases.   

Hypothesis 2:  “Intelligent control is particularly favorable in the presence of high energy fluxes”.  

This argument is based on the notion that in the presence of higher energies the system responses 

tend to depend more sensitively on control decisions.  Our findings definitely support this state-

ment:  the found savings potentials were generally positively correlated with the available solar 

gains (Figure 8.5) as well as the internal gains level (Figures 8.3 and 8.4).  However, the lack of 

dependency on the solar gains for the Swiss Average Building Standard and Building System vari-

ant S3 (bottom right panel in Figure 8.5) presented an exception.  This result reflected the compen-

sating effect of a slightly positive correlation for heavy buildings and a slightly negative one for 

light buildings (analysis not shown). The reasons behind the found behavior for the light buildings 

are not clear and should be investigated further. 

Hypothesis 3:  “Predictive control is more useful for ‘heavy’ as opposed to ‘light’ buildings”.  This 

frequently stated argument is based on the notion that buildings with a high thermal mass have long 

response times, and are thus particularly suited for predictive control.  Our ANOVA results support 

this statement only for the Swiss Average Building Standard (Figure 8.3, right panels), whereas for 

the Passive House Building Standard the ANOVA showed for the heavy Construction Type a be-

low-average savings potential (Figure 8.3, left panels).  A closer analysis showed that this result 

depended on the definition of “average” conditions as implied by the specific set of cases consid-

ered in this study (Section 8.2.1): the positive effect of high thermal mass was also present for Pas-

sive Houses, however only for corner offices with a high window area fraction.  This was in line 

with the results reported in Figure 8.5 which shows that for both Building Standards heavy con-

structions are only advantageous in the presence of high solar gains.  Apparently, advanced control 

can manage high thermal masses effectively only if there is enough “cheap” energy at disposal.  
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Figure 8.5 also shows a large amount of variation around this general trend.  The variability proba-

bly reflects the fact that a building’s time constant does not only depend on the thermal mass but 

also on the transmission losses through the envelope.  A further factor that contributed to the rich-

ness of the found responses is that heavy buildings tend not only to react “slower” but also to be 

less sensitive to fast weather and internal gains disturbances than their light counterparts.  

Hypothesis 4:  “Predictive control is particularly advantageous during the transition seasons”.  

This statement is based on the intuition that during mid-latitude spring and autumn there is a culmi-

nation of situations that make “intelligent” switching between heating and cooling necessary.  Our 

results do not provide much support for such a simple argument.  Firstly, it was found that total sav-

ings potentials were generally irregularly distributed throughout the year.  And secondly, in several 

cases both, heating as well as cooling savings potentials were found to occur simultaneously during 

wintertime (Figures 8.10 and 8.11).  These results show that the transition period between the heat-

ing and cooling seasons is building-specific and can hardly be defined based on outdoor climate 

alone.  The lack of general rules is not too discomforting since the Performance Bound calculations 

can be used to flexibly detect savings potentials whenever they occur throughout the year. 

The allocation of the savings potentials to the various technical subsystems (Figure 8.12) showed 

that the main potentials were associated with the fast heating and cooling devices.  Although energy 

recovery was operated quite differently between the PB and the RBC-3 strategy (Figures 8.13 and 

8.14) total energy use for ventilation was generally very similar same for both control approaches 

(Figure 8.12).  The ventilation-only variant S3 presented an exception that deserves further study.  

The PB and the RBC-3 strategy showed very similar costs for electric lighting because they both 

minimized the use of NRPE-intensive electricity by using as much daylight as possible.  Note that 

since the lighting costs present a substantial part of total costs (Figure 8.12) any changes in the pre-

scribed illuminance comfort or lighting parameters would strongly affect the found relative total 

savings potentials (Figure 8.2).  

The origins of the savings potentials could be traced to the predictive behavior of the PB, as op-

posed to the non-predictive control realized by the RBC-3 strategy (Figures 8.13 and 8.14).  The PB 

results provide a valuable benchmark for the development of enhanced, predictive rule-based 

strategies that could be used to harvest the found potentials.  Our analyses suggest that such strate-

gies should attempt to (i) keep the room temperature closer to the center of the comfort range in 

order to reduce frequent switching between cooling and heating; and (ii) to pre-heat or pre-cool the 

building structure with the aid of anticipatory blind movement and free cooling.   

As shown in Figures 8.16 and 8.17 predictive control can help to reduce not only energy usage but 

also (summertime) peak electric power demand.  However, Case 13 (Figures 8.16 and 8.18) clearly 

demonstrates that there are also some tricky exceptions.  In view of the complexity of the problem 

we believe that a general rule-based control solution for joint minimization of energy cost and peak 

electricity power demand is hardly feasible.  The most promising (and flexible) approach probably 

consists in the development of Model Predictive Control algorithms that include appropriate con-

straints (cf. Section 4.2.4) for peak power limitation.  

Finally we note that our results refer to individual building zones or rooms, not whole buildings.  

Savings potentials for entire buildings might be smaller than for the cases considered here (Ta-

ble 8.1) since each building can be expected to include also low-potential zones.  On the other side, 

additional savings potentials might emerge from optimized management of energy fluxes between 

zones.  Such investigations would require simulations with a whole building/multi-zone model.  

These would also allow for a more realistic assessment of peak electricity demand.   
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8.5 Conclusions 

The comparison of the rule based strategy RBC-3 with the Performance Bound (PB) shows that the 

putative benefits of improved (predictive) control are highly case dependent.  Both, the mean and 

the variability of the absolute savings potentials are largest for the Building System variant S2 

(most complex technical system), and smallest for variant S3 (ventilation-only system).  Relative 

savings potentials are for all three Building System variants S1–S3 always higher for the Passive 

House as compared to the Swiss Average Building Standard.   

In general, savings potentials for the RBC-3 strategy tend to increase with higher solar and internal 

gains.  Façade orientation is the most important single factor explaining the variability of the sav-

ings potentials, followed by window area fraction and building site.  A newly introduced compound 

measure of annual average solar gains typically explains ~50% of the variance in savings potentials.  

The consideration of internal gains levels increases the proportion of explained variance by 5-10%.   

For the systems considered in this study heavy buildings are only favorable if sufficiently large so-

lar gains are at disposal.  Otherwise savings potentials tend to be higher for “light” buildings, where 

already small energy fluxes can be exploited by improved control.   

A detailed investigation of the results for Building System variant S2 showed that energy saving 

potential is identifiable throughout the year.  Improved control implies a shortening of both, the 

heating as well as the cooling season.  For variant S2 the savings are mainly associated with re-

duced energy usage for radiator heating and free cooling.  Energy savings for heating and cooling 

are often realized simultaneously in one and the same month. 

The savings potentials can be traced back to the optimized use of the blinds, free cooling and energy 

recovery subsystems.  Predictive control of these low-cost devices allows to efficiently pre-heat or 

pre-cool the building structure and to avoid frequent switching between heating and cooling while 

keeping room temperatures floating more freely within the prescribed thermal comfort range.  

