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Abstract

The building sector alone accounts for around half of the energy consumed in Switzerland
and most other developed countries, with associated adverse environmental consequences,
and there is a great potential for savings in this sector. For this reason, the development of
e�cient solutions for predicting and optimising the energy and environmental performance
of buildings is clear.

Dynamic building thermal simulation programs are increasingly used for this purpose.
However, some key processes are still not taken into account by these tools, leading to
potentially signi�cant errors. Most noteworthy is the in�uence of buildings' occupants,
whose actions such as the use of windows and shading devices have an important impact
on the indoor environment and the overall energy performance of a building. Furthermore,
occupants' environmental comfort is the central underlying concept in�uencing actions on
building controls; but the intrinsic interaction between these notions is not well known.

This thesis develops adequate models for the prediction of occupants' actions that
have an impact on building performance and further proposes an innovative global for-
mulation of the link between environmental comfort, human adaptive actions in the built
environment and their feedback in terms of satisfaction and acceptability. Furthermore,
detailed integration procedures of these methods into building and urban simulation tools
are described.

Based on detailed statistical analyses of eight years of continuous measurements, a
model for the prediction of actions on windows performed by o�ce occupants is proposed.
It is formulated as an occupancy-dependent Markov chain extended to a continuous-time
process for opening durations. The explanatory variables have been carefully selected on
the basis of statistical relevance, which are indoor and outdoor temperature, the occurrence
of rain, and occupant presence and absence durations. The choice of the speci�c form of
the model is justi�ed by cross-validation and its superior predictive accuracy is determined
by comparison with model variants and previously published work.

A similar procedure was carried out for the inference of a model to predict actions on
shading devices. Its formulation is also based on rigorously selected predictors used as in-
puts to an occupancy-dependent Markov chain expressing action probabilities. The model
has also been extended to predict the choice of shaded fraction. Once again simulations of
model variants support the choice of the �nal model.

Using results of a long-term survey of building occupants, we evaluate the accuracy of
currently accepted models for thermal comfort prediction and identify clear weaknesses.
We go on to propose a probabilistic formulation for the distribution of thermal sensation
and for the occurrence of the state of thermal comfort and extend this to visual comfort.
The result is a simple and accurate de�nition of comfort probability and its variations
amongst individuals.

We have also analysed variables which in�uence occupants' comfort temperature. This
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has enabled us to assign weights to the key variables in�uencing comfort temperature:
adaptation, acclimatisation and individuality. We also consider the feedback of actions
on comfort and numerically estimate �adaptive increments to comfort temperature�. This
results in a proposed formulation for a new adaptive model for thermal comfort, for general
application in buildings with variable degrees of adaptation available to occupants.

The link between thermal and visual comfort with actions on windows and shading
devices is also studied and formulated as a single uni�ed concept linked by human action
inertia whose properties are discussed.

Finally, new modelling approaches have been developed for the prediction of adapta-
tions of personal characteristics such as clothing and metabolic activity, an assessment
of the very limited degree of interaction between thermal, olfactory and visual comfort
and �nally an analysis of factors in�uencing perceived productivity in o�ce environments,
in which hot conditions are shown to cause a decrease of the order of 10% compared to
relatively cooler conditions.

Keywords: Building simulation, Behavioural modelling, Agent-based model, Field sur-
vey, Windows, Shading devices, Thermal comfort, Visual comfort, Clothing, Metabolic
activity, Productivity



Résumé

Le secteur du bâtiment absorbe à lui seul près de la moitié de l'énergie consommée en
Suisse ainsi que dans la plupart des autres pays développés. Le potentiel d'économies
d'énergie dans ce secteur est donc important. Par conséquent, le développement de méth-
odes e�caces pour prédire et optimiser la performance énergétique et environnementale
des bâtiments est d'un intérêt particulier.

A cette �n, l'utilisation de logiciels de simulation thermique dynamique du bâtiment
est de plus en plus répandue. Cependant, ces outils ne prennent toujours pas en compte
certains processus importants, conduisant à des erreurs potentiellement signi�catives.

L'in�uence des occupants des bâtiments en est la cause principale, du fait que leurs ac-
tions, telles que l'usage des fenêtres et des stores, ont un impact direct sur l'environnement
intérieur et la performance énergétique globale. En outre, le confort environnemental des
occupants constitue le concept central sous-jacent qui détermine les actions sur les contrôles
du bâtiment, mais le lien intrinsèque entre ces notions et mal connu.

Cette thèse développe des modèles appropriés pour prédire les actions des occupants
de bâtiments ayant un impact sur la performance énergétique. Elle propose également une
formulation globale innovante du lien entre confort environnemental et actions adaptatives
humaines dans l'environnement construit, ainsi que de leur impact en termes de satis-
faction et d'acceptabilité. Elle inclut également une description des procédures détaillées
pour l'intégration de ces méthodes dans les outils de simulation thermique à l'échelle des
bâtiments et des collectivités urbaines.

A l'aide d'analyses statistiques détaillées de huit ans de mesures continues, nous pro-
posons un modèle pour la prédiction des actions sur les fenêtres e�ectuées par les occupants
d'immeubles de bureaux. Ce modèle est formulé comme une chaîne de Markov dépendant
de la présence, étendue à un processus à temps continu pour les durées d'ouverture. Les
variables explicatives ont été soigneusement sélectionnées sur la base de leur relevance
statistique, incluant les températures intérieure et extérieure, la présence de pluie et les
durées d'absence et de présence. Le choix de la forme spéci�que du modèle est justi�é par
validation croisée et sa valeur prédictive supérieure démontrée par comparaison avec des
variantes de modélisation ainsi qu'avec des travaux précédemment publiés.

Une procédure similaire a été menée pour l'inférence d'un modèle prédisant les actions
sur les stores. Sa formulation est aussi basée sur des variables rigoureusement sélectionnées
utilisées dans une chaîne de Markov dépendant de la présence, exprimant les probabilités
d'action. Le modèle a également été étendu pour prédire le choix des fractions ombrées.
Comme précédemment, des simulations de variantes alternatives de modélisation justi�ent
le choix du modèle �nal.

A l'aide de résultats issus d'un sondage de longue durée pratiqué sur des occupants de
bâtiments, nous évaluons la pertinence des modèles de confort thermique utilisés actuelle-
ment et identi�ons leurs faiblesses. Sur cette base, nous proposons une formulation proba-
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biliste pour la distribution de la sensation thermique ainsi que pour la prévalence de l'état
de confort thermique et étendons ces concepts au cas du confort visuel. Le résultat consiste
en une dé�nition simple et précise de la probabilité de confort et de ses variations parmi
les individus.

Nous avons également analysé les variables qui in�uencent la température de confort
des occupants. Ceci permet d'attribuer des pondérations aux variables-clés in�uençant la
température de confort, qui sont l'adaptation, l'acclimatation et les particularités individu-
elles. Nous considérons également en retour l'in�uence des actions sur le confort et estimons
numériquement des �incréments adaptatifs sur la température de confort�. Ceci résulte en
une proposition de formulation d'un nouveau modèle adaptatif pour le confort thermique,
destiné à l'application généralisée dans des bâtiments o�rant divers degrés d'adaptation à
leurs occupants.

Le lien entre le confort thermique et visuel d'une part et les actions sur les fenêtres et
les stores d'autre part est également étudié et formulé comme un concept uni�é dont le
lien s'exprime à l'aide de l'inertie d'action, dont les propriétés sont discutées.

En�n, de nouvelles approches de modélisation ont été développées pour la prédic-
tion des adaptations de caractéristiques personnelles telles que l'habillement et l'activité
métabolique, une évaluation du degré d'interaction très limité entre confort thermique, vi-
suel et aéraulique et �nalement une analyse des facteurs in�uençant la productivité perçue
dans les environnements de bureau, où il est démontré que des températures élevées causent
une baisse de productivité de l'ordre de 10% en comparaison avec des conditions relative-
ment plus fraîches.

Mots-clés: Simulation du bâtiment, Modélisation du comportement, Modèle basé sur les
agents, Etude de terrain, Fenêtres, Stores, Confort thermique, Confort visuel, Habillement,
Activité métabolique, Productivité
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Chapter 1

Introduction

Diese GrieĚen haben siĚ die lŁngĆe Zeit ihrer GŽtter bedient, gerade

um siĚ daŊ sĚleĚte GewiĄen vom Leibe zu halten.

These Greeks for the longest time used their gods for the
very purpose of keeping the bad conscience at a distance.
Friedrich Nietzsche, On the Genealogy of Morality (1887)

1.1 General context of the research

Trends in energy demand and supply have attracted increasing concern during the last
decades, to the point that the security of energy supply is now a top government priority,
particularly for countries with limited fossil fuel resources. Based on projections of future
energy production linked with global economical and population growth, it is today widely
believed that signi�cant structural changes must be made to achieve a more sustainable
development, in societal, economical and environmental aspects. Among numerous mea-
sures to support that, the reduction of energy use through its e�cient and parsimonious
use is of central importance.

1.1.1 Energy in buildings

Facts and �gures

The building sector is a particularly important consumer of energy. Indeed, estimations
report that buildings account for around half of the total energy consumption in Switzer-
land and many European countries, while the speci�c contribution of households generally
accounts for more than a quarter [1]. Their part in the global energy demand has steadily
increased during the last decade [2], to the point that it has now exceeded traditionally im-
portant consumers such as transportation and industry, as can be seen in Figure 1.1. This
increase is caused by several concomitant factors, including the increasing use of active
cooling and electrical appliances and improved living standards.

Therefore, improving the energy performance of buildings is becoming increasingly im-
portant. However, to provide sound guidance on how to reduce buildings' energy demands
requires a sound basis for predicting buildings' energy performance.

5



6 CHAPTER 1. INTRODUCTION

Germany

France

United Kingdom

Italy

Spain

Turkey

Poland

Netherlands
Belgium
Sweden
Austria

Czech Rep.
Finland

Romania
Switzerland

Proportion of energy consumption (%)

0 20 40 60 80 100

Households  
Services, etc.  

Industry  
Transportation  

Figure 1.1: Proportion of energy consumption by sector in 2005 in the 15 most energy
consuming European countries: width is proportional to total energy consumption (Source:
European Union Energy and Transport in Figures [1])

Integrated building performance simulation

The large number of simultaneous objectives in building design coupled with the complexity
of the energy �ows of a building underlines the needs for rigorous scienti�c methods to
support the development of low-energy buildings. In this context, the use of integrated
building performance simulation programs based on accurate models is key to providing a
scienti�c answer to the challenge of reducing energy consumption in the built environment.

However, the appropriate approach to solve these problems has to be integrated with
connected domains. Buildings indeed have a footprint on the territory, their location in�u-
ences the needs in transportation, they may host renewable energy technologies, buildings
in�uence each other in daylight availability and have an impact on the urban microclimate.
Therefore, considering simultaneously the interactions between all related aspects avoids
unintended consequences of seemingly sensible actions and allows more reliable predictions,
although the task is of huge complexity. Furthermore, changes in the scale of analysis to
that of urban collectivities, allowed for by current computing capabilities, is of particular
interest; so that models allowing us to consider issues such as the ecological footprint,
transportation capabilities and waste management are on the horizon.
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Indoor environment quality
A building is however primarily a space to live, rather than an energy consumer. Energy ef-
�ciency in buildings cannot thus be implemented by sacri�cing indoor environment quality
and occupant comfort � the primary purpose of a building. Unsatisfactory indoor environ-
ment quality may provoke unintended consequences, such as the expansion of uncontrolled
energy consuming air-conditioning systems. Furthermore, low indoor environment qual-
ity induces a large range of direct problems, such as sick building syndrom (SBS), lower
general wellbeing and satisfaction and lower productivity at work [3, 4, 5, 6].

On the other hand, there is an increasing demand from the public for high quality living
space. The challenge is to ensure high indoor environment quality with minimal energy
consumption. Strategies to achieve this compromise � where the use of daylight and the
possibilities to act on the environment play a central role � exist and must be integrated at
the design stage. As such our simulation tools need to be able to predict not only energy
�ows but also the quality of the indoor environment.

1.1.2 Building and urban simulation
In this section, we review the developments already performed in the domain of integrated
building performance simulation and point out the central research needs to increase the
accuracy of simulation tools.

Current features of dynamic building simulation tools
The �rst generation of dynamic simulation programs was developed during the 1970s and
early 1980s [7, 8]. These were essentially command-line interfaces to routines to calculate
the dynamic thermal energy exchanges within a building and between this and the outside
environment. Subsequent work concentrated on improving the usability of these routines
and extending the scope of the core capabilities, for example to incorporate coupled plant
[9] and mass �ow [10] modelling.

With improved functionality and amidst growing demand for their use by the more pi-
oneering design consultants, attention shifted to proving the validity of their core thermal
energy exchange models [11, 12, 13]. By the mid 1990s, with results from these valida-
tion studies taken on board and with improved usability, attention then focused upon the
addition of further modelling functionality. This included the addition of 3D conduction
modelling [14], links with ray tracing programs for improved lighting modelling [15], elec-
trical power �ow modelling [16], embedded computational �uid dynamics (CFD) [17] and
sensitivity analysis [18, 19].

The results are programs such as ESP-r [20] with a transient �nite di�erence heat �ow
solver at the core, supporting simultaneous solutions of plant, �uid, electrical power and
CFD equation sets.

The central role of buildings occupants
The deterministic features of building simulation programs are now considered relatively
mature. But their ability to emulate reality is undermined by a poor representation of non-
deterministic variables, particularly relating to occupants presence and their interactions
with environmental controls.

Indeed discrepancies between real and assumed deterministic behaviour are such that
predictions of like buildings may, in Baker's estimation, vary by a factor of two [21],
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an estimation con�rmed by �eld observations1. Considering ventilation, measurements
conducted in 25 Danish buildings showed that on average the increase in the mean air�ow
rate due to the in�uence of occupancy is more than 100% [23]. Iwashita and Akasaka [24]
later measured that 87% of the total air change rate is caused by the behaviour of the
occupants. More recently, Bahaj and James [25] observed that the electricity consumption
in 9 identical low-energy social housing units varied by as much as 600% in some periods
of the year2.

According to Hoes and Hensen [26], the relative in�uence of the users' behaviour in-
creases in passive buildings, which are expected to become more common due to the
demand for sustainable buildings. They point out that for some buildings detailed be-
havioural modelling is necessary to design buildings that are robust to the in�uence of user
behaviour.

To better understand the nature of the problem we list here a range of types of inter-
action available to occupants and their respective in�uences on buildings' performance:

• Presence of occupants. Occupancy is the essential condition governing any further
action, as the occurrence of an interaction needs an occupant to perform it. Moreover,
occupants are a direct source of metabolic heat gains, humidity, CO2 and pollutants.