Predictive control also appears beneficial with regard to reducing peak electricity demand.  From a 

total of 18 cases investigated in 9 cases was found a reduction, in 8 no change, and in 1 case an in-

crease in the upper few percentiles of the hourly electric power demand values simulated during a 

year.  The last mentioned case shows that energy efficiency and reduction of peak demand can pre-

sent conflicting objectives and suggests the need for explicit consideration of peak limitation in the 

control algorithms. 

In summary, it was found that the mechanisms determining energy savings potentials and reduced 

peak electricity demand can be plausibly explained a posteriori.  The dynamical behavior of the 

simulated building systems and their overall energy demand often depend on subtle variations in the 

timing and magnitude of control actions.  This underlines the importance of appropriate tools and 

data sets for the simulation-based development of improved control solutions.  It also points to-

wards possible limitations when one aims to exploit the found theoretical potentials in practice.   

This work investigated savings potentials only for one particular control strategy, RBC-3.  Never-

theless, given the large number of cases considered and the generality of the mechanisms identified 

we believe that all in all our findings give a useful insight into the potential of predictive control for 

the application Integrated Room Automation.   
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9.1 Introduction 

Chapter 8 demonstrated a considerable theoretical potential for improvement of control perform-

ance thanks to the use of predictive control.  In this chapter we investigate how far this potential 

could be exploited by using the Model Predictive Control (MPC) strategies introduced earlier 

(Chapter 4).  Besides control performance we also explore some other properties of these strategies. 

We address the following questions: 

Q1: What is the added value of Certainty Equivalence MPC?  

Q2: What is the added value of stochastic MPC?  

Q3: How much does the quality of weather predictions matter for MPC?  

Q4: How robust is MPC to model parameter mismatch?  

Q5: How can a desired thermal comfort level be adjusted with MPC?  

The formulation of these questions was guided by the first four assessment criteria given in Chap-

ter 1 (Table 1.1), as follows: 

Q1 and Q2 are related to the assessment criterion no. 1 (“achievable control performance”).  For the 

corresponding analyses we employed MPC using weather forecasts from the COSMO-7 numerical 

weather prediction model (see Chapter 6).  As benchmarks we used the Performance Bound (PB) 

and the non-predictive, rule-based control (RBC) strategy RBC-4 (see Chapter 3).  

Q3 was motivated by the fact that the success of MPC in real applications depends on the quality of 

the information available at each time step as an input to the model-based optimization.  Q3 went 

with the assessment criterion no. 3 (“robustness on building type, disturbances, user interactions”).  

Here we focused on the varying quality of weather predictions due to the use of different forecast 

methods.  Otherwise we assumed that the building’s state and the future internal gains are perfectly 

known at begin of each optimization step.   

Q4 dealt with the fact that the quality of the model that is incorporated in the controller is also es-

sential in the practical application of MPC.  The question goes with criterion no. 2 (“robustness on 

control parameter settings”):  we considered the effect of uncertainty in the MPC model parameters.  

The building’s state and the future weather and internal gains were assumed to be perfectly known 

at begin of each optimization step. 

Question Q5 finally related to criterion no. 4 (“flexibility and tuning effort in the engineering proc-

ess”).  We investigated the tuning of the thermal comfort level because of its obvious importance. 

Below we first present our assessment strategy and the simulations undertaken (Section 9.2), fol-

lowed by a presentation of the results (Section 9.3), a discussion (Section 9.4), and our conclusions 

(Section 9.5). 
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9.2 Materials and Methods 

9.2.1 Simulation Experiments 

In order to answer the five questions we conducted several sets of simulation experiments, as sum-

marized in Table 9.1.  Below we discuss the table in more detail. 

 

 

Experi-

ment/ 

Ques-

tion 

HL-

Ctrl 

LL-

Ctrl 

WP KF HL-

Tuning 

Cost 

Function 

Year Period Case 

Nos. 

Set-

backs 

E1/ 

Q1 

PB 

CE 

RBC-4 

EL 

EL 

RBC 

– 

W4 

– 

– 

x 

– 

– 

– 

– 

MC 2007 Jan-Dec 01–18 no 

E2/ 

Q2 

SMPC 

 

EL 

 

W4 

 

 

x 

 

– 

 NRPE 2007 Jan-Dec 

01, 02, 

03, 07, 

17, 18  

no 

E3/ 

Q3 

CE – 

– 

– 

– 

W1 

W2 

W3 

W4 

– 

– 

– 

x 

– 

– 

– 

– 

NRPE 2007 Jan-Dec 01–18 no 

E4/ 

Q4 

CE EL 
W4 

x – 
NRPE 2007 Jan-Dec 01 no 

E5/ 

Q5 

PB 

CE 

SMPC 

RBC-4 

EL 

EL 

EL 

RBC 

– 

W4 

W4 

– 

– 

x 

x 

– 

– 

x 

x 

– 

NRPE 2007 Jan 01 no 

Table 9.1: Overview of simulation experiments.  HL-Ctrl: High-level controller;  LL-Ctrl: Low-level 

controller;  WP: Weather Prediction type;  KF: Kalman Filter for local correction of weather forecasts 

at building site;  PB: Performance Bound;  CE: Certainty Equivalence Model Predictive Control;  

SMPC:  Chance Constrained Stochastic Model Predictive Control;  RBC-4: Rule-based control no. 4;  

EL: low-level control for electric lighting only;  RBC: Standard low-level control for rule-based con-

trollers;  x/–: used/not used;  W1–W4:  See Table 9.2. Case Nos.: see Table 9.3. 

High-level controller: Four different controllers were considered: the Performance Bound (PB), the 

Certainty Equivalence MPC (CE), the Chance Constrained Stochastic MPC (SMPC) and the Rule-

Based Control no. 4 (RBC-4).  RBC-4 was chosen because it was a rule-based controller that allows 

moving of the blinds once every time step (every hour), in exactly the same manner as this is the 

case for CE and SMPC.  This ensured a fair comparison.  In reality blind movements once an hour 

are already very frequent, and alternative restrictions to blind movement could have been formu-

lated.  We chose this particular restriction because it could be easily implemented within our model-

ing framework. 

Low-level controller:  PB, CE and SMPC had no low-level controller, or only a very simple one that 

regulated only electric lighting (EL), as described below.  RBC-4 had the generic, ideal RBC low-

level controller described in Section 3.3.  The EL controller was introduced for two reasons:  (1) 

Initial investigations showed that the errors present in the weather forecasts for the next time step(s) 

lead to a frequent violation of the illuminance level in the room.  In reality, a constant light level 

control would prevent these violations happening.  Therefore, an (ideal) illuminance correction was 

implemented that adjusted the illuminance level to the minimum required level, depending on occu-
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pancy status.  (2)  The EL controller also solved the problem that electric lighting was sometimes 

used as a fast heating device (see Chapter 7). 

Weather predictions:  We used hourly weather input data for the years 2006 and 2007, and a series 

of weather prediction methods, as described in Table 9.2. 

 

 

WP 

Method 

 

Description 

W1 Persistence prediction:  The weather is predicted by using the measurements from the past 

24 hours for the prediction horizon of usually 24 hours.  In order to prevent a big jump 

between the weather actually experienced during the last hour  and the predicted weather 

for the first hour, the prediction for the first predicted hour is given by the measured data 

from the last hour.  

W2 “Direct model output”:  The gridpoint-scale predictions by the COSMO-7 numerical 

weather prediction model of MeteoSwiss are used.   

W3 “Postprocessing”:  The COSMO-7 outputs are postprocessed with a newly developed 

statistical method developed at MeteoSwiss (Section 6.4).  Update cycle: 12 h. 

W4 “Postprocessing + local Kalman filter”: Same as W3, but in addition a local Kalman filter 

is employed  that uses measurements from the building site to improve the COSMO-7  

forecast.  Update cycle: 1h. 

W5 “Direct model output + local Kalman filter”: Same as W2, but in addition usage of a local 

Kalman filter.  Update cycle: 1h. 

Table 9.2: Overview of weather prediction methods.   

Kalman filter:  A simple Kalman filter/predictor for the local correction of the radiation-related dis-

turbances was used, as outlined in Section 4.5.1.  The local Kalman filter assumes the availability of 

corresponding measurements at the building site and was tuned separately for weather prediction 

methods W2 and W3 (see Table 9.2) as follows:  firstly, tuning was done for a building zone with 

South oriented façade separately for each location considered.  Secondly, the mean values of the 

tuning parameters over all locations were computed.  These values were finally applied to all loca-

tions and all façade orientations.  Note, there were two sets of local Kalman filter parameters, one 

for the W2 and one for the W3 predictions. 

Tuning of high-level controllers:  Tuning (for adjustment of thermal comfort level) was explored 

only for the CE and SMPC controllers.  For SMPC there exists a single tuning parameter ! that can 

be used for tuning. As default value 0.01 was used which corresponded to the definition of the 

chance constraint that the comfort band should be respected in 99% of the cases.  For CE there ex-

ists no single tuning parameter.  Instead, tuning was done by varying the width of the thermal com-

fort range employed in the optimization: a tighter comfort range should result in a more conserva-

tive behavior and less violations of the original comfort range, and a broader one in a less conserva-

tive behavior and more violations. 

Cost function:  Optimizations were partially done by optimizing over Non-Renewable Primary En-

ergy (NRPE) usage and partially by optimizing over Monetary Costs (MC).  MC was erroneously 

employed in some cases due to a mistake in the setup of the experiments.  Here we report however 

only NRPE usage, as derived by post-processing of the MC results.  This procedure tended to mod-

estly overestimate the NRPE usage that would have been obtained under an optimization for NRPE 

(see Chapter 7).  Optimization was done with an hourly time step and a prediction horizon of 24h.  

For dealing with the chance constraints the deterministic equivalent described in Chapter 4 was 

used.  The feedback matrix of the affine disturbance feedback was first optimized over and then 

fixed for the remaining optimization. For this the average over six feedback matrices was computed. 
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Cases sets:  Simulations were done for a set of buildings cases, as summarized in Table 9.3.  The 

cases were selected to reflect frequent and interesting building setups, with typical to large theoreti-

cal savings potentials thanks to predictive control (cf. Chapter 8, Table 8.1).   

 

 
 Cases Set 

Case 

No 

Site BSV BS FO CT WAF IGL VS 

1 LUG 2 sa S h wl ih W 

2 LUG 2 sa S h wl ih V 

3 MSM 2 sa S h wl ih W 

4 MSM 2 sa S l wl ih W 

5 SMA 2 pa SW h wh ih W 

6 SMA 2 sa SW h wl ih W 

7 SMA 2 pa S h wh ih W 

8 SMA 2 pa S l wh ih W 

9 SMA 2 sa S h wl ih W 

10 SMA 2 sa S h wl ih V 

11 WHW 2 pa SW h wh ih W 

12 WHW 2 sa S h wl ih W 

13 SMA 3 sa S h wl ih W 

14 WHW 3 pa SW h wh il W 

15 LUG 4 sa S h wl ih W 

16 SMA 4 pa S h wh ih W 

17 SMA 5 pa S h wh ih W 

18 WHW 5 pa S h wh ih W 

Table 9.3:  Selected cases for assessment of Model Predictive Control strategies.  BSV: Building Sys-

tem variant;  BS: Building Standard;  FO: Façade Orientation;  CT: Construction Type;  WAF: Win-

dow Area Fraction;  IGL: Internal Gains Level;  VS: Ventilation;  sa: Swiss average;  pa: passive 

house;  h: heavy construction type;  l: light construction type;  wl: low window area fraction;  wh: high 

window area fraction;  il: low internal gains level;  ih: high internal gains level;  V: non-air quality 

controlled ventilation;  W: CO2-controlled ventilation.  

Night/weekend set-backs:  All simulations for Cases Set 1 assumed the presence of set-backs during 

non-working hours (Table 2.7). 

Some further settings that were used in all conducted simulation experiments were:  (i) The internal 

heat gains due to occupancy and equipment were assumed to be perfectly known over the entire 

optimization horizon; (ii) All MPC model states were assumed to be observable and perfectly 

measured. 

9.2.2 Comparison Procedure 

The performance was always assessed both in terms of annual total NRPE usage versus annual 

amount of thermal comfort violations, as well as NRPE usage versus annual number of violations.   

The amount of violations was defined as the sum of the violations of the upper and lower bounds of 

the thermal comfort range and it was given in Kh.  Tolerable violations are 20Kh/a for the lower 

bound and 50Kh/a for the upper bound, i.e. total amount of 70Kh/a.  The distribution of the viola-

tions was not investigated, but in general the violations of the upper bounds were found to be more 

frequent.  The considered number of violations was given by the sum of the upper and lower bound 

violations.  In this case only the violations by more than 0.1K were counted since violations below 

this threshold were mainly due to numerical inaccuracies. 



OptiControl Two Years Report                                                         Chapter 9 

 140 

It was necessary to assess both energy and violations, because a given strategy can result in many 

violations and a small energy use, or vice versa, and it might even be possible to change this combi-

nation by tuning.  Thus, if a strategy has more violations but a smaller energy use as compared to 

another strategy, no clear decision is possible which of the two strategies is superior.  Only when 

both, energy use and the violations are less (or more) a clear decision is possible.  Figure 9.1 sum-

marizes the situation. 

 

Figure 9.1:  Overview of possible outcomes of controller comparison. 

When comparing NRPE between two controllers A and B we considered absolute, as well as rela-

tive deviations (!).  The relative deviations were given as 100(A-B)/PB, where A, B, and PB denote 

the NRPE usage of the respective control strategy.  Unless stated differently all reported results re-

fer to annual total NRPE usage. 