• Actions on windows. Window openings and their associated air �ows have an
important impact on indoor hygro-thermal conditions and indoor air quality (eg.
concentration of pollutants) particularly in naturally-ventilated buildings.

• Actions on doors. Open doors favour air �ows inside buildings and thus the
transport of heat and pollutant. They may also amplify the air �ows from open
windows through cross-ventilation.

• Actions on shading devices. The position of shading devices determines the solar
heat gains, with a corresponding impact on the evolution of indoor temperature. Fur-
thermore, they directly determine daylight availability and the transmitted luminous
�ux through the windows of a building.

• Use of arti�cial lighting. The primary interest of modelling lighting use is in the
prediction of electrical energy consumption (and associated heat gains). Furthermore,
they may be interrelated with actions on shading devices.

• Use of heating, ventilation and air-conditioning (HVAC) systems. Actions
on these devices directly impact energy consumption and indoor conditions.

• Use of water and electrical appliances. Together with the use of lighting, the
prediction of appliance use enables estimation of the total electricity consumption
(as well as useful statistics like base and peak load) and the corresponding space heat
gains, with an extension to water use prediction if associated appliances are in use.

• The production of waste. Occupancy and appliances use may be combined to
predict the production of waste water and solid waste, from which energy may be
derived.

1For example Seligman et al. [22] investigated energy consumption in 28 identical town houses and
found that the largest variation in energy consumption was two to one.

2In the same study, an indicator such as daily consumption feedback provided to occupants was found
to reduce electricity usage by 10%, while the device signaling homeowners when they could cool their
houses without air conditioning by opening their windows led to a reduction in consumption of 15.7%.
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Furthermore, other behavioural patterns have a possible in�uence on the occurence of
these actions, so that they are also of indirect relevance. In particular it may be useful to
consider modelling:

• Actions on fans. Occupants may use fans to maintain acceptable thermal comfort
during a heat wave. They have furthermore a marginal impact on electricity use.

• Personal characteristics. Clothing level, metabolic activity, and cold or hot drinks
consumption have an impact on thermal comfort and thereby may also in�uence
subsequent actions of interest.

Although the signi�cant impact of occupants' actions on building thermal conditions
and energy �ows has longsince been established, algorithms to simulate them are either
inexistant or based on limited assumptions. ESP-r is among the rare software currently
including some behavioural control models, for example for the dynamic control of lighting,
shading devices and windows. However, we will show in Chapters 4 and 5 that these latter
models are not fully satisfactory. Their calibration basis is also very limited. In the current
state of research, we suggest that rigorously derived and validated models have only been
developed to simulate occupancy, based on the research of Wang [27], Page [28, 29] and
Richardson [30]. We will defend this assertion in later chapters.

With respect to integrated simulation at the urban scale, the aggregated results of
stochastic models of behaviour are of particular interest for sizing of energy supply and
storage infrastructure.

1.2 Our hypothesis
Current approaches in building performance simulation are undermined by important �aws
with respect to de�ciencies in the modelling of buildings occupants' behaviour. But occu-
pants' behaviour is complicated by the fact that their perception of environmental comfort
in�uences their actions. This issue has thus far been ignored in building simulation. Con-
sidering these insu�ciencies, we propose the following hypothesis (also shown in Figure 1.2)
to guide our developments:

The dynamic thermal performance of buildings is intrinsically linked
to the behaviour of its occupants, which is itself directly in�uenced
by perceived environmental comfort. Furthermore, actions taken by
occupants to restore their environmental comfort have a quanti�able
physical, physiological and possibly psychological feedback on this
latter, which is of central importance for satisfaction with the indoor
environment.

1.3 Structure of this research work
This work begins with a detailed description of our measurement campaign and its experi-
mental design (Chapter 2) which was developed to address the above hypothesis. We then
present the key mathematical principles of relevance to behavioural modelling (Chapter 3).

We go on to propose modelling approaches to describe relevant behavioural patterns
of buildings' occupants. In Chapter 4 we develop an appropriate stochastic model for the
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Figure 1.2: General scheme of the relationships proposed in our hypothesis

predictions of occupants' actions on windows, followed in Chapter 5 by a similar procedure
to predict actions on shading devices.

As a next step, we question in Chapter 6 the appropriateness of the currently accepted
model for thermal comfort and go on to propose new extensions based on our hypothesis
and show the corresponding improved accuracy and conceptual rigour. This results in an
innovative way to formulate the stochastic models for actions as a direct consequence of
environmental discomfort, where the notion of action inertia expresses this link.

Finally, we present in detail an appropriate approach to integrate these �ndings and
describe in detail how to implement the results in building and urban simulation tools. We
also discuss the value of an agent-based approach in this context (Chapter 7).

This work is completed by three appendices where we present research performed in
connected domains: adaptation of personal characteristics such as clothing and metabolic
activity (Appendix A); a discussion of the interaction between thermal, olfactory and
visual comfort based on experimental evidence (Appendix B); and an analysis of factors
in�uencing productivity in o�ce environments (Appendix C).



Chapter 2

The �eld survey

The combination of some data and an aching desire
for an answer does not ensure that a reasonable answer
can be extracted from a given body of data.
John W. Tukey (1915-2000), Sunset salvo [31]

This chapter presents the experimental design that provided the basis for the develop-
ment of our models. We present �rst the general characteristics of the surveyed building
and go on to describe the measurement devices, surveyed periods and details of the exper-
imental design. We conclude with a statistical summary of the measured data including
initial exploratory data analysis and relevant preliminary observations for further model
development.

2.1 The LESO-PB �eld survey
2.1.1 The LESO-PB building
The Solar Energy and Building Physics Laboratory (LESO-PB) experimental building
(Figure 2.1(a)), located in the suburb of Lausanne, Switzerland (46◦31'17�N, 6◦34'02�E,
alt. 396 m.) was built in 1982 and renovated in 1999. It hosts on three �oors fourteen
south-facing o�ces, a workshop, a conference room, a computer room and a small library.
The building has no mechanical ventilation system. All south facing o�ces have an area
of 15.7 m2 and a height of 2.8 m; they are equipped with anidolic systems that improve
the distribution of daylight. A typical o�ce is shown in Figure 2.1(b).

In every south-facing o�ce, occupants have the possibility to tilt or open up to any
angle each of the two windows (height 90 cm, width 70 cm). It is safe to leave windows
open (eg. for night ventilation) during periods of absence, except on the ground �oor.
Occupants also have the possibility to control two external blinds (width 350 cm): a lower
blind potentially covering the totality of the vision1 window (height 100 to 185 cm) and an
upper blind covering the anidolic system (height 210 to 270 cm). These blinds are controlled
by switches (one to start and one to stop lowering/raising) which allow occupants to shade
their windows to any desired fraction. Occupants may also close and tilt internal vertical
slat blinds at the upper window to reduce glare whilst bene�tting from direct solar gain
during the heating season. Electrical lighting may be dimmed to any desired level with

1The lower part accounts for the main part of outdoor visibility, see Figure 2.1(b).

11
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(a) View of the south façade of the LESO building (b) Typical cellular o�ce of the LESO building
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(c) Scheme of the cellular o�ces showing sensors and controls

Figure 2.1: Features of the LESO building
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a switch (Figure 2.3(d)) located next to each o�ce's door. Finally, several o�ces are
equipped with ceiling fans.

Occupants of this building include senior researchers, research assistants, technical
sta� and secretaries. They mainly carry out o�ce related work and all use a computer. A
majority of occupants occupy long-term positions in the laboratory. During the surveyed
period, between �ve and eight o�ces have been occupied by two persons (Table 2.5),
which can both individually access their own window, while between six and nine o�ces
have accommodated single occupants who are able to act on the two windows.

A detailed description of the building with an exhaustive analysis of the building's
energy �ows, is provided by Altherr and Gay [32].

Throughout this work we will refer to o�ces by three numbers (001 to 004, 101 to 106
and 201 to 204), where the �rst number indicates the �oor. Individual occupants with
known presence periods are attributed a number from 1 to 43.

2.1.2 Experimental design and measurements
Permanent measurements. Since December 2001, all 14 south-facing cellular o�ces of
this building have been progressively equipped with sensors whose real-time measurements
are archived by a centralised EIB data acquisition system. Figure 2.1(c) describes the posi-
tion of these sensors and Table 2.1 lists the variables measured along with their respective
periods of availability (with the exception of a few interruptions caused by maintenance and
technical reasons). Figure 2.2 shows as an example the measurements performed during
the period 6th to 12th October 2008.

The following variables have been continuously2 measured up until the �nal data col-
lection on 8th September 2009,:

• Occupancy was measured by presence infrared detectors (Figure 2.3(a)). The number
of occupants cannot be recorded by the sensors.

• Window openings and closings were detected by micro switches on each of the two
windows (Figure 2.3(b)). These devices do not record the opening angle and do not
distinguish fully open from tilted openings.

• The position of lower and upper blinds (BL and BU ) was recorded after every ob-
served movement through the measured extension of the cables supporting them.
Occupants act on blinds through commands shown in Figure 2.3(c).

• The status of electrical lighting (L) was measured directly from the switches (Fig-
ure 2.3(d)).

• Local indoor (θin) and roof outdoor (θout) temperature was measured by Pt-100
resistance thermometers (Figure 2.3(e)). In the o�ces, these devices were enclosed in
the light switches (Figure 2.3(d)), whilst the roof sensor is housed within a Stevensen
screen.

• Indoor horizontal workplane illuminance (Ein) was measured by Siemens brightness
sensors GE 252 (Figure 2.3(f)) protected from the window's luminance.

2The acquisition system records the changes observed by measurement devices in real time. Temperature
and illuminance are recorded along with a time stamp once the variation exceeds 0.06◦C or 30 lx.
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Measurement Symbol Unit Start End Dur. Freq.
Direct measurements
Indoor temperature θin [◦C] 18.12.2001 08.09.2009 2814 d. Cont.
Outdoor temperature θout [◦C] 16.03.2005 08.09.2009 1630 d. Cont.
Indoor illuminance Ein [lx] 24.09.2003 08.09.2009 2169 d. Cont.
Outdoor global horiz. illuminance Egl,hor [lx] 11.07.2003 08.09.2009 2245 d. Cont.
Outdoor global horiz. irradiance Igl,hor [W/m2] 11.07.2003 08.09.2009 2245 d. Cont.
Outdoor di�use horiz. irradiance Idiff,hor [W/m2] 19.02.2005 08.09.2009 2245 d. Cont.
Occupancy status O Boolean 18.12.2001 08.09.2009 2814 d. Cont.
Windows status (east and west) WE , WW Boolean 18.12.2001 08.09.2009 2814 d. Cont.
Lighting status L [%] 18.12.2001 08.09.2009 2169 d. Cont.
Lower blind shaded fraction BL [%] 01.01.2003 08.09.2009 2169 d. Cont.
Upper blind shaded fraction BU [%] 01.01.2003 08.09.2009 2169 d. Cont.
Deduced
Sun altitude ζ [◦] 18.12.2001 08.09.2009 2814 d. Cont.
Sun azimuth α [◦] 18.12.2001 08.09.2009 2814 d. Cont.
Added devices
Local temperature θloc [◦C] 23.06.2008 06.09.2009 440 d. 10 min.
Indoor humidity φin [%] 11.09.2007 06.09.2009 726 d. 10 min.
Questionnaire
Ceiling fan status F Boolean 13.06.2006 08.09.2009 ca. 2 h.
Clothing level Icl [m2K/W] 13.06.2006 08.09.2009 ca. 2 h.
Speci�c metabolic activity M [W/m2] 13.06.2006 08.09.2009 ca. 2 h.
Thermal sensation Sth 7 levels 13.06.2006 08.09.2009 ca. 2 h.
Visual sensation Svis 7 levels 13.02.2008 08.09.2009 ca. 2 h.
Olfactory sensation Solf 7 levels 13.02.2008 08.09.2009 ca. 2 h.
Hot and cold drinks DH , DC Boolean 13.06.2006 08.09.2009 ca. 2 h.
Perceived productivity P [%] 13.02.2008 08.09.2009 1 d.

Table 2.1: List of the parameters measured during the LESO-PB survey with their mea-
surement periods, total durations and intervals
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• Outdoor global horizontal illuminance (Egl,hor), outdoor global (Igl,hor) and di�use
(Idiff,hor) horizontal irradiance were measured by a Delta-T BF3 sunshine sensor
(Figure 2.3(g)) installed on the roof.

Finally, we computed sun elevation (ζ) and azimuth (α) using the Astronomical Almanac
algorithm3.

Local indoor temperature and relative humidity. We placed in some o�ces tem-
perature Tinytag TG-0050 sensors (Fig. 2.3(h)) in the immediate vicinity of occupants to
assess a potential di�erence with measurements from the central system. Furthermore, we
measured indoor humidity (φin) through Tinytag TK-4014 sensors (Fig. 2.3(i)) in a few
o�ces for distinct periods of time.

Electronic questionnaire. An electronic questionnaire (Figure 2.4(a)), developed using
Borland Delphi programming environment, was activated on the computers of all occupants
on a rotation basis. When possible, each occupant was surveyed for at least three separate
periods of three months in winter, in summer and during an inter-seasonal period. The
questionnaire typically appeared four times a day, twice in the morning and in the after-
noon, at intervals of between 2 and 3 hours (de�ned in agreement with each occupant).
The program was activated by the scheduled tasks manager of the operating system.

At every prompt, occupants were asked to provide the following information:

• Current clothing level. The surveyed occupants could choose from amongst eight
possibilities proposed in a rolling list (Table 2.2, top), from which typical clothing
insulation values could be deduced from the ISO 7730 standard [35].

• Activity level during the preceding 15 minutes. Six possibilities (Table 2.2,
bottom) were o�ered, also based on the ISO 7730 standard [35]. Respondents could
also tick a �no change� box, following from the �rst prompt of the day.

• Thermal sensation. An approximate French translation of the standard seven
point ASHRAE scale (itself used in the ISO 7730 standard) was proposed (Table 2.3).

• Visual sensation. To our knowledge the literature does not provide a standard
scale. We proposed seven choices similar to the ASHRAE scale for thermal sensation,
ranging from �Very dark� to �Very bright� and centered on �Comfortable� (Table 2.3).
This scale was chosen based on the desire to propose denominations where the degree
of associated discomfort is similar to the choices proposed with the thermal sensation
scale. The same adverbs are thus used to characterise mild deviation from neutrality
(−1 and +1) and strong discomfort (−3 and +3).