9.3 Results 

9.3.1 What Is The Added Value of Certainty Equivalence MPC (Q1)? 

In order to answer Q1 we compared CE with PB and RBC-4 (Experiments E1 in Table 9.1).  

  

Figure 9.2:  Comparison of PB, CE and RBC-4 in terms of NRPE usage versus amount of violations 

(left) as well as number of violations (right). 

   Quadrant 1 

„B better than A“ 

Quadrant 2 

(comparison 

undetermined) 

   Quadrant 3 

„A better than B“ 

Quadrant 4 

(comparison 

undetermined) 
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Figure 9.3:  Comparison of CE and RBC-4 in terms of absolute (top) and relative (bottom) !NRPE us-

age versus differences in amount of violations (left), as well as in number of violations (right). 

Figure 9.2 compares PB, CE, and RBC-4 in terms of NRPE usage and violations.  It can be seen 

that PB showed practically no violations. CE, and RBC-4 used more energy than PB and both had 

many violations. When comparing RBC-4 and CE for all cases, both, RBC-4 as well as CE, ex-

ceeded 70 Kh/a, but CE violated this threshold more clearly.  The number of violations were also 

typically larger for CE.  Note, for both RBC-4 and CE the data points for the cases 4 and 8 are not 

shown because they were far beyond the axes ranges of the plots.  

Figure 9.3 provides a pairwise comparison of the CE and RBC-4 results. As it stands, CE was for at 

least half the cases performing worse than RBC-4, and for the rest of cases the comparison was un-

determined.  (Note that cases 4 and 8 are omitted again). 

 

9.3.2 What Is The Added Value of Stochastic MPC (Q2)? 

In order to assess the possible added value of SMPC as compared to the simpler CE controller we 

considered PB, CE, RBC-4 and SMPC from the Cases Set (Experiments E1 and E2 in Table 9.1). 

Note for SMPC only cases 1,2,3,7,17, and 18 were available.  

Figure 9.4 gives an overview of the obtained results.  The results of PB, RBC-4 and CE are identi-

cal with those in Figure 9.2.  SMPC resulted in clearly less violations than CE and for the available 

cases also had a comparable or smaller NRPE use. The amounts of violation were always < 70 Kh/a 

(the tolerable amount of violations defined in Section 9.2.2).   
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Figure 9.4:  Comparison of PB, CE and SMPC in terms of NRPE usage versus amount of violations, 

(left) as well as in terms of NRPE usage and number of violations (right). 

The comparison of SMPC and RBC-4 is more detailed in Figure 9.5 which shows a pairwise com-

parison for the six available cases.  It is evident that SMPC performed significantly better than 

RBC-4 both in terms of NRPE usage and violations.  The NRPE usage of SMPC was smaller by up 

to 22%. 

 

 

 
Figure 9.5:  Comparison of SMPC and RBC-4 in terms of absolute (top) and relative (bottom) !NRPE 

usage versus differences in amount of violations (left), as well as in number of violations (right). Cases 

shown: 01, 02, 03, 07, 17, 18. 
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Figure 9.6:  Annual evolution of the room temperature for Case 03, with controller RBC-4. 

  

Figure 9.7:  Annual evolution of the room temperature for Case 03, with controller SMPC. 

 

Figures 9.6 and 9.7 depict the annual evolutions of the room temperature for Case 03 with the RBC-

4 and SMPC controllers, respectively.  It can be seen that RBC-4 yielded much larger high-

frequency variations than SMPC.  With the RBC-4 controller often the upper and lower bound of 

the comfort range were reached within one and the same day.  With the SMPC controller the room 

temperature showed on average much smaller diurnal variations.   

 

9.3.3 How Much Does The Quality Of The Weather Predictions 

Matter For MPC (Q3)? 

To investigate the influence of the quality of the weather predictions, CE was run for Cases Set 2 

with the four different weather predictions W1, W2, W3, and W4 (Experiment E3 in Table 9.1).  
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Figure 9.8: Comparison of  CEW1, CEW2, CEW3, and CEW4 absolute !NRPE usage versus differ-

ences in amount of violations (left), as well as in number of violations (right). 

Figure 9.8 depicts the differences in NRPE usage relative to PB for CEW1– CEW4 (from top to 

bottom) versus the differences in amount of violation to PB (left) and the differences in number of 

violations to PB (right).  (The abbreviation CEWn means CE simulated with prediction method 

Wn).  All cases lie in Quadrant 1 meaning that PB was always superior.  Apart from that the per-

formance seems similar on the first sight. 
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Figure 9.9: Comparison of CEW1-CEW2, CEW2-CEW3, and CEW3-CEW4 in terms of relative 

!NRPE usage versus differences in amount of violations (left), as well as in number of violations 

(right). 

The changes in the CE controller performance due to the progression from W1 through W2 and W3 

to W4 are shown in Figure 9.9.   

From W1 to W2:  6 (left) or 7 (right) of 16 shown cases lie in the first quadrant, which means that 

using the COSMO-7 operational weather forecast was clearly better than using a persistence fore-

cast.  9 (left) and 7 (right) cases, respectively, were found in Quadrants 2 and 4, where no clear de-

cision was possible, and only one case each lies in the third quadrant, meaning that the persistence 

prediction yielded the better results. 

From W2 to W3:  Results are mainly in the second quadrant meaning that with the statistical post-

processing of the COSMO-7 output the NRPE usage was reduced but more violations were caused.  

Few results in the third quadrant suggest that due to the statistical post-processing the control be-

havior deteriorated somewhat. 

From W3 to W4:  Results are in the first and fourth quadrant indicating that with the local Kalman 

filter the control behavior in about half the cases improved and that in the other cases the amount of 

violations was reduced at the expense of having more NRPE usage. 
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9.3.4 How Robust Is MPC To Model Parameter Mismatch (Q4)? 

To investigate the robustness of the MPC strategies on model parameter mismatch we conducted 

experiment E4 (cf. Table 9.1).  The parameters in the controller model were changed as listed in 

Table 9.4.  The choice of parameters and their range of variation were determined such as to repre-

sent the uncertainty in the building properties’ knowledge of HVAC designers in practice.  The pa-

rameters were selected as being the most critical ones and the employed changes corresponded to 

the typical estimation uncertainty. 

 
Experiment Mismatch   Involved Parameters     Change 

BPvar1 U-values windows Utilwin0, dUtilwin +10% 

BPvar2 U-values windows Utilwin0, dUtilwin -10% 

BPvar3 Heat transmission coefficients hFloor, hCeil, hiW1,hiW2, hoW1, hoW2 +15% 

BPvar4 Heat transmission coefficients hFloor, hCeil, hiW1,hiW2, hoW1, hoW2 -15% 

BPvar5 Energy recovery efficiency ventilation   epsERC +15% 

BPvar6 Energy recovery efficiency ventilation epsERC -15% 

BPvar7 Building mass Cs1...Cs5, CiW1...CiW3, CoW1...CoW3 +10% 

BPvar8 Building mass Cs1...Cs5, CiW1...CiW3, CoW1...CoW3 -10% 

BPvar9 g-value and visual transmission windows solGFact1, tauVisFact1 +10% 

BPvar10 g-value and visual transmission windows solGFact1, tauVisFact1 -10% 

Table 9.4:  Changes in controller model to investigate robustness on building parameters.  

The sensitivity to individual mismatches was investigated by changing the parameters one at a time 

to the highest and lowest deviation.  The resulting altered models were used in the CE controller, 

whereas the plant model representing the real building was left unchanged.   

The CE simulation of Case 01 (set no. 2) with the perfect controller model was used as the refer-

ence for comparison. 

An overview of the resulting behaviors with the modified controller model is given in Figure 9.9.  

In the left panel, the NRPE usage, and the amount and number of violations of the 10 experiments 

are plotted.  The dashed lines indicate the levels of the reference simulation.  The right panel depicts 

the respective relative changes to the reference in percent. 

It can be seen that the energy costs among all investigated cases of model parameter mismatch were 

within a few percent, the amount of violations differed by no more than 9% and the numbers of 

violations did not differ by more than 14%.  
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Figure 9.10:  Absolute performance indicators of the modified models (left), and their relative devia-

tions from the reference case (right).  Note, NRPE usage in the left panel is given in 0.1 kWh/m
2
/a. 

9.3.5 How Can The Desired Thermal Comfort Level Be  

Adjusted In MPC (Q5)? 

The tuning of CE and SMPC was investigated for Case 01 from the Cases Set and the duration of 

one month (January, see also Table 9.1, Experiment E5).  CE was run with different upper and 

lower bounds for the controller, and SMPC was run with different values of the tuning parameter !.  

Figure 9.11 shows the NRPE usage versus the amount of violations with the different tuning set-

tings.  One can see that for both controllers it was possible to move along the tradeoff curve via 

tuning.  The control performance is the better, the closer to the origin a curve lies.  SMPC per-

formed clearly better than both, CE and RBC-4; the RBC-4 data point was approximately on the 

tradeoff curve of CE.  

 

Figure 9.11:  Tuning curves of SMPC and CE for Case 01 in January. 

It should be noted for the CE curve that from a certain point on a further reduction of the comfort 

band yielded again an increase in the number and amount of violations.  Hence it was not possible 

to reduce the amount of violations to the same level as for SMPC, even with more NRPE usage.  
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Figures 9.12 and 9.13 show the simulated room temperatures with RBC-4 and SMPC, respectively.  

It can be seen that SMPC kept the temperature in the middle of the comfort range, and that it 

yielded smaller diurnal temperature variations.  For most days the simulated daily temperature am-

plitude was smaller than 2K.  Quite differently, for RBC-4 in one third of the days the difference 

between the daily temperature extremes was larger than the comfort bandwidth of 4K, i.e. within 

one and the same day both the upper and lower bound of the comfort band were reached.  This situ-

ation was never observed for SMPC. 

 

Figure 9.12:  Room temperature of Case 01 for January with RBC-4. 

 

Figure 9.13:  Room temperature of Case 01 for January with SMPC.  

 

 

9.4 Discussion  

For the assessment of the MPC controllers the newly developed rule-based control strategy RBC-4 

was taken as a reference because it allowed for the same freedom in blind movement (once per 

hour) as the MPC controllers.  An alternative would have been the state-of-the-art strategy RBC-1 

(see Chapter 3).  A closer analysis showed that in half of the 18 cases considered here (cases 01–03, 

06, 09, 10, 12, 13, 15 from the Cases Set, see Table 9.3) the RBC-4 strategy performed clearly bet-

ter than RBC-1 (results not shown).  For the remaining cases RBC-1 performed better, suggesting 

that our results (Figs. 9.2–9.4) have to some extent underestimated the achievable performance by 

non-predictive rule-based control.  Future studies should therefore better consider as a reference 

strategy “best of RBC-1 and RBC-4”. First such analyses (not shown) suggested however that the 

conclusions drawn from the comparison of RBC-4 and SMPC (Figs. 9.5-9.7) remain valid. 
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When comparing RBC-4 with CE, there were cases where RBC-4 was clearly superior, and others 

where CE was using less NRPE but had more violations (see Fig. 9.3).  The neglect of the uncer-

tainty present in the weather predictions by CE apparently resulted in many violations, many more 

than typically would be tolerated in office buildings.   

When comparing with RBC-4 one has to note that RBC-4 is running with a low-level-controller that 

is instantaneously and ideally rejecting any disturbances, whereas the MPC strategies are run with 

an hourly time step and thus have their control inputs fixed at the begin of each hour.  It can there-

fore be expected that the comfort performance of CE can be significantly improved (at the expense 

of higher energy use) if a low-level controller is added. 

The results obtained with CE have shown that the uncertainty in the weather prediction has a sig-

nificant impact.  SMPC takes the uncertainty in the weather prediction directly into account and was 

found to be superior to CE when the two strategies were tuned to the same amount of energy use 

and a small amount of thermal comfort violations (Fig. 9.11). 

Moreover, our results indicate that SMPC performs significantly better than RBC-4 (Figs. 9.5–9.7, 

9.12, and 9.13).  SMPC was found to outperform RBC-4 both in terms of NRPE usage and in terms 

of the amount and number of violations (Fig. 9.5, 9.11).  Note that this was achieved without using 

a low-level controller – the SMPC control inputs were fixed on an hourly basis.  The obtained im-

provement in performance as compared to CE was only due to the fact that the uncertainty in the 

weather prediction was taken into account.  

A further advantage of SMPC relates to the resulting dynamics for the room temperature.  As can be 

seen from Figs. 9.6 vs. 9.7 and 9.12 vs. 9.13, SMPC yielded much smaller diurnal temperature am-

plitudes.  This behavior can be considered more favorable because the occupants are exposed to 

much smaller temperature variations during the day.   

In general the comparability of control strategies was complicated by the fact that controller per-

formance needs to be measured in terms of both, energy usage, and some thermal comfort violation 

statistics.  In order to facilitate comparability we introduced “delta” plots, as described in Fig. 9.1.  

However, data points that are found in the second and fourth quadrant – i.e., one strategy uses less 

energy than the other, but has more violations – make further investigations necessary.  One possi-

bility consists in adjusting the controllers to the same amount of comfort violations via tuning.  The 

tunability of CE and SMPC was demonstrated in Fig. 9.11. 

Tuning for CE was accomplished by assuming a tighter comfort range in the controller.  Tightening 

of the comfort range makes the controller more conservative, i.e. it is producing less violations at 

the cost of spending more energy.  Interestingly, the same level of constraint violations possible 

with SMPC could not be reached with CE.  From a certain point on further tightening of the com-

fort range was found to lead to an increase of NRPE usage (Fig. 9.11).  The reason was that the as-

sumed comfort range was so small that the soft constraints upon the room temperature were active 

all the time such that the controller could not react properly anymore. 