• Olfactory sensation. A seven-point scale was used, proposing values from �Unac-
ceptable� to �Excellent�. While thermal and visual discomfort may be caused by both
lack or excess of heat and light, olfactory discomfort occurs in a unique way; which
imposes the use of a unidirectional scale. The denomination of the central category
is here designed to evoke an average air quality while other choices explicitly refer to
notions of poorness and goodness of current conditions.

3The translation in R language provided by Lindelöf [33] was used for the calculations. Details of the
implementation of this algorithm are presented by Seidelmann [34].
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(a) Infrared detector for occu-
pancy

(b) Micro switch recording win-
dow openings

(c) Switches for actions on upper
and lower blinds

(d) Switch for electrical lights (e) Pt-100 resistance thermome-
ter

(f) Illuminance sensor (Siemens
GE 252)

(g) Sunshine sensor for outdoor
irradiance (Delta-T BF3)

(h) Portable temperature sensor
(Tinytag TG-0050)

(i) Portable humidity sensor
(Tinytag TK-4014)

Figure 2.3: Measurement devices used in the �eld survey
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Clothing ensemble Insulation
[m2K/W] [clo]

Jacket, shirt with long sleeves, Veston, chemise manches longues, 0.147 0.95
trousers/dress, tie, shoes pantalons/robe, cravate, chaussures
Jacket, open neck shirt, Veston, chemise à col ouvert, 0.140 0.90
trousers/dress, shoes pantalons/robe, chaussures
Shirt with long sleeves, Chemise manches longues, pantalons 0.124 0.80
trousers/dress, tie, shoes ou robe, cravate, chaussures
Shirt with long sleeves, Chemise manches longues, 0.116 0.75
trousers/dress, shoes pantalons/robe, chaussures
Sweater, shirt, Pullover, chemise, 0.109 0.70
trousers, shoes pantalons, chaussures
Shirt with short sleeves, Chemise manches courtes, 0.093 0.60
trousers, shoes pantalons/robe, chaussures
Shirt with short sleeves, Chemise manches courtes, 0.080 0.50
trousers, sandals pantalons/robe, sandales
Shirt with short sleeves, Chemise manches courtes, 0.062 0.40
short/skirt, shoes shorts/jupe, chaussures
Shirt with short sleeves, Chemise manches courtes, 0.047 0.30
short/skirt, sandals shorts/jupe, sandales

Activity Metabolic rates
[W/m2] [met]

Seated, relaxed Assis, inactif 58 1.0
Sedentary activity Activité sédentaire 70 1.2
Standing, light activity Activité légère, debout 93 1.6
Standing, medium activity Travail debout 116 2.0
Walking Marche 140 2.4
Cycling, running Cyclisme, course 232 4.0

Table 2.2: Choices available in the electronic questionnaire for clothing and activity, with
corresponding values from ISO-7730 Standard

• Glare. The occurrence of direct glare during the preceding 60 minutes.

• Other controls. Current state of controls that were not recorded by the central
system (door, ceiling fan, curtains).

• Other activities during the preceding hour. This includes the intake of hot
and cold drinks, meals, and additions or removals of clothing items.

Furthermore, occupants were asked to estimate their productivity during the present
day. This question appeared as a separate window once a day after 3pm. Available
choices ranged between −20% and +20% of their usual productivity, at 5% increments
(Figure 2.4(b)).
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(a) Main survey window

(b) Productivity survey window

Figure 2.4: Electronic questionnaire
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Scale Thermal sensation Visual sensation Olfactory sensation
-3 Cold Très froid Very dark Très sombre Unacceptable Inacceptable
-2 Cool Froid Dark Sombre Uncomfortable Inconfortable
-1 Slightly cool Léger. frais Slightly dark Légèr. sombre Rather poor Plutôt mauvaise
0 Comfortable Confortable Comfortable Confortable Acceptable Acceptable

+1 Slightly warm Légèr. chaud Slightly bright Légèr. éblouissant Rather good Plutôt bon
+2 Warm Chaud Bright Eblouissant Good Bon
+3 Hot Très chaud Very bright Très éblouissant Excellent Excellent

Table 2.3: Thermal, visual and olfactory sensation levels proposed in the electronic ques-
tionnaire

2.2 Integration of meteorological data
In order to consider comprehensively the in�uence of outdoor parameters, it is desirable to
use local meteorological data. Unfortunately however local outdoor temperature data are
missing for the �rst three years of measurements (Table 2.1); furthermore no other outdoor
climate variables were measured outside the LESO building.

In this section, we will therefore describe the characteristics of two neighbouring me-
teorological stations and explain the method by which we integrated their measurements
into the LESO building dataset for the purposes of our study.

2.2.1 Weather stations
The �rst weather station which is within close proximity of the LESO building records
every 10 minutes measurements of dry bulb air temperature (θout), mean wind speed (vwind)
and direction (αwind), relative humidity (φout), rainfall (Dprec) and reduced atmospherical
pressure (patm,red). This station is located 7.7 km away in the town Pully (46◦30'43�N,
6◦40'03�E, alt. 461 m.), and is part of the Meteosuisse ANETZ network, which records
comprehensive measurements throughout Switzerland. The second weather station which
is located 10.4 km away in Saint-Prex (46◦29'01�N, 6◦26'34�E, alt. 425 m.) is part of the
secondary network ENET of Meteosuisse. At this station, only wind speed and direction
are measured every 10 minutes.

A statistical summary of the above variables is presented in Table 2.4.

2.2.2 Calibration of outdoor temperature
In order to extend our outdoor climate data to the �rst three years of measurements,
we deduce a relationship between local outdoor temperature measured on the roof of the
laboratory θout,loc and at the weather station θout,ms using linear regression analysis.

Using data recorded between 16 March 2005 and 9 September 2009, we notice that
the median value of (θout,ms− θout,loc) is 0.56◦C, with quartiles -0.63◦C and 1.57◦C, which
indicates a systematic deviation. Performing a linear regression between these variables,
we obtain θout,loc = a + bθout,ms, where a = −1.8762± 0.0027, b = 1.12329± 0.00019, with
little dispersion (R2 = 0.961), see Figure 2.5(a).

A detailed examination of the �t residuals ε = θout,loc − θout,fitted shows that 50% of
them lie within the interval [−0.95◦C, 0.96◦C], and 95% in [−3.72◦C, 3.52◦C]. A histogram
of the residuals is presented in Figure 2.5(b). We conclude thus that the discrepancy
between local and distant observations has an acceptable amplitude, and we will use the
adjusted weather data to extend our database.
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Figure 2.5: Calibration of local outdoor temperature

2.2.3 Calibration of wind speed and direction
The measurements of wind speed and direction present the additional problem of the highly
local nature of observations, which undermines the relevance of more distant observations.
For instance, we only obtain a correlation of 0.645 between wind speeds measured at the
weather stations.

However, a strong wind measured at the meteorological station generally results in at
least in some wind at the LESO building, and in this case the mean wind direction will
be roughly similar. It may therefore be reasonable to use a coarse representation of wind
speed and direction, by considering four levels of wind intensity de�ned by the observed
quartiles of wind speed at the weather station given in Table 2.4: very low (< 1.5 m/s),
low (1.5-2.5 m/s), moderate (2.5-4.8 m/s) and high (> 4.8 m/s). We similarly use four
levels for wind direction, de�ned by 90◦ sectors centered along the cardinal points. These
choices allow us to assess the existence of wind e�ects on occupants' behaviour (but not
to quantitatively estimate its in�uence).

2.3 Statistical summary
2.3.1 Descriptive statistics
We present in Table 2.4 a statistical summary of the measured climatic data during occu-
pants' presence. We also show in Figure 2.6 bivariate plots between all considered physical
variables, together with their correlations and histograms for the distributions of all the
variables. As expected, we observe clear positive correlations between θout and θin, as well
as between θout and φout. It is also encouraging to note that high values of vwind mostly
occur for two particular ranges of αwind � a characteristic phenomenon of the region of
Lausanne. Finally, outdoor illuminance and direct and di�use irradiance are also strongly
correlated again as expected. However, when there are such signi�cant correlations be-
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Variable Min. q(25%) Median Mean q(75%) Max.
Weather station
θout [◦C] -9.7 5.7 12.2 12.30 18.5 37.1
φout [%] 10.5 57.3 68.8 67.71 79.5 100.0
vwind [m/s] 0.0 1.5 2.5 3.336 4.8 16.8
αwind [◦] 0 46 169 156.2 236 360
Dprec [mm/h] 0 0 0 0.1101 0 96.6
patm,red [hPa] 982 1013 1018 1018 1023 1042
Roof of LESO-PB building
θout [◦C] -10.6 4.9 11.6 11.86 18.6 36.0
Egl,hor [lx] 0 628 18566 29667 50708 155038
Igl,hor [W/m2] 0 9.79 146.91 262.01 436.38 1270.19
Idiff,hor [W/m2] 0 2.44 72.14 134.07 160.72 1276.26
Aggregated measurements
θout,dm [◦C] -7.48 4.92 10.95 11.10 17.12 28.92
θout,rm [◦C] -5.43 4.98 10.86 11.04 17.12 28.38
θout,mm [◦C] -1.45 4.69 10.56 11.07 17.65 24.68

Table 2.4: Descriptive statistics of measured parameters during the occupied intervals of
the surveyed period

tween variables caution should be exercised when using them jointly as driving variables
in a model, as collinearity may cause problems in the regression process (Section 3.2.4).

Figure 2.7 shows the distributions of indoor temperature and illuminance for all known
combinations of occupants. Although all o�ces are identical, some modest variations
are noticeable between them � a fact to be discussed later with respect to observations on
environmental comfort and adaptive actions. Finally, Table 2.5 shows signi�cant di�erences
in the use of controls (windows, blinds and lights) between occupants, suggesting that there
is considerable diversity in observed behaviours.

2.3.2 Representativeness of questionnaire answers
The questionnaire was completed by 28 occupants (Table 2.6), who each provided between
37 and 661 answers, totaling 6851 entries (with an average of 245 entries per person).
Care was taken when administering the electronic questionnaire (Section 2.1.2) to ensure
a balance in periods throughout the year. In order to con�rm that the answers to the
questionnaire form a representative subset of usual laboratory conditions, we check for the
agreement between distributions of key variables for overall conditions and for the periods
when the questionnaire was completed. If there is a good agreement then the statistical
summaries from the questionnaire data may be considered to describe well the general
conditions within the building.

The distributions of the day of the year, indoor temperature and indoor illuminance
are shown in Figure 2.8 for the whole occupied period and for the periods corresponding
to electronic questionnaire prompts. From Figure 2.8(a) we observe that inter-seasonal
periods are underrepresentated, so there is some lack of generality according to seasonal
patterns. However, Figures 2.8(b)-2.8(c) suggest that distributions of indoor temperature
and indoor illuminance are very closely matched.

Finally, eight occupants could not be surveyed for a representative subset of normal
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Survey Prop. of Lower blinds Upper blinds Prop.
Ref. Duration windows open Mean Fully Fully Mean Fully Fully lights

(days) East West Any frac. Raised Lowered frac. Raised Lowered on
001-04-27 730 0.092 0.146 0.210 0.363 0.157 0.559 0.346 0.149 0.536 0.285
001-28-X 699 0.110 0.263 0.343 0.736 0.631 0.183 0.691 0.482 0.192 0.145
001-17-30 931 0.267 0.283 0.459 0.861 0.573 0.051 0.648 0.536 0.152 0.186
001-17-35 206 0.383 0.085 0.460 0.717 0.507 0.110 0.459 0.283 0.225 0.020
002-21-24 275 0.276 0.324 0.400 0.926 0.732 0.005 0.508 0.372 0.220 0.120
002-16-25 334 0.285 0.256 0.470 0.920 0.852 0.056 0.573 0.533 0.358 0.363
002-01-16 153 0.035 0.020 0.051 0.793 0.554 0.029 0.691 0.504 0.194 0.288
002-11-16 496 0.062 0.122 0.178 0.928 0.736 0.012 0.477 0.456 0.452 0.170
003-07 2808 0.151 0.010 0.159 0.679 0.466 0.133 0.593 0.485 0.209 0.199
004-36 321 0.165 0.177 0.263 0.838 0.677 0.071 0.591 0.535 0.342 0.174
004-26-36 2292 0.005 0.180 0.181 0.521 0.421 0.424 0.337 0.233 0.647 0.226
101-15-28 606 0.001 0.188 0.188 0.125 0.043 0.852 0.120 0.059 0.863 0.224
101-22 1896 0.025 0.150 0.172 0.745 0.679 0.185 0.618 0.574 0.314 0.564
103-23 272 0.135 0.000 0.135 NA NA NA NA NA NA 0.051
103-03 2191 0.152 0.267 0.348 0.811 0.629 0.069 0.598 0.494 0.294 0.251
103-42 195 0.429 0.786 0.913 0.929 0.832 0.001 0.914 0.579 0.001 0.098
103-29 56 0.651 0.699 0.874 0.737 0.708 0.236 0.546 0.298 0.249 0.176
104-19 2808 0.204 0.000 0.204 0.805 0.643 0.130 0.507 0.462 0.452 0.254
105-38 2808 0.271 0.225 0.380 0.803 0.663 0.138 0.623 0.585 0.293 0.249
106-06-39 2808 0.293 0.080 0.326 0.785 0.662 0.158 0.578 0.536 0.361 0.219
201-31 2808 0.353 0.288 0.427 0.847 0.753 0.124 0.624 0.571 0.286 0.163
202-05-33 457 0.000 0.195 0.195 0.953 0.869 0.000 0.830 0.495 0.010 0.257
203-09 1550 0.197 0.142 0.249 0.662 0.343 0.042 0.735 0.298 0.060 0.327
203-08-14 517 0.730 0.751 0.930 0.703 0.491 0.112 0.182 0.136 0.529 0.235
203-12-40 147 0.021 0.245 0.246 0.752 0.557 0.226 0.620 0.514 0.312 0.013
204-18 1048 0.056 0.370 0.381 0.574 0.364 0.340 0.517 0.388 0.341 0.207
204-10 1759 0.215 0.423 0.477 0.890 0.648 0.000 0.762 0.565 0.084 0.115
Unknown NA 0.141 0.212 0.296 0.716 0.507 0.185 0.580 0.401 0.286 0.210
All 0.183 0.196 0.308 0.758 0.587 0.156 0.584 0.470 0.306 0.226

Table 2.5: Occupant speci�c summary of windows, blinds and lights status: combination of
occupants, duration of observations, observed proportion of occupied time with windows
open, observed mean unshaded fraction, proportion of occupied time with blinds fully
lowered or fully raised, observed proportion of occupied time with lights on
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Ref. occ. Sex Age Nans Repr. Ref. occ. Sex Age Nans Repr.
1 M 20-30 51 No 19 M 40-50 248 Yes
2 M 30-40 127 No 21 M 20-30 112 No
3 F 20-30 243 Yes 25 F 20-30 138 No
4 M 20-30 244 Yes 26 F 30-40 313 Yes
5 F 20-30 120 No 27 F 20-30 177 Yes
6 F 50-65 578 Yes 28 M 20-30 214 Yes
7 M 50-65 202 Yes 30 F 20-30 410 Yes
9 M 50-65 222 Yes 31 M 50-65 661 Yes
10 M 30-40 263 Yes 33 F 30-40 37 No
11 M 20-30 384 Yes 34 M 20-30 126 No
15 M 30-40 103 Yes 36 M 40-50 276 Yes
16 M 20-30 415 Yes 37 M 20-30 283 Yes
17 M 20-30 47 No 38 F 50-65 224 Yes
18 M 50-65 204 Yes 39 F 50-65 429 Yes

Table 2.6: Summary of the surveyed occupants: Occupant reference number, sex, age
category, number of answers and individual representativeness of their answers

conditions (Table 2.6), because the total duration of their employment within the labora-
tory was too limited. Therefore speci�c summaries of their answers may be biased.



Chapter 3

Behavioural modelling

Qu'est-ce que l'homme dans la nature ? Un néant
à l'égard de l'in�ni, un tout à l'égard du néant,
un milieu entre rien et tout.
For after all what is man in nature? A nothing
in relation to in�nity, all in relation to nothing,
a central point between nothing and all.
Blaise Pascal (1623-1662), Pensées

This chapter begins with a discussion of approaches to the modelling of human be-
haviour and justi�es the choice of probabilistic models in this context. We go on to present
a detailed account of the mathematical methods for behavioural modelling, including the
founding principles for model inference, the selection of key variables, the assessment of
model quality and validation procedures.

3.1 Determinism and probabilistic models
All human actions have one or more of these seven causes:
chance, nature, compulsion, habit, reason, passion and
desire.
Aristotle (384-322 BC)

3.1.1 Some thoughts
Predicting human behaviour may seem at �rst glance to be an impossible task. Everyday
our fellow humans surprise us by their sometimes irrational, inexplicable and unexpected
actions.

It would be vain to expect a single individual to systematically reproduce the same
clearly identi�ed behavioural patterns, and so we may immediately discard simplistic ap-
proaches of the kind �if stimulus A then action B�. Rather our signi�cant challenge is to
understand and ultimately assess the consequences of humans' behavioural complexity.

A precise prediction of human actions is then out of reach, and we must cope with
imperfect and approximate choices, where we at best understand and assess the great un-
certainties around possible mainstream patterns. In this we are helped by the observation
that people often reproduce some known patterns, as some actions are motivated by causes

27
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that we can identify. Based on such observations, we may hope to o�er partial and limited
predictions of the actions of interest to us, bearing in mind that we should avoid excessive
generalisation.

Modelling human actions using a probabilistic approach allows for a more honest ac-
count of our observation-based knowledge, as the apparent contradiction of �uctuating
choices performed in similar conditions is not an obstacle in this context. Such a proba-
bilistic approach can be considered either as a consequence of an inside uncertainty or as
a surrogate for our ignorance of unreachable but existing causes. In this latter case, we do
not necessarily attempt to contradict the advocate of determinism Pierre-Simon de Laplace
(1749-1827), who expressed in the introduction of the Théorie analytique des probabilités
written in 1814:

Nous devons donc envisager l’état présent de l’univers comme l’effet de son état
antérieur et comme la cause de celui qui va suivre. Une intelligence qui, pour
un instant donné, connaîtrait toutes les forces dont la nature est animée et la
situation respective des êtres qui la composent, si d’ailleurs elle était assez vaste
pour soumettre ces données à l’Analyse, embrasserait dans la même formule les
mouvements des plus grands corps de l’univers et ceux du plus léger atome :
rien ne serait incertain pour elle, et l’avenir, comme le passé, serait présent à
ses yeux.

�We may regard the present state of the universe as the e�ect of its past and
the cause of its future. An intellect which at a given moment would know all
forces that set nature in motion, and all positions of all items of which nature is
composed, if this intellect were also vast enough to submit these data to analysis,
it would embrace in a single formula the movements of the greatest bodies of
the universe and those of the tiniest atom; for such an intellect nothing would
be uncertain and the future just like the past would be present before its eyes.�

We will rather admit that, in the present task to model human behaviour in building
simulation, we stand far away from the knowledge of such a hypothetical intellect. In order
to account for our unavoidable ignorance of the details of the system, non-deterministic
approaches may enable us to contain the causes that we ignore or that are simply not of
interest.

In conjunction with subject-matter considerations, probabilistic models have the possi-
bility to identify associations between a given behaviour and an in�uencing variable, which
will provide partly explained and partly unexplained variation. This latter part can then
be attributed either to intrinsic variability or to our ignorance of further driving causes.
We obtain thus a constructive separation between known systematic behavioural patterns
and random variations that we will attempt to minimise.

3.1.2 Probabilistic models in building simulation
We do not arrive in a building or leave it at precisely determined schedules, neither do we
systematically open windows or act on shading devices at precisely de�ned thresholds of
temperature or at a given sun position. And yet this is how occupants' behaviour is cur-
rently represented in building simulation programs: not only does this crudely oversimplify
reality, but it also neglects the study of the variability caused by the diversity in human
behaviour.
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To address this we must �rst perform observations revealing the intrinsic trends for
humans to perform actions in the presence of driving stimuli. Our next step is to isolate a
su�cient set of parameters that genuinely in�uence observed actions, and to infer a model
formulation which adequately describes these relationships. In this we strive to achieve a
compromise between complexity and usability. Finally, a robust validation procedure must
assess the predictive power of the model.

3.2 Generalised linear models and logistic regression
3.2.1 Theoretical background
When modelling human actions, it is of interest to determine whether an action has taken
place, and whether this action was in�uenced by one or more system variables. Formally,
this implies the inference of a relationship between a dichotomous outcome variable Y and
a set of p independent predictors x = (x1, . . . , xp). We assume that the observations yi

of the random variable Y take values 0 or 1 for a negative or positive outcome, such as
failure/success or no action/action.

Typically, the outcome variable Y is not uniquely determined by the value of x, so the
quantity of interest is the mean value of the outcome variable, given the values of the set
of independent variables x = (x1, . . . , xp). This quantity is called the conditional mean
E(Y |x) and we will set p(x) = E(Y |x) to simplify notation; by de�nition, 0 ≤ p(x) ≤ 1.

In the context of a classical linear model we would de�ne a linear predictor η = xT β =
β0 + β1x1 + . . . + βpxp and assume that p(x) = η, but it would then be possible for p
to take values outside the interval [0, 1]. It is thus necessary to use a suitable monotone
transformation g of p(x), satisfying 0 ≤ g−1(η) ≤ 1.

However, the classical least squares regression theory used for linear models is inappro-
priate for binary outcome variables. Firstly because the linear predictor η and the mean
response are related by a transformation g of this latter, and also because of the violation
of the crucial assumption that errors are normally distributed.

Generalised linear models
In order to overcome the above limitation, the class of generalised linear models (GLM) was
developed, which extends the applicability of classical linear models beyond their restrictive
conditions. A GLM requires the de�nition of:

• A linear predictor η = xT β expressing the e�ect of the predictors x and parameters
β on the response;

• A distribution function f from the exponential family, which is the density of the
outcome variable Y , de�ned as

f(y, θ, φ) = exp
(

yθ − b(θ)
φ

+ c(y, φ)
)

, (3.1)

where θ is a function of the linear predictor η and φ is called the dispersion parameter.
Among many other, the normal, binomial, exponential and Weibull distributions are
members of the exponential family [36]. For instance, if we set

y =
k

n
, φ =

1
n

, θ = log
(

p

1− p

)
, b(θ) = log(1 + eθ), c(y, φ) = log

(
n
k

)
,
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then f is the binomial density,

f(n, k, p) =
(

n
k

)
pk(1− p)n−k, 0 < p < 1, k = 0, . . . , n. (3.2)

• A monotone link function g, providing the relationship between the linear predictor
and the mean of the response: η = g(µ), with µ = E(Y ).

In the case of a dichotomous outcome variable, f is taken as the binomial distribution,
de�ning the binomial family of GLMs. Three common choices for link functions in this
case are:

• The canonical logit link: g(p) = log
(
p(x)/(1− p(x))

)
,

• The probit1 link: g(p) = Φ−1(p), the quantile of the normal distribution,

• The complementary log-log link: g(p) = log(− log(1− p)).

The logit transformation is the canonical link function for binomial GLMs: it has the
property η = g(p) = θ, the canonical parameter in Equation 3.1. Furthermore, it has
several desirable properties such as symmetry and direct interpretability of the obtained
coe�cients, as exp(βi) measures the increase in the log-odds log

(
p/(1−p)

)
of the resulting

probability, for a unit increase of xi.
We will thus use the logit transformation for our models of the binomial family; such

GLMs are often referred to as logistic regression models. In this case the linear predictor η
is called the logit and the obtained probability function is called a logistic function, de�ned
as

p(x1, . . . , xp) =
exp(xT β)

1 + exp(xT β)
=

exp(β0 + β1x1 + . . . + βpxp)
1 + exp(β0 + β1x1 + . . . + βpxp)

, (3.3)

where x is the vector of the retained explanatory variables and β is the vector of the
regression parameters. We will often refer to the parameter β0 as the intercept and βi

(i 6= 0) as the slope associated with the variable xi. It follows that the residuals have a
binomial distribution with a mean of zero and variance p(x) · (1− p(x)).

Further discussion of generalised linear models is provided in Dobson [36], while Hosmer
and Lemeshow [37] focus on logistic regression.

Remarks on the logistic function

The logistic function with a single variable x has some important properties. In the case
β1 > 0, we notice that p(x) is monotonously increasing, p(x) → 0 for small x, and p(x) → 1
for large x (and conversely if β1 < 0). There is a characteristic value x50 = −β0/β1 for
which p(x = x50) = 0.5, and the variation of p is proportional to β1 at this point, as
dp/dx(x = x50) = β1/4.

The curves obtained using the three presented link functions di�er mainly in the tails,
as can be seen in Figure 3.1.

1The term �probit� comes from a contraction of probability unit, after which the term �logit� was
subsequently introduced.
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Figure 3.1: Comparison of the logit, probit and complementary log-log link functions
obtained after �tting hypothetical binary data (solid points)

Maximum likelihood estimation
The classical least squares regression used for �tting linear models is not applicable to
GLMs. We thus describe here brie�y the appropriate method for �tting GLMs, known as
maximum likelihood estimation.

Suppose that the sample observations yi arise from a probability density function
f(Y |β) which is known, but for which the vector of parameters β = (β1, . . . , βp) is un-
known. The likelihood function is the conditional probability of observing the sample,
given β, which is

L(β) =
n∏

i=1

f(yi|β), (3.4)

considered as a function of β for �xed yi, assuming that the observations yi arise from a
random sample. The log-likelihood function is de�ned as

l(β) = log(L(β)) =
n∑

i=1

log f(yi|β). (3.5)

Di�erentiating the likelihood (or equivalently the log-likelihood) yields the value of β de-
�ned as the maximum likelihood estimator β̂ of β.

In the case of a logistic regression model with a single explanatory variable x based on
sample observations (x1, y1), . . . , (xn, yn), the likelihood function becomes

L(β) =
n∏

i=1

p(xi)yi(1− p(xi))1−yi . (3.6)
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We di�erentiate the log-likelihood l(β) to �nd the value of β maximising L(β), which leads
to the estimated parameters β̂. Except in special cases, the maximum likelihood estimate
of β cannot be expressed explicitly. Algorithms used in statistical software to perform
estimates of logistic regression parameters � such as non-iterative weighted least squares �
are discussed by Hosmer and Lemeshow [37].

Standard errors and con�dence intervals
The observed information J(β) in a model with parameters β including p components and
log-likelihood l(β) and the expected (or Fisher) information I(β) are de�ned as symmetric
p× p matrices whose (i, j) elements are

J(β) = − d2l(β)
dβidβj

, I(β) = E(J(β)) = E

(
− d2l(β)

dβidβj

)
, (3.7)

It can be shown (see for instance Davison [38]) that for a large sample size n, β̂ is distributed
as a multivariate normal distribution Np(β0, I(β0)−1), where β0 is the true value of β.

As this result may be correctly approximated by β̂ ∼ Np(θ0, I(β̂)−1), it follows that
I(β̂)−1 is an estimator for the variance of the maximum likelihood estimator β̂. We may
thus construct a (1− 2α) level con�dence interval for β0,

(
β̂ − z1−αI(β̂)−1/2, β̂ − zαI(β̂)−1/2

)
, (3.8)

where z1−α and zα are the quantiles of the standard normal distribution.

3.2.2 Assessment of statistical signi�cance
Entia non sunt multiplicanda praeter necessitatem.
Entities should not be multiplied beyond necessity.
William of Ockham (ca. 1288-1347)

Likelihood ratio test statistic
We de�ne the deviance of a generalised linear model with associated likelihood Lfitted(β)
as

D = −2 log(
Lfitted(β)
Lsat(β)

) = −2 log(Lfitted(β)), (3.9)

with Lsat(β) being the likelihood of a saturated model, which may be shown to be equal
to one. The deviance may also be interpreted as equivalent to the residual sum-of-squares
in linear regression.

We may now de�ne a test for the signi�cance of k independent variables added to
a given model. Let us de�ne one model without the k variables with likelihood L0 and
deviance D0, and another model with L1 and D1. The likelihood ratio test statistic is
de�ned as the deviance di�erence caused by the inclusion of the k predictors,

G = D0 −D1 = −2 log(
L0(β)
L1(β)

), (3.10)

and asymptotically has a χ2 distribution with k degrees of freedom, under the hypothesis
that the model is correct. The associated p-value allows us to check the signi�cance of
adding new variables to the model.
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Wald test
The Wald test for the signi�cance of an independent variable is obtained by dividing the
estimate of the obtained intercept or slope parameter β̂i by its standard error SE(β̂i), giving
W = β̂i/SE(β̂i). Under the null hypothesis, this ratio asymptotically follows a standard
normal distribution, and the two tailed p-value P (|z| > W ) where z ∼ N (0, 1) is easily
obtained.

This test should not be used indiscriminately, as previous research conducted by Hauck
and Donner [39] has shown that it often fails to reject the null hypothesis for signi�cant
predictors. The likelihood ratio test statistic is thus generally preferred for assessing the
signi�cance of individual predictors.