The tuning for SMPC is much simpler and was done by changing a single parameter that is describ-

ing the probability level of constraint violation.  With this tuning knob, the user can easily adjust the 

system between ‘high comfort/high energy usage’ mode to ‘low comfort/low energy usage’ mode.   

Although both, CE and SMPC can be tuned, the resulting tradeoff curve by CE (Fig. 9.11) was on 

the right hand side of the tradeoff curve of SMPC, which means that at some point CE cannot reach 

a smaller amount of violations even if it spends more energy.  This also holds for SMPC, but at a 

smaller level of violations.  One should also note that when SMPC was run with the predefined tun-

ing value of ! = 0.01 (and a properly tuned local Kalman filter) it already complied with the defined 

tolerable value of 70 Kh/a for comfort violations (Fig. 9.4). 



OptiControl Two Years Report                                                         Chapter 9 

 150 

As described in Chapter 4, the controller models used for MPC were assumed to be perfect so far, 

i.e. equal to the models used to simulate the building behavior.  The sensitivity to model parameter 

mismatch is very important for all MPC strategies, since in reality a perfect model of the building 

will not be available.  All model parameters can however be estimated from physical parameters 

(Chapter 5).  The results shown in Fig. 9.10 suggest that the control performance is quite robust 

within the expected range of model parameter mismatch. There is an increase in violations, but this 

can be dealt with by tuning. Further work should be done on a randomized study in order to account 

for the fact that in reality estimation errors apply to several parameters simultaneously and that 

these errors can be correlated. 

From Fig. 9.9 can be seen that the operational weather predictions obtained from the COSMO-7 

numerical weather prediction model generally helped to improve control performance compared to 

the use of a persistence forecast.  As discussed in Chapter 6 the impact of further statistical post-

processing of the COSMO-7 direct model output (DMO) was positive throughout for air and wet-

bulb temperature, but depended on the season for the global radiation components. This might ex-

plain the undetermined results obtained in 9.3.3 from the comparison of the control performance 

with “DMO” (W2) and “Postprocessing” (W3) as disturbance input. Consequently, the impact of 

errors in the radiation predictions on the control performance might be of dominating importance 

and therefore need to be further investigated.  Moreover, for our simulations we used throughout an 

optimization horizon of 24h, and the use of a longer horizon should also be investigated. 

The importance of the local Kalman filter can be seen from Fig. 9.9.  The local Kalman filter can be 

expected to become even more important in practice when systematic errors must be accounted for 

(shadowing effects of neighboring buildings etc.). 

In the Cases Set (Table 9.3) there were only two building cases (Cases 04 and 08), that had a light 

construction type.  In all simulations undertaken with the CE and RBC-4 controllers these two cases 

produced outliers in the results, that were behaving notably different from the rest of the cases, both 

in terms of NRPE usage and comfort violations.  Possibly, this behavior has also been caused by the 

used scant dimensioning for the maximum available heating and cooling power (Chapter 2.3.2).  

Further investigations are needed in order to understand this result.   
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9.5 Conclusions 

The newly developed Chance Constrained Stochastic Model Predictive Control (SMPC) strategy is 

clearly superior to the non-predictive rule-based controller RBC-4.  The CE MPC strategy performs 

in some cases comparable to RBC-4, for others cases it is worse.   

SMPC not only outperforms RBC-4 in terms of Non-Renewable Primary Energy (NRPE) usage and 

thermal comfort statistics, but it also yields much more favorable room temperature dynamics 

showing smaller diurnal temperature variations.   

The uncertainty present in local weather predictions has a significant effect on CE controller per-

formance.  CE could be improved by using a low-level controller as in RBC-4, since the primary 

problem of the CE strategy is the abundant comfort violations that a low-level controller can reject. 

Operational weather forecasts with the numerical weather prediction model COSMO-7 give an im-

provement of the control performance as compared to persistence forecasts.  The use of statistically 

post-processed COSMO-7 predictions results in lower NRPE usage but at the cost of more thermal 

comfort violations.  

Use of a local Kalman filter for the correction of the COSMO-7 weather forecasts at the building 

site seems to have a small beneficial effect.  The impact of the COSMO-7 post-processing and how 

it intervenes with the local Kalman filter at the building site needs to be investigated further. 

Our results further suggest that the performance of MPC controllers is robust against model parame-

ter mismatch. 

SMPC and CE can both be tuned to adjust the thermal comfort.  The tuning of SMPC is particularly 

easy to accomplish and involves but one plausible parameter, the probability level of constraint vio-

lation.  When tuned to comparable levels of energy use and a small amount of comfort violations 

SMPC proved superior to CE. 
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10.1 Overview 

During its first two years the OptiControl project has successfully answered many important ques-

tions related to the potential, utility and feasibility of predictive building control.  Moreover, from a 

more methodical point of view, the project has pioneered research at the interface of buildings, ap-

plied meteorology, modeling/simulation, and control.  These results have only been possible thanks 

to the excellent collaboration between all project participants and the unique combination of exper-

tise in the project team.  

The project combined elements of basic engineering research, development, and technology de-

ployment.  Research always involves elements of surprise, and the scientific investigation of the 

predictive control of modern, automated building systems revealed to be much more challenging 

than initially expected.  The main reasons related to the very high complexity of the systems con-

sidered and the large number of variants and choices involved.   

It has been a major success of the project of having found ways and methods to deal with this com-

plexity, and as a result of being able to provide important insights into the relevant mechanisms and 

problem areas.  This in turn paves the way towards the development of a new generation of control-

lers offering an unprecedented efficiency, flexibility and quality of control.   

A first important project result consisted in the development and successful application of a general 

methodology, as well as corresponding software tools and data sets for the systematic, quantitative 

assessment of building control.  To our knowledge this result is groundbreaking.  Its importance is 

likely to increase in the future due to the growing demand for advanced, robust control strategies 

that shall ensure a correct and efficient operation of buildings.  Such strategies can only be devel-

oped and analyzed with the aid of appropriate modeling and simulation tools.   

In our simulation-based analyses we have considered a wide range of system variants and building 

cases for the Integrated Room Automation (IRA) application.  The definition of a meaningful ex-

perimental set-up and the determination of appropriate models, approximations, and parameter val-

ues have been elaborate and demanding.  Relevant building types, control operation types, loca-

tions, and types of heating, cooling, ventilation, blind and lighting subsystems were identified, the 

subsystems were sized properly, and meaningful energy usages/costs were specified.   

For IRA, we have demonstrated a substantial, yet highly case-dependent potential for predictive 

control.  The conducted large-scale simulation studies gave insight into the comparative perform-

ance of a range of state-of-the-art control approaches, as well as on the role of key factors affecting 

the control performance (e.g., set-backs, or variations in thermal comfort range width).  To our 

knowledge, the depth and width of these quantitative results is unprecedented.   