Information criteria
Other criteria have been developed to assess the statistical signi�cance of predictors. For in-
stance, Akaike Information Criterion (AIC) [40] and Bayesian Information Criterion (BIC)
[41] propose expressions that balance the deviance of a model with a function of the num-
ber of predictors, in order to select an optimally parsimonious model. These are de�ned
as

AIC = −2l(β̂) + 2p, BIC = −2l(β̂) + p log n. (3.11)

Following from the de�nitions of these criteria, the optimal model is associated with the
lowest value of AIC or BIC.

3.2.3 Measures of goodness-of-�t
Statistical signi�cance itself does not directly provide for an assessment of the quality of
predictions given by a model. Furthermore, when a large database is used, a factor with
tiny predicted e�ect may be statistically signi�cant, but will not bring useful predictive
improvements to future observations.

Several criteria have therefore been developed to determine how well a given distribution
predicts the original outcome variable, i. e. the goodness of the �t of the model. In this
paper we present the area under the ROC curve (AUC), the Nagelkerke R2

N , the Somers'
Dxy and the Brier score B. A comparison of goodness-of-�t tests is presented by Hosmer
et al. [42].

Area under ROC curve
Having de�ned the probability of �nding the outcome variable in the positive state P (Y =
1|x), we use a cutpoint c such that Y = 1 if P (Y = 1|x) > c and conversely for P (Y =
1|x) ≤ c. Comparing values of Y predicted through this cutpoint with observed values
of Y , four possibilities may arise: a predicted positive outcome is (i) truly positive, (ii)
falsely positive (Type I error), a predicted negative outcome is (iii) truly negative, (iv)
falsely negative (Type II error). We note the occurrences in these four exhaustive cases as
respectively TP , FP , TN , FN . We may then de�ne the true positive rate (or sensitivity,
or hit rate) TPR = TP/(TP +FN), the false positive rate (or fall-out) FPR = FP/(FP +
TN) and the speci�city SPC = 1− FPR.

We may plot the sensitivity against the complementary of the speci�city for di�erent
values of the cutpoint between 0 and 1, giving the receiver operating characteristic (ROC)
curve [43]. As the cutpoint varies, the intrinsic trade-o� between sensitivity and speci�city
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appears clearly. The area under the ROC curve will be called here the AUC index, and is
a direct measure of the discriminating power of a given model. It may take values between
0.5 (we may as well toss a coin) and 1.0 (exact predictions), but values above 0.7 are
generally considered to give acceptable discrimination, after Hosmer and Lemeshow [37].

In summary, this index allows a simple but direct comparison between predictions and
observations.

Nagelkerke's generalised R2

Nagelkerke's generalised R2 [44] measures the proportion of explained deviance in a model
and is de�ned as

R2
N =

1− exp(−D/n)
1− exp(−Dnull/n)

, (3.12)

where D is the global log-likelihood ratio statistic of the considered model and Dnull =
−2 log(Lnull(β)) refers to the null model, based on n observations. It extends the well-
known de�nition of the proportion of explained variance R2 used in linear models to the
explained deviance in logistic models, although it does not exactly correspond to the pro-
portion of response variation explained by the model. Values of R2 obtained with this
convention are generally much lower than their linear model counterparts.

Brier score
The Brier score measures the accuracy of a set of probability assessments. It is de�ned as
the mean value of the squared di�erence between observed outcomes and their predicted
probabilities:

B =
1
n

n∑

i=1

(p̂i − yi)2, (3.13)

where p̂i are the predicted probabilities and yi the corresponding observed values for the
outcome variable, for each of n observations. It follows directly from the de�nition that a
lower Brier score indicates a higher accuracy.

Somers' Dxy rank correlation
The Somers' Dxy parameter is de�ned as the di�erence between concordance and discor-
dance probabilities. Given two individual values of the predictors x0 and x1, randomly
sampled from the populations with outcome variable Y0 = 0 and Y1 = 1 respectively, we
de�ne then Dxy = P (Y1 > Y0) − P (Y0 > Y1). Somers' Dxy may take values between 0
(random predictions) and 1 (perfect discrimination).

3.2.4 Variable selection procedure
In the procedure of inference of an optimal model, a central task is to correctly select an
optimal set of variables to be retained. This should result in an accurate, yet parsimonious
model, whose objective is to correctly predict future observations.

When too complex a model (one with too many parameters) is �tted, predictions
may show lower agreement with further data, as some of the included parameters may
contribute noise or express spurious correlations between the response and the predictors.
This situation is known as over�tting. Our preferred model should thus include all the
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driving parameters that signi�cantly in�uence the response to account for their impact
and no more.

To this end, and based on the indicators introduced in Sections 3.2.2 and 3.2.3, we
perform a forward selection where the best model with a single variable is �rst �tted,
and proceed to consider models with further variables and assess their increased predictive
value2. In this we �rst determine the best model containing two variables with their usual
statistical indicators, and retain this additional variable depending on its signi�cance and
on the stability of the primary variable; continuing this procedure for other predictors until
no added signi�cance is obtained. Fit residuals (see Section 3.2.5) are checked at each step
to assess the need for variable transformation or further re�nements.

This done, a cross-validation procedure needs to be performed. This involves predicting
the values of a part of the dataset (the validation set) using a model based on data from
the complementary part (the training set). This allows for a direct unbiased assessment of
the predictive power of a model.

Finally it is important to avoid the problem of collinearity, which arises when some
of the explanatory variables are strongly correlated with each other. In this case, the
solution for β will be unstable, that is some elements of β may display large variances,
while marginal changes in the data can cause large changes in β.

3.2.5 Model diagnostics
As with linear models, it is advisable to check whether some patterns are noticeable in the
�t residuals, which can indicate violations of model assumptions or inadequate �t. There
are several types of residuals used in logistic regression, amongst which we will examine
two:

1. The Pearson residuals:
ri =

yi −mip̂i√
mip̂i(1− p̂i)

(3.14)

2. The deviance residuals:

di = sign(yi −mip̂i) ·
√

2
(

yi log
(

yi

mip̂i

)
+ (mi − yi) log

(
mi − yi

mi(1− p̂i)

))
(3.15)

where p̂i are the �tted probabilities and yi the number of times that y = 1 among the mi

repeats of xi. Throughout this work we will systematically perform checks of the structure
in the residuals, although this will be explicitly mentioned only when a particular problem
is observed.

3.2.6 Ordinal logistic regression
We extend the previous discussion on logistic regression to the case where the outcome Y
is not dichotomous but may take values in any of J categories. In this case, the associated
distribution function is themultinomial density with denominator m and probability vector
p = (p1, . . . , pJ)T , de�ned as

f(y1, . . . , yJ , n, p1, . . . , pJ) =
n!

y1!y2! . . . yJ !
py1
1 py2

2 . . . pyJ
J , with

J∑

i=1

yi = n. (3.16)

2In this work we will not use an automatic stepwise variable selection procedure, whose intrinsic prob-
lems are well documented (see for instance by Harrel [45] for a detailed discussion).
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In the special case J = 2, Equation 3.16 reduces to the binomial distribution.
If there is a natural order among the J response categories, the situation can be simpli-

�ed to a proportional odds model, where the probability for Y to fall in a category higher
or equal to j is

p(Y ≥ j|x) =
exp(αj + xT β)

1 + exp(αj + xT β)
, (3.17)

for j = 1, . . . , J . With this formulation, the obtained regression parameters are consistent
with the situation of a binary outcome, as for any value of j we obtain a binary logis-
tic model for p(Y ≥ j). The distribution (3.17) includes J intercepts αj and (common)
regression parameters β. The proportional odds model o�ers thus a parsimonious repre-
sentation of ordinal responses. However the underlying assumption that the coe�cients β
are independent of j needs to be checked, by assessing how the variations of Y relate to
the mean of x.

Statistical signi�cance may be examined in a similar way as for binary models; likewise
tests for goodness-of-�t, discussed thoroughly by Fagerland et al. [46]. A detailed general
discussion of ordinal logistic regression models is provided by Agresti [47].

3.3 Random processes
In modelling human behaviour, we are often interested in the description of the dynamic
evolution of a random variable X with time t. Let then Xt denote a random or stochastic
process taking values in the state space S = {1, . . . , S}. The process consists then in the
set {Xt0 = s0, Xt1 = s1, . . . , Xtn = sn} which is the collection of the observed states of
X for all values at time t. It is possible to consider t either as discrete � in this case Xt

is a discrete-time random process � or continuous � Xt is then a continuous-time random
process.

3.3.1 Bernoulli processes
A Bernoulli process is a discrete-time stochastic process consisting of a sequence of inde-
pendent identically distributed Bernoulli random variables Xt, for t = {t0, . . . , tn}, such
that for each t, Xt ∈ {0, 1}, and P (Xt = 1) = p for all t. If p is constant the process is
homogeneous (or stationary) whereas if p varies with time the process is inhomogeneous.
Put formally,

P (Xti+1 = si+1|Xti = si, Xti−1 = si−1, . . . , Xt0 = s0) = P (Xti+1 = si+1) = p. (3.18)

The independence assumption implies that past and present values of Xt do not provide
any information about future outcomes. A Bernoulli process has thus no memory and each
step may be seen as the start of a new process. For instance, it correctly describes a set of
coin tosses (with p = 1/2 for an unbiased coin). This kind of process may be generalised
to a larger set of possible outcomes, each with probability pj which may or may not vary
with time. However, in our context the assumption of independence is often excessively
simplistic.

3.3.2 Markov processes
Markov processes extend Bernoulli processes by including the current state Xti to predict
Xti+1 . This assumes that all of the information describing the process history is carried by
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Xti , which is expressed by the Markov property

P (Xti+1 = si+1|Xti = si, Xti−1 = si−1, . . . , Xt0 = s0)
= P (Xti+1 = si+1|Xti = si) = psi,si+1 (3.19)

Markov models which predict states at discrete equally-spaced times are called Markov
chains. In this case, we can de�ne transition probabilities pij that can be arranged as a
transition matrix P , with the properties that

∑
i pij = 1 and pij ≥ 0, for all i, j. With

this convention, it can be shown that the (i, j)th element of Pn is the n-step transition
probability p

(n)
ij = P (Xn = j|X0 = i).

Markov chains, de�ned by Equation 3.19 are called �rst-order chains: they depend only
on the current state of Xt through pij , while Bernoulli processes � with the independence
assumption (Equation 3.18) � are zeroth-order chains, and we have pij = pj . It is possible
to extend this reasoning to chains of order m > 1, where transition probabilities depend
on the m previous states:

P (Xti+1 = si+1|Xti = si, Xti−1 = si−1, . . . , Xt0 = s0)
= P (Xti+1 = si+1|Xti = si, Xti−1 = si−1, . . . , Xti−m+1 = si−m+1) = psi−m+1···si−1sisi+1 .

(3.20)

In this case the signi�cance of increasing the order of the chains should be tested. For
instance, we may estimate p̂ij and p̂j from the observed counts of transitions nij . The
likelihood ratio statistic may then be used to compare the zeroth and �rst order chains,

W = 2
∑

i,j

nij log(
p̂ij

p̂j
), (3.21)

where W is asymptotically chi-squared distributed with (S − 1)2 degrees of freedom. See
Davison [38] or Norris [48] for further theoretical details and Avery and Hendersen [49] for
an interesting application.

Markov processes may also be de�ned on a continuous-time basis (see for instance
Norris [48] for further discussion) in which delays between transitions are exponentially
distributed.

3.4 Survival analysis
Survival analysis typically attempts to model data in which it is the time elapsed until
an event occurs that is of interest. This statistical method has long-since been applied in
reliability studies and biomedical research, where the survival durations until a failure or a
death is studied. In our context, this type of model may be relevant to predict the delays
until actions are performed by building occupants, such as closing a window once it has
been opened.

The durations t are modelled as a non-negative random variable T , with cumulative
distribution function F (t) = P (T ≤ t) and corresponding probability density function f(t).
We de�ne then the associated survival function (or reliability function) S(t) = P (T > t) =
1 − F (t) and the hazard function h(t) = f(t)/S(t). It follows from these de�nitions that
f(t) = −dS(t)/dt and h(t) = d log(S(t))/dt.

A strength of these statistical methods lies in the possibility of including survival times
containing partial information in the analysis, such as survival for at least a given period
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of time, without needing further knowledge about the process after this time. These non-
comprehensive observations are denoted as censored data3.

Non-parametric estimates
Provided ri, the number of surviving elements until time ti (including censored observa-
tions) and di, the number of �failures� at time ti, we �nd that the conditional probability to
survive beyond ti, knowing that the subject is alive just before ti is given by (ri−di)/ri. The
survival function can then be estimated by the non-parametric Kaplan-Meier or product-
limit estimator [50],

ŜKM (t) =
∏

i|ti<t

(1− di

ri
) (3.22)

which de�nes unambiguously an estimator of the distribution F (t) = 1−S(t) for durations.

Parametric estimates
However, in order to perform a parametric estimation, a survival distribution has to be
�tted using maximum likelihood regression. We consider here two particular distributions
to be used in our study:

• The exponential distribution, with f(t) = λ exp(−λt), S(t) = exp(−λt), which as-
sumes a constant hazard rate h(t) = λ = const. This is the simplest model.

• The Weibull distribution, with f(t) = λα(λt)α−1 exp(−(λt)α), S(t) = exp(−(λt)α)
and h(t) = λα(λt)α−1, where the parameter α is called the shape and λ the scale. This
o�ers more �exibility. In the special case α = 1, it corresponds to the exponential
distribution. When α < 1, h(t) decreases with t, and failures are more likely at small
times; the converse is true for α > 1.

As for generalised linear models (Section 3.2), maximum likelihood estimation is used to
calculate the parameters of S(t). Equation 3.4 has then to be modi�ed to include censored
data, which yields

L(β) =
n∏

i=1 (yi uncens.)

f(yi|β) ·
n∏

i=1 (yi censored)

S(yi|β), (3.23)

where yi denotes either ti if uncensored or the censoring time. Thus, Equation 3.4 is
augmented by a contribution that is the probability that Ti is higher than the censoring
time. We refer the reader to Davison [38] or Kleinbaum and Klein [51] for further details
on survival analysis.

3For example, survival analysis could be used to model the duration for which an occupant will leave a
window closed following their arrival, or open since its opening, according to relevant driving parameters.
Observations such as closing on departure or the absence of opening during the whole occupancy period
can be included in the modelling of duration of window openings as censored data.



Chapter 4

Modelling actions on windows

Pour examiner la vérité, il est besoin, une fois dans sa
vie, de mettre toutes choses en doute autant qu'il se peut.
If you are to be a real seeker after truth, it is necessary
that at least once in your life you doubt, as far as
possible, all things.
René Descartes (1596-1650)

Based on almost eight years of continuous measurements (Section 2.1), we have anal-
ysed in detail the in�uence of occupancy patterns, indoor temperature and outdoor cli-
mate parameters (temperature, wind speed and direction, relative humidity and rainfall)
on window opening and closing behaviour. In this we have also considered the variability
of behaviours between individuals. This chapter begins with a detailed state of the art, fol-
lowed by a presentation of some key �ndings from these analyses. We go on to develop and
test several modelling approaches, including Bernoulli random processes based on proba-
bilistic logistic models, Markov chains and continuous-time random processes. Informed
by detailed statistical analysis and cross-validation of each variant, we propose a hybrid of
these techniques which models stochastic window usage behaviour with optimal accuracy1.

4.1 Introduction
We present in this section the current state of research relating to the prediction of occu-
pants' actions on windows, and identify the key advances that have been made in this �eld
together with some open questions.

4.1.1 State of the art
Pioneering investigations in residential buildings performed by Dick in 1951 [54], Brundrett
from 1975 to 1979 [55, 56] and Lyberg in 1982 [57] reached agreement on the fact that ac-
tions on windows were positively correlated with external air temperature, and marginally
negatively associated with wind speed. The in�uence of other stimuli was not examined.

1A substantial proportion of this chapter was presented at the 11th International Building Performance
Simulation Association Conference [52] where it was awarded the Arup Prize for the IBPSA Student
Paper on Simulation and Design. A more complete paper was also published in the journal Building and
Environment [53], where it received the Best Paper Award for 2009.

39
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In 1984, Warren and Perkins [58] showed � using stepwise multiple correlation analysis
� that external air temperatures accounted for 76% of the observed variance in the opening
status of windows, the sunshine for an additional 8% and wind speed for 4%. A linear
relationship between the percentage of rooms with at least one window open (a boolean
response) was linked to the external temperature. However this was not formally equivalent
to a probability, as p may take values outside of the range [0, 1]. A questionnaire conducted
as a part of this study also revealed for the �rst time that occupants act on their windows
particularly often on arrival and at departure.

A �rst attempt to develop a coherent mathematical model to predict the state of
windows was performed by Fritsch et al. in 1991 [59, 60]. Based on measurements of
the opening angle of four windows in four o�ce rooms recorded every half an hour in the
LESO building (see Section 2.1.1), a discrete-time Markov process (see Section 3.3.2) was
developed to predict transitions between bins of opening angles. The model is formulated
as Markov chains de�ning transition probabilities between six states, each corresponding
to a de�nite class of opening angles and adjusted for four di�erent outdoor temperature
ranges 2. The model includes transition matrices adapted to each occupant, in order to
account for signi�cant observed variations. The dependance of the percentage of opened
windows versus wind speed and sunshine was also examined, but no signi�cant variation
was observed for wind speeds lower than 5-6 m/s. Although south facing vertical irradiance
was observed to be correlated, especially in the mid-season, only outdoor temperature was
retained as a model parameter.

Towards the end of the 1990s, interest in the adaptive approach to thermal comfort
drew attention to the relationship between behaviour and thermal satisfaction. This led
to several measurement campaigns in Pakistan from 1993 to 1996 [62, 63], the United
Kingdom [64, 65] and �ve European countries [66].

Based on measurements from these three surveys, Nicol [67] proposed in 2001 the �rst
coherent probability distribution for the prediction of the state of windows, as logistic
functions (see Section 3.2) of indoor and outdoor temperature. In most cases the cor-
relation with indoor temperature is similar to that with outdoor temperature, but Nicol
recommends the use of outdoor temperature on the basis that it is an input of any sim-
ulation program, while indoor temperature is an output. However, Nicol and Humphreys
[68] later reported in 2004 that indoor temperature was a more coherent predictor for the
use of windows than outdoor temperature. This approach may seem more sensible: as
Robinson [69] points out, predicted probabilities of interaction are otherwise independent
of the design of the buildings in which occupants are accommodated.

Rijal et al. [70, 71] subsequently published in 2007 a more re�ned model, considering
both indoor and outdoor temperature. A logistic model with two variables was derived for
the probability of a window to be open. A deadband of ± 2◦C for θin and ± 5◦C for θout

was de�ned to distinguish the probability of opening from that of closing. This re�nement,
although not based on any observed actual openings and closings, potentially solves the
problem of repeated actions that would take place if a single distribution was used. The
implementation in ESP-r of what has become named the Humphreys algorithm, involves
the following steps:

1. Inputs parameters θout, θout,rm, θin and θop are retrieved;
2These six classes are de�ned by the thresholds 0◦, 1◦, 15◦, 35◦, 60◦, 90◦. The choice of narrower classes

at small angles is based on the desire to obtain meaningful air�ow rates, which vary more sharply at low
angles (see for instance [61]). The four outdoor temperature domains are de�ned by the thresholds 0◦C,
8◦C and 16◦C.
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2. The comfort temperature θcomf is computed from θout,rm according to the adaptive
algorithm included in the CEN standard (Section 6.1.1).

3. If |θop−θcomf | > 2◦C, the probability of action is calculated by logit(p) = 0.171 ·θop+
0.166 · θout − 6.4; else, if |θop − θcomf | ≤ 2◦C the window state remains unchanged.

4. This probability is compared with a random number to determine the next window
state.

A comparison between observed and simulated window opening proportions for several
indoor and outdoor temperatures ranges is provided as validation.

Page developed in 2006 [72] a behavioural model of actions on windows, relating indoor
temperature and pollutant concentration with interaction probability, based on thresholds
de�ned by Fanger's thermal (see Section 6.1.1) and aeraulic [73] comfort models. Interac-
tion occurs when the calculated indoor concentration exceeds a critical concentration, or
when hot or cold comfort limits (de�ned by |PMV | > 2) are surpassed.

Based on their summer �eld survey, Haldi and Robinson [74] suggest that in sum-
mer the strong correlation between indoor and outdoor conditions in naturally-ventilated
buildings could dampen the e�ciency of logistic models with these two variables. The
works of Yun and Steemers [75, 76] seem to strengthen this hypothesis. Rijal et al. [77]
have subsequently published a re�nement of the Humphreys algorithm, including a win-
dow opening e�ectiveness parameter. This modi�cation imposes a window to be closed if
θout,rm > 28.1◦C and θout > θin + 5◦C.

Yun and Steemers [75, 76] performed a �eld survey on 6 o�ces facing east, west or
south in 2 buildings, during 3 months in summer only. Indoor temperature was retained as
a driving stimulus, considering that �the prediction as a function of external temperatures
cannot be considered as an intrinsic result�, in agreement with Robinson's observation [69].
It was noticed that changes in window states mainly occurred on arrival or at departure.

A useful feature of [75, 76] is the use of separate probabilistic sub-models for the
opening of windows at arrival and during occupancy3. Retained o�ces did not enable
night ventilation, so actions on departure are not considered (windows are assumed to be
closed at departure). Furthermore, this model predicts changes in window state from open
to closed and from closed to open using indoor temperature and previous window state
as predictors. Analyses show that the addition of outdoor temperature is not signi�cant,
in agreement with the summer survey of Haldi and Robinson [74]. The probability of
opening on arrival is a logistic model based on indoor temperature, while a linear function
is proposed for actions during occupancy. A short comparison between participants is also
proposed. The �nal model, which has been implemented in ESP-r [80], retains thus indoor
temperature, occupancy transitions and previous window state. Whilst this model may
describe actions during the summer (for cases where deliberate night ventilation is not
exercised), there is a question as to its validity during the winter period.

Herkel et al. [81, 82] also pointed out that most window openings can be associated with
the arrival of an occupant, and so proposed separate sub-models for windows openings and
closings on arrival, at departure and during occupancy. These sub-models consider outdoor
temperature as the driving stimulus, based on the observation that this variable had a
higher correlation with the hourly mean value of opening status of the monitored windows4.

3Note that this distinction is not new, as it has been previously employed to the problem of light
switching prediction [78, 79].

4An additional e�ect from season was noticed (eg. similar outdoor temperatures do not imply same
action probabilities in spring or autumn), although this is not considered in the �nal model.
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The �nal model is then formulated as six probabilities of opening and closing for arrival,
intermediate presence and departure, given as quadratic functions of outdoor temperature.
Such a distribution �ts data acceptably well on observed small action probabilities, but is
not formally consistent as p may take values outside of the range [0, 1].

Based on eight months of measurements in six o�ces Mahdavi et al. [83, 84] noticed
that windows are opened more frequently early in the day, after lunch time and towards the
end of working hours; while closing actions are observed more frequently before occupants
leave their o�ces for the day. An increased proportion of open windows was noticed when
outdoor temperature rises to 26◦C, with a decreasing trend above this value. There was
no attempt to infer a predictive model.

Supported by two surveys (once in summer and once in winter), each consisting of a
single questionnaire concerning window opening behaviour sent to 4948 dwellings in 2008,
Andersen et al. [85] used multiple logistic regression analysis to deduce odd ratios for the
signi�cance of a set of variables. It was noticed that the respondent's gender, the outdoor
temperature, the perceived illumination, air quality and noise levels had a statistically
signi�cant impact on �perceived� window opening behaviour. However, these conclusions
were not based on any direct measurements.

4.1.2 Key advances, open questions and research needs
From the above review, we conclude the following:

• Explored methods for the simulation of actions on windows include logistic models
and discrete-time Markov processes.

• Thermal stimuli have been shown to be the predominant causes for actions (in-
deed non-thermal variables are generally ignored), but no clear consensus is reached
whether indoor or outdoor temperature should be used as the independent variable
in the simulation of actions on windows.

• It is known that the in�uence of occupancy patterns is important.

• Independent studies have observed speci�cities in summer behaviour, but seasonal
variations in behaviour have yet to be taken into account.

• The treatment of occupant behaviour towards night ventilation is not considered.

• Window opening angles are mostly ignored, even though these are crucial for reliable
air �ow prediction.

• Published studies do not provide any common robust cross-validation procedure,
which prevents any comparison of quality between published models.

• The case of o�ces with several occupants is not speci�cally treated (authoritarian
versus democratic behaviour).

• Existing models are informed by measurements in o�ce buildings and behaviour in
residential environment is not speci�cally treated.
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Figure 4.1: Observed proportions of window openings and closings taking place in di�erent
occupancy situations (dark grey: arrival, grey: during occupancy, light grey: departure)
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Actions Arrival Intermediate Departure Total
Opening 1905 (1.9%) 2923 (0.27%) 266 (0.27%) 5094 (0.40%)
Closing 713 (0.7%) 3566 (0.33%) 794 (0.81%) 5073 (0.40%)
Left open 25424 (25.8%) 356707 (32.85%) 25892 (26.33%) 408023 (31.81%)
Left closed 70313 (71.5%) 722762 (66.56%) 71403 (72.60%) 864478 (67.39%)
Total 98355 (7.7%) 1085958 (82.6%) 98355 (7.7%) 1282668 (100%)

Table 4.1: Classi�cation of observed actions on windows based on 5 minute time steps with
respect to occupancy status

4.2 Results
We present in this section some preliminary observations on window opening behaviour
followed by results obtained from the application of the di�erent models inferred on the
basis of the concepts introduced in Chapter 3. The statistical software R [86] and statis-
tical analysis functions of its package Design [87] were used for all data analyses and for
programming the models.

4.2.1 Preliminary observations
Occupancy patterns. On average, occupants performed 2.409 opening (and closing)
actions per day. As noticed in previous surveys [58, 76, 82], actions on windows more often
occur when occupants arrive or leave their o�ces (Figure 4.1). From the �gures presented
in Table 4.1, we deduce that 37.4% of all recorded opening actions take place on arrival
(5.2% at departure), and that 14.1% of closing actions happen on arrival (15.7% of them
at departure). For this a �rst di�culty is the arbitrary choice of a temporal threshold
for the de�nition of events occurring just after arrival or before departure. We plot the
empirical cumulative distribution functions (ECDF) of time intervals between occupancy
transitions and actions on windows (Figure 4.1(c)), and we notice that a threshold of �ve
minutes de�nes a limit above which the slopes of the ECDFs remain relatively constant,
suggesting that all events related to occupants' arrival and departure have by that time
been captured. A possible explanation is that during this time occupants may perceive
considerable di�erences in thermal and/or olfactory stimuli compared to their previous
(possibly external) environment and their o�ces. These di�erences may be exacerbated
by the absence of actions while the occupant was not present.

For o�ces with two occupants, we notice a slightly greater proportion of openings and
closings during occupancy (Figure 4.1(a)). However, in this case many actions on arrival
or departure are classi�ed as intermediate actions, for instance when an occupant arrives
in an already occupied o�ce and opens the window. This question relates to the issue of
group actions, discussed in Section 4.2.5.

In�uence of environmental parameters. Our �rst step in the inference of a model
linking the occurrence of open windows and one or several physical predictors involves
examining the observed proportion of windows open with respect to the measured physical
parameters. In Figure 4.2 we chart separately these proportions (based on observations
taken every 10 minutes) grouped by bins of each measured physical parameter, with their
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statistical uncertainties5.
A clearly increasing proportion may be observed for θin rising from 20◦C to 28◦C, with a

possibly signi�cant decrease above this range6 (Fig. 4.2(a)). A similar phenomenon occurs
with θout, the maximum proportion being reached around 26◦C, above which a decrease
is clearly signi�cant (Fig. 4.2(b)). This type of behaviour was previously remarked by
Rijal et al. [77]. Both thermal variables are thus clearly linked with actions on windows,
in agreement with previous research. A less sharp decrease in the proportion of windows
open is visible when outdoor humidity rises (Fig. 4.2(c)). Further examination will assess
whether these variations are intrinsically in�uenced by each parameter, as these variables
are correlated: ρ(θin, θout) = 0.62, ρ(θout, φout) = −0.45.

Mean wind speed vwind (Fig. 4.2(e)) increase is linked with a decreased proportion
of open windows for vwind > 2 m/s. No particular variation may be observed with wind
direction (Fig. 4.2(f)). No clear pattern may be noticed with respect to rainfall Dprec (Fig.
4.2(d)), which is slightly correlated with relative humidity: ρ(Dprec, φout) = 0.25.

Based on these preliminary examinations, a relevant model would include in order of
priority θin, θout and possibly φout and vwind.

Variability between occupants and personal patterns related to actions on win-
dows. We have noticed that, while the climatic conditions are fairly similar between the
studied o�ces, some occupants use their windows more frequently than do others (see
Table 2.5). Reinhart [79] suggested a distinction between �active� and �passive� occupants
in the case of actions on blinds and lights; perhaps a similar classi�cation may be applied
for windows? To test this hypothesis we shall �rst produce generalist models based on
all occupants, and go on to develop a method to treat variability among occupants in
Section 4.2.5.