A new family of Model Predictive Control (MPC) algorithms has been developed that has been 

tailored to the needs of building control.  These algorithms differ in their degree of sophistication, 

computing requirements, and robustness to disturbances and modeling errors.  

Presently we are about to refine the newly developed MPC algorithms and to investigate their prop-

erties in detail.  This goes in parallel with pushing forward our investigations of the use and added 

value of weather forecasts.  A further ongoing activity is the development of rule-based predictive 

control algorithms.  The implications of our single building zone results for whole buildings also 

need to be investigated further. 

Substantial work remains to be done in order to make the novel control strategies suitable for use in 

practice.  This includes the extension of our MPC solutions to the multi-zone case and an appropri-

ate consideration of occupancy/internal heat gains that so far have not been treated in as much detail 

as originally planned. 
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Table 10.1:  Overview of project Milestones and Deliverables, as defined in the project description of 

August 2007 and its revision of May 2008.  

Phase/ 
Milestone/ 
Deliverable 

Description Target  
month 

Status 

Phase I Initial Exploration and Sensitivity Analyses   

M 1 Study sites, meteorological inputs, occupancy inputs, 
building types and HVAC systems defined. 

9 achieved (IRA) 

M 2 Targets and constraints for control strategies defined. 
Reference cases and simulation experiments defined. 

9 achieved (IRA) 

M 3 Software for preparation of weather data and weather 
forecasts implemented, initial data sets prepared. 

9 achieved 

M 4 Occupancy data sets prepared, first iteration of occu-
pancy submodel implemented. 

11 partially achieved 
occupancy data sets prepared, but no occu-
pancy prediction considered 

M 5 Simulation models for the selected building types and 
HVAC systems prepared. 

11 achieved (IRA) 

M 6 Predictive control schemes selected and adapted for 
building climate control (performance bound). 

11 achieved (IRA) 

M 7 Added value of weather forecasts and/or occupancy 
information explored. 

13 partially achieved (IRA) 
first results for added value of weather fore-
casts, no occupancy prediction considered 

M 8 + D1 Case studies for in-depth investigations selected. 15

 

achieved/delivered (IRA) 

Phase II In-Depth Investigations   

M 9 Procedure for the delivery of optimal local weather 
forecasts at building sites developed and tested. 

19 achieved  
procedure developed and evaluated, possible 
improvements identified 

M 10 Improved methods for the acquisition and modelling of 
occupancy data implemented. 

19 not achieved 
occupancy prediction was not considered 

M 11 Models of selected buildings and HVAC systems devel-
oped and tested. 

19 achieved (IRA) 

M 12 + D2 Predictive control strategies tailored to the case studies. 19 achieved/delivered (IRA) 

M 13 Utility of probabilistic weather forecasts investigated. 21 not achieved 
no investigations done so far 

M 14 Role of disturbances and forecast errors analyzed, con-
trol approach made more robust. 

23 achieved (IRA)

 

M 15 + D3 Supervisory control and manual or automatic tuning 
methods investigated. 

23 partially achieved/delivered (IRA) 
necessity to improve and analyze tuning pro-
cedure

 M 16 + D4 Added value of the refined control approaches for the 
selected case studies determined. 

25

 

partially achieved/delivered (IRA) 
control strategies still under development, 
evaluation ongoing

 Phase III Demonstration   

M 17 Demonstrator building and HVAC/energy systems 
selected. 

27 achieved 
a potential demonstrator building has been 
identified and preparations are on the way 

M 18 + D5 Control scheme plus monitoring and test strategies for 
demonstrator building defined. 

27 – 

M 19 System delivering operational weather forecasts at 
demonstrator building installed. 

27 –

 

M 20 System exploiting occupancy information installed. 27 – 

M 21 + D6 Control scheme implemented and fine-tuned. 29 – 

M 22 + D7 
 

Tests and experiments at demonstrator building com-
pleted. 

35 – 

M 23 Overall benefit-cost analysis completed. 37

 

– 

M 24 + D8 Synthesis of overall project accomplished. 39 – 
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During the last 6 months there also has been intensive preparation for the third project year (Phase 

III, demonstration in a real building).  A demonstrator subproject has already been drafted in coop-

eration with a new candidate project partner, Dr. A. Seerig from Gruner AG, Basel.  

Table 10.1 gives a more formal overview of the project status in terms of the Milestones and Deliv-

erables.  It can be seen that 10 of 16 milestones due at the end of the second project year have been 

fully achieved, and that 4 further ones have been partially achieved.  The first milestone of Phase III 

could even be reached earlier than scheduled. 

The following two sections discuss the achievements and the major challenges identified during the 

first two years in more detail.   

10.2 Achievements 

1. Selection of building automation applications. Two major classes of applications, namely (i) 

Integrated Room Automation (IRA), and (ii) the generic control of energy fluxes and energy 

storages related to buildings (Generic Flux Control, GFC) were identified as promising candi-

dates for predictive control.  The IRA application has been treated first, and for this application 

5 major building system variants were identified and prioritized. 

2. Development of a general methodology for assessing building control schemes.  The method-

ology consists of (i) problem definition (system, cost functions, constraints etc.);  (ii) determina-

tion of the so-called Performance Bound (PB, the best possible solution for a given problem as-

suming perfect forecasts and models);  (iii) comparison of control algorithms among each other 

and with the PB (identification of improvement potentials); and (iv) assessment of Model Pre-

dictive Control under increasingly realistic conditions based on the stepwise relaxation of the 

idealized assumptions present in the PB calculations. 

3. Development of a general modeling and simulation environment.  The developed “Building 

Automation and Control Laboratory” (BACLab) software is a distributed building modeling and 

simulation environment tailored to the analysis of (predictive) building control schemes.  BA-

CLab consists of generic, portable, and reusable components that provide interfaces to special-

ized databases (see below).  It supports structured problem definitions, the integration of alter-

native control schemes, and the execution of systematic, large-scale simulation studies, includ-

ing the post-analysis of the obtained results.   

4. Development of building and HVAC/lighting/blinds models for IRA.  Simulation models op-

erating at an hourly or sub-hourly time step were derived, implemented, tested and validated for 

a wide range of building types and for various heating, cooling, ventilation, blinds and lighting 

subsystems.   

5. Development of a building systems server and database.  The so-called BuSy server is a web 

service supporting the distributed modeling and simulation of buildings and HVAC systems.  In 

particular it provides an interactive (web browser) and an automated (remote simulation client) 

interface to the so-called BuSyDB, a database supporting the retrieval of structured parameter 

data sets for a wide range of buildings and IRA building systems.   