Towards an appropriate model for the prediction of actions on windows. These
initial observations enable us to draw some �rst conclusions about the general form of a
comprehensive model:

• Occupancy patterns should be integrated, for instance to facilitate separate treatment
of actions on arrival, departure and during occupancy. This implies the necessity to
explicitly model occupancy itself;

• Among possible other parameters, indoor and outdoor temperatures are the main
driving stimuli for actions on windows;

• A possible re�nement could be to distinguish between �active� and �passive� users,
and possibly between single and multi-occupied o�ces.

5We use the binomial cumulative distribution function to compute exact con�dence intervals, rather
than the more usual asymptotic normal interval. See Brown et al. [88] for further discussion on these
calculations.

6A higher proportion of windows open at low θin is noticeable in Figure 4.2(a). This is caused by a
window left open while θout is low. The 95% con�dence intervals are large, owing to the very small number
of observations within the relevant bins.
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(f) Wind direction, bin width 1◦

Figure 4.2: Observed proportion of windows open for speci�ed bandwidths as a function of
di�erent measured physical parameters with binomial 95% level con�dence intervals and
�tted logistic regression curves (red: linear, blue: fourth degree polynomial)
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Figure 4.3: Observed proportion of windows open for speci�ed bandwidths as a function
of deviations from comfort temperatures with binomial 95% level con�dence intervals and
�tted logistic regression curves
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(b) Outdoor temperature and relative humidity, bin
widths 0.5◦C and 1%RH
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(c) Outdoor temperature and wind speed, bin
widths 0.5◦C and 0.2 m/s
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(d) Outdoor temperature and wind direction, bin
widths 0.5◦C and 1◦

Figure 4.4: Observed proportion of windows open for speci�ed bandwidths of di�erent
measured physical parameters with contour lines of equal �tted probabilities curves
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Variable a Wald Z b Wald Z
θout -2.5506 ± 0.0043 -594.0 0.12750 ± 0.00025 502.1
θin -7.202 ± 0.025 -288.0 0.2716 ± 0.0011 257.7
φout 0.5693 ± 0.0078 72.9 -0.02063 ± 0.00012 -179.0
vwind -0.5542 ± 0.0030 -185.9 -0.07857 ± 0.00077 -102.7
αwind -0.9809 ± 0.0032 -304.3 0.001084 ± 0.000017 64.4
Dprec -0.8126 ± 0.0018 -460.1 0.0311 ± 0.0022 14.0
fR -0.7944 ± 0.0018 -440.9 -0.2395 ± 0.0075 -32.1
fWS (< 1.5) -0.8731 ± 0.0037 -236.9
fWS (1.5-2.5) 0.3940 ± 0.0050 79.5
fWS (2.5-4.7) 0.0958 ± 0.0050 19.2
fWS (> 4.7) -0.2857 ± 0.0053 -54.2
fWD (North) -1.2096 ± 0.0034 -358.7
fWD (East) 0.6589 ± 0.0053 124.8
fWD (South) 0.6979 ± 0.0046 150.4
fWD (West) 0.3445 ± 0.0050 69.2
θout − θ

(ASHRAE)
comf 0.3866 ± 0.0029 134.1 0.14290 ± 0.00029 486.1

θin − θ
(ASHRAE)
comf -0.4908 ± 0.0023 -215.0 -0.2085 ± 0.0010 -206.6

θout − θ
(CEN)
comf 0.6031 ± 0.0032 188.0 0.14310 ± 0.00029 485.6

θin − θ
(CEN)
comf -0.8145 ± 0.0018 -457.4 -0.2426 ± 0.0011 -214.1

Table 4.2: Regression parameters for logistic models including a single variable (in all
cases, p < 0.001 according to Wald and likelihood ratio tests). For models including
dummy variables with several levels (fWS and fWD), �tted values for baseline levels are
given as intercepts.

4.2.2 Models based on single probability distributions
From now on we use the following notation for all the models based on logistic regression:

logit(p) = log(
p

1− p
) = a + binθin + boutθout

+bφφout + bRfR + bWSfWS + bWDfWD, (4.1)

where a and bi are the regression parameters and fR, fWS and fWD are dummy variables
(based on a crude discretisation, see Section 2.2) for respectively rain presence, wind speed
levels and wind direction sectors.

Univariate logistic models
In this section, we present results from separate logistic regressions using each available
independent variable, together with some possible transformations of these latter.

Models with untransformed variables. The regression curves are presented in Fig-
ures 4.2(a)-4.2(f) and the regression parameters are given in Table 4.2. From this we
observe statistical signi�cance (p < 0.001) of each of the variables tested. The model with
θout has the largest likelihood ratio statistic, implying that it best describes the variations
of our outcome variable.
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However, as discussed in Section 3.2.3, statistical signi�cance itself does not necessar-
ily provide clear-cut conclusions concerning the model's capacity to correctly explain our
outcome variable. We therefore give in Table 4.3 a summary of the possible criteria of
goodness-of-�t for each of these models. According to these goodness-of-�t criteria, the
model with θout once again o�ers the best �t among all variables. We thus conclude that
θout should be integrated in a �nal model, possibly in conjunction with other variables if
their contributions are statistically signi�cant and improve the quality of adjustment. The
implications of this superiority of θout as a predictive variable are discussed in Section 4.3.1.

Models using polynomial logits. We noticed in Figure 4.2(b) that a linear logit does
not predict well the observed proportions of windows open at high outdoor temperatures.
In order to account for this phenomenon, a possible re�nement would be to use a polynomial
of degree q for the logit of the probability. In this case:

logit(p) = a + b1θout + b2θ
2
out + . . . + bqθ

q
out, (4.2)

where we use stepwise logistic regression to determine the highest signi�cant order. This
procedure determines that a fourth degree polynomial is appropriate, with regression
parameters a = −2.387 ± 0.005, b1 = (5.55 ± 0.15) · 10−2, b2 = (1.73 ± 0.21) · 10−3,
b3 = (2.88 ± 0.11) · 10−4, b4 = (−9.64 ± 0.19) · 10−6. We see in Figure 4.2(b) that the
associated probability distribution �ts better the observed proportions (blue curve); par-
ticularly for high values of θout. Furthermore, regressions with polynomials of lower degree
do not o�er clear improvements compared to the linear logit model. Although goodness-
of-�t indicators are not much improved (Table 4.3), this is the best model when using one
sole predictor. Similarly, a limited but signi�cant improvement is obtained when using a
polynomial logit with θin as predictor (Figure 4.2(a)).

Although these models appear to better emulate observed trends, models with polyno-
mial terms tend to be criticised because of the lack of interpretability of their regression
coe�cients; other approaches are therefore often preferred. Given the structure of the
observed proportions, viable possibilities include a non-parametric estimation of the prob-
ability, or the �tting of two linear logistic models for the distinct domains of θout where
the observed behaviours are di�erent.

Models based on deviations from comfort temperature. Another possible choice
for a driving variable is to use the deviation between θin or θout and a comfort temperature
θin,comf ; for example de�ned by the adaptive comfort model of the CEN or ASHRAE
standards (see Section 6.1.1). We perform logistic regression with (θ−θin,comf) as a driving
variable, alternatively with θ = θin and θ = θout. The corresponding results are given in
Figure 4.3 and Table 4.2 (bottom).

In this case, we obtain slightly lower goodness of �t and likelihood ratio; that is,
the quality of adjustment is somewhat lower than when using raw thermal variables. It
is however worth noting that the proportion of windows open reaches a maximum near
θout = θin,comf . The use of the equations given alternatively by the CEN or ASHRAE
standards produce similar results.

Multivariate logistic models
Following from these univariate models, we proceed to consider models with several vari-
ables and assess their increased predictive value. In this we determine the best model
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Variables LR AUC Dxy Γ τa R2
N B

θout 330873 0.782 0.563 0.565 0.240 0.273 0.168
θin 71243 0.632 0.264 0.269 0.113 0.064 0.202
φout 32566 0.590 0.179 0.181 0.076 0.030 0.208
vwind 10992 0.538 0.077 0.078 0.033 0.010 0.212
patm,red 9556 0.559 0.118 0.122 0.050 0.009 0.212
αwind 4153 0.531 0.063 0.065 0.027 0.004 0.213
Dprec 202 0.493 -0.013 -0.112 -0.006 0.000 0.213
fWD 27756 0.579 0.157 0.211 0.067 0.025 0.209
fWS 19126 0.566 0.133 0.176 0.057 0.017 0.211
fR 1065 0.507 0.014 0.119 0.006 0.001 0.213
θout (polyn.) 349191 0.783 0.566 0.568 0.241 0.287 0.166
θin (polyn.) 91047 0.637 0.274 0.281 0.117 0.081 0.200
θout − θ

(CEN)
comf 309681 0.774 0.548 0.550 0.234 0.258 0.171

θout − θ
(ASHRAE)
comf 308337 0.774 0.548 0.549 0.234 0.257 0.171

θin − θ
(CEN)
comf 47692 0.603 0.206 0.208 0.088 0.043 0.206

θin − θ
(ASHRAE)
comf 44142 0.602 0.203 0.205 0.087 0.040 0.207

θout, θin 343507 0.785 0.570 0.571 0.243 0.283 0.167
θout, φout 342396 0.785 0.569 0.570 0.243 0.283 0.167
θout, αwind 334066 0.783 0.566 0.567 0.241 0.276 0.168
θout, vwind 331803 0.782 0.564 0.566 0.241 0.274 0.168
θout, Dprec 331616 0.782 0.564 0.566 0.240 0.274 0.168
θout, fWD 332478 0.782 0.565 0.566 0.241 0.275 0.168
θout, fWS 331683 0.782 0.564 0.565 0.240 0.274 0.168
θout, fR 331325 0.782 0.564 0.566 0.240 0.274 0.168
θout, θin, φout 354434 0.789 0.577 0.578 0.246 0.291 0.165

Table 4.3: Goodness-of-�t estimators for logistic models including one or several variables
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containing two variables, and provided the signi�cance of the added variable and the sta-
bility of the primary variable; continuing this procedure for other predictors until no added
signi�cance is obtained. This procedure is known as forward selection (see Section 3.2.4).

Models with two variables. Based on logistic regression for models including together
θout and each other available variable, we observe (Table 4.3) that the model with θout

and θin (a = 0.794 ± 0.030, bout = 0.14760 ± 0.00031, bin = −0.1541 ± 0.0013) has the
highest statistical signi�cance, according to the likelihood ratio statistic. Furthermore,
this model is the one that �ts best the data, according to all our statistical criteria; but
the improvement to these indicators from adding θin is rather modest. However a plot of
the observed proportions of windows open versus θout and θin, with regression surface levels
(Figure 4.4(a)), shows that observed variations are better accounted for and thus con�rms
the existence of an independent contribution of each variable. Finally, the stability of the
slope associated with θout is preserved, as its standard error remains extremely low, which
shows that the correlation between θin and θout is not problematic for this model.

Models with three or more variables. Now that the model including θout and θin

is retained, we check for the signi�cance of the inclusion of a third parameter. Based on
regression results for the models with a third variable, the best model includes the external
relative humidity φout and this inclusion is statistically signi�cant (p < 0.001). However the
goodness-of-�t criteria increase only very slightly (Table 4.3); that is, the added predictive
accuracy from the inclusion of φout is marginal. Some other parameters in models with four
or �ve variables were also found to be statistically signi�cant, but without any increase
in the goodness-of-�t indicators. For the sake of parsimony, it seems sensible to keep the
model with just the two variables θout and θin.

Other factors. Inspired by the results of Herkel et al. [81, 82], we attempted to include
a factor with twelve levels corresponding to each month of the year, in order to check the
existence of an additional e�ect of season on window actions. This was not found to bring
any signi�cant improvement; that is we observe almost the same regression parameters
based on θout for every month.

4.2.3 Model based on a discrete-time Markov process
As noted earlier, a single probability distribution ignores the real dynamic processes leading
occupants to perform actions, as the data used to infer them are aggregated observations
of window states, but not actual opening or closing actions7. In other words these models
do not describe an actual probability of opening or closing, but a probability for a window
to be �found� open, provided relevant physical parameters. Furthermore it ignores the
particular patterns caused by occupancy events, like arrivals or departures of occupants.
We thus present in this section an alternative dynamic modelling approach to account for
the real adaptive processes of occupants.

Guided by the initial observation that occupancy events have an in�uence on actions
(Section 4.2.1), we may infer di�erent transition probabilities Pij for these events, so that
we have three di�erent sub-models for actions on arrival, at departure and during oc-
cupancy, as proposed in [76, 82]. Simulation may then be conducted as presented in

7The approach used in the Humphreys algorithm [70, 77] is a possible adjustment choice to include
dynamics in such probability distributions, although not based on observed actions.
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Figure 4.5: General scheme of the Markov process

Figure 4.5: depending on the inital state of the window, opening on arrival is predicted
by a speci�c probability P01,arr, and closing on arrival by P10,arr. Actions after arrival are
predicted by another sub-model launched at regular time steps, with transition probabili-
ties P01,int if the window is closed at this time and P10,int if it is open. When the occupant
leaves his o�ce, a third sub-model predicts actions on departure, with transition probabil-
ities P01,dep and P10,dep. In each case, P00 and P11 are easily deduced: P00 = 1− P01 and
P11 = 1− P10.

For each sub-model, we �lter the data to retain observations related to the relevant
occupancy status, and perform logistic regressions on the most relevant environmental
parameters; retaining the optimal set of variables in this adapted version of Equation 4.1:

logit(p) = a + binθin + boutθout + bout,dmθout,dm + bRfR + bWSfWS + bWDfWD

+bGFfGF + bpresTpres + babs,prevfabs,prev + babs,nextfabs,next, (4.3)

where Tpres is the ongoing presence duration, fabs,prev, fabs,next and fGF are binary variables
equal to one respectively for preceding or following absences longer than 8 hours and for
o�ces not on ground �oors, and bpres, babs,prev, babs,next, bGF are their associated regression
parameters.