6. Database with weather forecasts and observations for building control applications. Algo-

rithms for the disaggregation of hourly global radiation into the direct and diffuse part, and the 

derivation of global radiation components on vertical oriented surfaces were implemented in the 

MeteoSwiss operational processing and dissemination software.  These and other relevant 

weather observations and according predictions from the COSMO-7 numerical weather predic-

tion model furnish the extensive, interactively (web browser) as well as automatically (remote 

simulation client) accessible OptiControl Weather and occupancy Data Base (OCWDB). 



OptiControl Two Years Report                                                        Chapter 10 

 157 

7. Improvement of local weather forecasts for building control applications.  Statistical meth-

ods were developed to improve the accuracy of all relevant local weather forecasts from nu-

merical weather prediction models.  The quality of global radiation and radiation components as 

predicted by the COSMO-7 model was analyzed and characterized for correction.  Systematic 

differences could be substantially reduced for all variables with the developed schemes. Hourly 

2m temperature and wet-bulb temperature predictions were also improved physically by 

changes in the COSMO model diagnostics (operationally introduced in August 2008). 

8. Preparation of standard internal heat gain profiles relevant for IRA.  Standard internal heat 

gain profiles for offices were prepared and integrated in the OCWDB.  

9. Definition of benchmark control schemes for IRA.  State of the art non-predictive, rule-based 

control strategies for IRA were selected next to the Performance Bound as benchmark control 

schemes to measure the performance of the newly developed control algorithms.  

10. Development of rule-based control algorithms and associated tuning rules for IRA.  The 

rule-based control strategies were implemented within the BACLab software.  Automated tun-

ing rules to automatically determine control parameter values as a function of characteristic 

building parameters were developed.  The rules can also be used in practice for manual tuning.  

Simulation studies proved that applying the new rule-based control strategy RBC-3 results in 

substantial energy (cost) savings compared to state of the art rule-based control (RBC-1).  In 

many cases, control performance of RBC-3 was found to be close to the Performance Bound. 

11. Development of predictive control algorithms for IRA.  Model predictive control (MPC) 

schemes were selected, adapted for building climate control and implemented within the BA-

CLab software.  Several MPC variants were examined; besides the classical certainty equiva-

lence approach new stochastic MPC controllers were developed. 

12. Design of simulation experiments for IRA.  Study sites, occupancy inputs, building types and 

HVAC/lighting/blinds systems were defined that span many of the most important IRA configu-

rations. The assessment targets regarding comfort and energy (costs) were specified. Constraints 

for control strategies (e.g. limited heating/cooling power) were defined using, among other 

things, appropriate dimensioning procedures. 

13. Large-scale Performance Bound simulation study for IRA.  The minimum possible primary 

energy and monetary cost under perfect conditions were determined for a wide range of building 

set-ups and climatic conditions.  Differences were compared among narrow vs. wide comfort 

range width, for constant comfort range vs. night/weekend set-back of comfort range, and for 

different ventilation strategies.  Besides their immediate relevance, these results were useful to 

put the found primary energy (or cost) savings thanks to improved control into context. 

14. Comprehensive simulation based assessment of rule-based controllers for IRA. The per-

formance of 4 rule-based controllers was assessed for a large number of cases by comparison of 

the obtained results (i) under each other, and (ii) with the respective Performance Bound simula-

tions.  This showed the controller’s absolute performance and range of applicability (building 

types, HVAC/lighting/blinds systems). The investigations also provided insight into the impor-

tance of blind control and revealed the potential of predictive control. 

15. In-depth analysis of potential of predictive control approaches for IRA.  Investigations for a 

carefully selected set of promising cases assessed the achievable control performance when us-

ing realistic weather forecasts.  Systematic simulations were also conducted to assess the ro-

bustness of MPC on control parameter settings and the robustness on model parameter mis-

match. 

16. Preparations for application Generic Flux Control (GFC).  First ideas and modeling ap-

proaches for the application GFC were discussed.  Specific GFC applications were pre-selected.  
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17. Identification of suitable demonstrator building for IRA.  A range of academic research 

groups, as well as building planers, operators and owners were contacted in the search for an 

appropriate object.  The CCEM-CH demonstrator cell, plus buildings from the portfolios of the 

ETH Zurich and the company Gruner AG were evaluated in more detail.  At last we were able 

to identify a particularly suitable object for testing of the newly developed control algorithms, a 

representative office building close to Basle, Switzerland. 

18. Publication and dissemination activities.   Our work has resulted in a series of papers, posters 

and conference contributions. There have also been several articles in brochures and magazines, 

indicative of a broader interest in our activities. A comprehensive compilation of project results 

can be found at the project’s web site (www.opticontrol.ethz.ch).   

10.3  Challenges  

Specification of benchmark control.  In order to represent the state of the art in control and to 

measure possible improvements thanks to novel control schemes, rule-based reference control 

strategies had to be specified and implemented and also appropriate tuning rules for control parame-

ter values had to be found.  These tasks proved very challenging but could be solved to a large part 

(see points 9 and 10 above).  Yet, implementations of rule-based strategies supporting 

night/weekend set-back, as well as good reference strategies for building systems that include floor 

heating and TABS are still missing within the BACLab software.   

Comparability of control strategies for IRA.  The investigated control schemes (RBC-1 to RBC-

3, CE-MPC, CCS-MPC, PB) differ in two important points:  (i) the degrees of freedom for blind 

movement and (ii) the treatment of low-level control.  E.g., blind movement for RBC-1 is restricted 

to once an hour and to only three different blind positions whereas there is no restriction in blind 

movement in the performance bound (PB).  For the MPC approaches – with the exception of elec-

tric lighting – no low-level control has been taken into account so far.  In order to enable or enhance 

the comparability between the different control strategies, new rule-based control variants were 

elaborated already, and more have to be elaborated.  

Making novel control strategies suitable for the use in practice.  This issue causes a delay in the 

project timetable, and this fact needs to be considered in the further planning.  The following ele-

ments considered necessary for a successful implementation of new control approaches in a real 

building still need to be addressed: (i) initial tuning procedure and tuning in operation;  (ii) state 

estimation for model predictive controllers, (iii) internal heat gain prediction and (iv) correction of 

weather forecasts for local conditions at the building site.  

Integration of novel control algorithms in commercial BAC systems.  Building automation and 

control (BAC) systems typically have a hierarchical control structure featuring high-level and low-

level control.  To facilitate the integration of predictive control schemes in such systems, the new 

algorithms should preferably replace only the high-level part of existing controllers, thus keeping 

the interface between high- and low level control unchanged.  This was precisely how the rule-

based control strategies RBC-x were implemented within the BACLab software, and a similar ap-

proach is needed for the MPC strategies.  A further challenge is the application of MPC to multiple 

building zones. 

These challenges are being addressed in our current work.  For example, a prototype algorithm for 

the correction of weather forecasts at the building site has already been implemented in BACLab, 

and a generally applicable solution is currently being developed.  Also, possible solutions for pre-

dictive rule-based controllers, as well as the coupling of MPC and low-level controllers are cur-

rently being examined in two coordinated semester works at ETH/IfA and Siemens BT. 