Sub-model for actions on arrival

Based on our preliminary observations, we will include all actions performed within 5
minutes of arrival in this sub-model. Using the variable selection procedure presented in
Section 4.2.2, we conclude that the best model with a single variable uses θin as a predictor
for openings and for closings, while the second most in�uential physical variable is θout.
We show regression results in Table 4.4 (top) and in Figures 4.6(a)-4.6(b) the observed
proportions of actions with contour levels of regression surface. From these results it is
clear that θin exerts the dominant in�uence on both the opening and closing of windows
on arrival.
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(a) Openings on arrival
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(b) Closings on arrival
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(c) Openings during presence
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(d) Closings during presence
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(e) Openings on departure
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(f) Closings on departure

Figure 4.6: Observed transition probabilites (given on a quasi-logarithmic scale), versus
bins of indoor and outdoor temperature, with contour lines of equal �tted probabilities



4.2. RESULTS 55

Type Param. Opening probabilities Closing probabilities
Estimate Z χ2 Estimate Z χ2

Arrival a -13.88 ± 0.37 -37.86 3.97 ± 0.37 10.86
bin 0.312 ± 0.016 19.60 384.09 -0.286 ± 0.017 -16.84 283.44
bout 0.0433 ± 0.0033 13.13 172.38 -0.0505 ± 0.0045 -11.29 127.56
babs,prev 1.862 ± 0.044 42.45 1801.91
bR -0.45 ± 0.11 -3.97 15.79

Interm. a -12.23 ± 0.28 -43.49 -1.64 ± 0.22 -7.57
bin 0.281 ± 0.013 22.45 504.03 -0.0481 ± 0.0098 -4.91 24.14
bout 0.0271 ± 0.0024 11.30 127.74 -0.0779 ± 0.0020 -38.07 1449.26
bpres (-8.78 ± 0.53) ·10−4 -16.61 275.85 (-1.621 ± 0.059) ·10−3 -27.69 766.60
bR -0.336 ± 0.081 -4.13 17.05

Departure a -8.75 ± 0.22 -39.88 -8.54 ± 0.48 -17.83
bin 0.213 ± 0.022 9.69 93.95
bout,dm 0.1371 ± 0.0075 18.65 347.69 -0.0911 ± 0.0061 -14.94 223.19
babs,next 0.84 ± 0.12 7.23 52.32 1.614 ± 0.069 23.34 544.86
bGF 0.83 ± 0.13 6.32 39.96 -0.923 ± 0.068 -13.57 184.18

Table 4.4: Regression parameters, Wald Z and analysis of deviance table for �nal transition
probabilities (p < 0.001 for all Wald Z and χ2 tests)

For P01,arr, the presence of rain is a signi�cant factor, but prior absence duration has a
stronger in�uence. With these variables, Equation 4.3 becomes:

logit
(
P01,arr(θin, θout, fabs,prev, fR)

)
= a+ binθin + boutθout + babs,prevfabs,prev + bRfR. (4.4)

On the contrary, we have not found any other signi�cant variable for P10,arr. The �nal
model is thus:

logit
(
P10,arr(θin, θout)

)
= a + binθin + boutθout. (4.5)

Goodness-of-�t indicators are provided in Table 4.5. There are noticeable di�erences in
behaviour between o�ces, which will be discussed in Section 4.2.5.

Sub-model for actions during occupancy
We noticed in our preliminary observations that actions during occupancy were extremely
rare; particularly openings. We see that θin is the main driving variable for P01,int, while
θout dominates for P10,int (indeed θin is barely signi�cant in this case). This shows that θin is
the real underlying stimulus for openings, while θout (linked to the feedback of the opening)
determines primarily the probability of closing (eg. to prevent over- or underheating), see
Figures 4.6(c)-4.6(d).

Rainfall and wind are not signi�cant for openings during occupancy. Both current
occupancy duration and the occurrence of rain are found to be signi�cant for P01,int. We
thus have the following models,

logit
(
P01,int(θin, θout, Tpres, fR)

)
= a + binθin + boutθout + bpresTpres + bRfR, (4.6)

logit
(
P10,int(θin, θout, Tpres)

)
= a + binθin + boutθout + bpresTpres, (4.7)

with regression parameters given in Table 4.4 (middle). Goodness of �t indicators are lower
than for the sub-model relating to actions on arrival (Table 4.5). One �nal observation is
that transition probabilities remain in both cases very close to zero, and thus consecutive
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Model, variables LR AUC Dxy Γ τa R2
N B

P01,arr

θin 1183.93 0.699 0.397 0.412 0.019 0.057 0.024
θout 1051.78 0.702 0.403 0.418 0.019 0.050 0.024
θin, θout 1352.38 0.724 0.447 0.462 0.021 0.065 0.024
θin, θout, fR 1369.29 0.725 0.449 0.464 0.021 0.065 0.024
θin, θout, fabs, fR 2916.73 0.782 0.563 0.578 0.027 0.138 0.023
P10,arr

θin 531.61 0.687 0.374 0.385 0.022 0.066 0.028
θout 388.35 0.708 0.415 0.429 0.024 0.048 0.029
θin, θout 651.34 0.718 0.437 0.446 0.025 0.080 0.028
P01,int

θin 1455.01 0.666 0.331 0.435 0.003 0.030 0.004
θout 1063.67 0.640 0.280 0.383 0.002 0.022 0.004
θin, θout 1559.35 0.677 0.353 0.460 0.003 0.032 0.004
θin, θout, fR 1579.31 0.679 0.358 0.464 0.003 0.032 0.004
θin, θout, Tpres, fR 2135.68 0.705 0.410 0.505 0.003 0.044 0.004
P10,int

θin 428.27 0.592 0.184 0.224 0.004 0.009 0.011
θout 1336.61 0.667 0.334 0.372 0.007 0.027 0.011
θin, θout 1340.26 0.665 0.331 0.369 0.007 0.027 0.011
θin, θout, Tpres 4134.70 0.764 0.528 0.555 0.011 0.083 0.011
P01,dep

θout,dm 372.92 0.736 0.472 0.543 0.004 0.07 0.004
θin, θout,dm 382.80 0.746 0.492 0.565 0.004 0.072 0.004
θin, θout,dm, fabs, fGF 464.64 0.749 0.498 0.572 0.004 0.087 0.004
θout,dm, fabs, fGF 462.17 0.741 0.482 0.557 0.004 0.086 0.004
P10,dep

θout,dm 93.49 0.607 0.213 0.230 0.012 0.012 0.028
θin, θout,dm 206.84 0.648 0.296 0.310 0.017 0.026 0.028
θin, θout,dm, fabs 640.04 0.719 0.438 0.457 0.025 0.079 0.027
θin, θout,dm, fabs, fGF 813.61 0.736 0.472 0.486 0.027 0.100 0.027

Table 4.5: Goodness-of-�t estimators for Markovian transition probabilities
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repeated predictions of the same state are very likely so that the associated computation
is wasteful. An alternative would be to increase the time step, but this would result
in neglecting openings of short duration or arti�cially increasing the duration of other
openings. A more appropriate method for intermediate actions is proposed in Section
4.2.4.

Sub-model for actions at departure

Actions on departure are of a di�erent nature: their goal is not to modify the indoor
environment in order to favour thermal comfort for immediate further occupancy. They
may therefore be in�uenced by other factors, such as the predicted duration of subsequent
absence, the desire to induce night ventilation or by security issues. We thus include the
observed subsequent absence duration in our model. For both openings and closings, we
�nd that the daily mean outdoor temperature θout,dm �ts better the data than θout, and
that the position within building (at or above the ground �oor) is a signi�cant parameter.
In the case of openings on departure, θin is not a signi�cant parameter. We retain thus
the following transition probabilities,

logit
(
P01,dep(θout,dm, fabs,next, fGF )

)

= a + bout,dmθout,dm + babs,nextfabs,next + bGF fGF , (4.8)

logit
(
P10,dep(θin, θout,dm, fabs,next, fGF )

)
= a + binθin

+bout,dmθout,dm + babs,nextfabs,next + bGF fGF , (4.9)

with regression parameters given in Table 4.4 (bottom). Analysis of deviance shows that
the duration of absence and the daily mean outdoor temperature are the most in�uential
factors for openings and for closings.

Remarks

By de�ning factors for previous and next absence durations, our �nal sub-models for actions
on arrival and at departure may be seen in fact as divided into separate models for short
and long absences. This implies that the start of a long absence period increases the
probability of closing at departure, which is an expected result. The observation that a
long absence preceding an arrival increases the probability of opening could be explained
by the fact that, in this case, odours might have accumulated in the o�ce, which could
be partly a consequence that most occupants close their doors when leaving for a long
absence. Finally, we have con�rmed that thermal stimuli are the key variables in�uencing
actual actions on windows.

Our sub-model for actions on departure takes the following absence duration as input,
and thus the future value of a stochastic variable. This implies that a model of occupancy
presence should be a pre-process (for the entire simulation period) to the model of window
opening. This is acceptable since occupancy is clearly independent from window state.

Goodness-of-�t criteria show that our sub-models do not o�er equal performances (Ta-
ble 4.5), this being lowest for actions during presence.
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1st state 2nd state Prop. for 3rd state
Closed Open

Closed Closed 0.933 0.067
Open 0.555 0.445

Open Closed 0.555 0.445
Open 0.131 0.869

Table 4.6: Observed transition probabilities for second order Markov models

The limit model
The retained model corresponds thus to a classical non-stationary two-state Markov chain,
which can be written in matrix notation (Section 3.3.2):

P =
(

1− P01 P01

P10 1− P10

)
, with 0 < P01, P10 < 1. (4.10)

It may be shown that as n →∞, the n-step transition probability becomes

Pn → 1
P01 + P10

(
P10 P01

P10 P01

)
= I

1
P01 + P10

(
P10

P01

)
, (4.11)

and thus the overall probability for a window to be open is given by P01/(P01 + P10).
However, as our model is based on occupancy-dependent transition probabilities we are not
able to explicitly compute the limit model in this case. Nevertheless, the limit P01/(P01 +
P10) may be interpreted as the static probability distributions derived in Section 4.2.2.
Therefore this �rst approach is simply a particular case of the Markov model, which itself
provides for a higher degree of modelling detail.

Higher-order Markov models
We assess now the signi�cance of higher-order Markov chains (see Section 3.3.2) in this
situation. Neglecting the in�uence of driving variables, a zeroth-order chain is based on
the overall observed proportion of open windows, that is P0 = 0.308, P1 = 1− p0 = 0.692
(Table 2.5, bottom line).

Based on the likelihood ratio statistic deduced from the observed transitions between
three consecutive states (Table 4.6), we observe that the second-order transitions Pijk

are signi�cant compared to �rst-order probabilities Pij (the signi�cance of Pij over the
zeroth-order model Pi was clear from Table 4.1). This means that the probability P0jk

signi�cantly di�ers from P1jk.
We do not attempt to �t second-order transition probabilities but we rather propose

a modelling approach based on continuous-time random processes in Section 4.2.4, which
enables us to drop the Markov condition if necessary.

4.2.4 Continuous-time random process
Opening duration
According to the concepts described in Section 3.4, we infer a distribution for the duration
during which people leave their window closed following their arrival, and during which the
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(b) Closing duration: curves based on do-
mains of θin
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(c) Opening duration: curves based on do-
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(d) Closing duration: curves based on do-
mains of θout
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(e) Opening duration: �t based on θout
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(f) Closing duration: �t based on θin
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window is left open. Kaplan-Meier estimates of survival curves are shown in Figures 4.7(a)
and 4.7(c), in which each curve refers to an interval8 of observed initial values of θin or
θout.

The duration of window openings which were interrupted upon departure needs special
treatment. In this case, the reason for closing (or for leaving open) windows is not linked
to discomfort, meaning that if the occupant had stayed longer it is not clear that he would
have closed the window. We thus have incomplete information: we know that the occupant
wished to leave the window open at least until this moment. Such opening durations are
classi�ed as censored data.

A trend of diminished rates of decay of opening times may be noticed in Figure 4.7(a)
when θin rises until 26◦C, while they remain similar above. These decay rates are more
clearly di�erentiated in Figure 4.7(c), which implies that opening durations are more
strongly associated with θout. Both variables are signi�cant (p < 0.001) according to
the log-rank test.

Detailed analysis of the distribution of opening times shows that the hazard rate h(t)
is clearly non-constant and decreases with t, meaning that closings have an increased
risk of occurring shortly after openings. Based on the 13489 observed openings, of which
7451 (55.2%) were censored, and using a Weibull distribution (see Section 3.4) we �nd
that the best model with a single variable uses θout as its predictor (p < 0.001, R2 =
0.110). The estimate for the shape is log(1/α) = 0.872 ± 0.011, while the scale is λ =
1/ exp

(
(2.151± 0.066)+ (0.1720± 0.0044) · θout)

)
. The �tted survival function is shown in

Figure 4.7(e). The variable θin, if included with this model, is not statistically signi�cant
(p > 0.1), likewise other potential variables. These results are consistent with our sub-
model for window closings during occupancy developed in Section 4.2.3, where θout is the
main driving variable in P10,int.

Closing duration

The data of closing duration include two types of intervals: delay until opening following
occupants' arrival, and delay until opening following a prior closing. We see that θout has
less in�uence than θin on closing duration (Figure 4.7(b) and 4.7(d)) and therefore on the
decay of survival curves, which di�er less in the range of values of θout (Figure 4.7(d)).
Conversely, the survival curves vary clearly for di�erent values of θin. Furthermore, we can
straightforwardly interpret the immediate decays along the ordinates in closing durations
as opening probabilities on arrival, that increase strongly with θin as expected. Intermediate
openings are then described by the rest of the curve, with higher proportional decays being
observed for higher temperature.

As for openings, we once again use the Weibull distribution to describe closing dura-
tions. We include �rst θin, and notice that the addition of θout is signi�cant. Based on
203881 time intervals with closed windows of which 185277 (90.9%) were censored, we ob-
tain for the shape log(1/α) = 0.874± 0.006, while the scale is λ = 1/ exp

(
(16.26± 0.27) +

(−0.264±0.012) · θin +(−0.110±0.003) · θout

)
, with R2 = 0.030. For illustration purposes,

we show the �tted survival function with θin as the sole driving variable in Figure 4.7(f).

8The intervals of θin (◦C) are set as [18.75, 19.25), [19.25, 19.75), . . ., [29.75, 30.25), and for θout (◦C),
[−4.5, 3.5), [−3.5,−2.5), . . ., [31.5, 32.5). These intervals of θin (resp. θout) cover 99.5% (resp. 99.7%) of
openings.
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Remarks
We observe that opening and closing durations are poorly �tted by an exponential dis-
tribution. The memoryless property referenced above that de�nes discrete-time Markov
processes is thus not ful�lled, which suggests that in this context window opening and
closing processes are not memoryless, and so are not fully appropriately modelled by a
Markov process.

The obtained Weibull distributions con�rm once again that delayed opening of windows
is mainly caused by indoor stimuli, while the main driving stimulus for window closings is
external (the feedback of the opening).

The main limitation in the modelling of actions with survival curves is the obvious
risk in predicting in advance potentially long opening times, independently of subsequent
variations of environmental stimuli. For instance, as a transition from closed to open is
performed, the indoor conditions evolve in response to heat transfers with the outdoors.
A sensible compromise could be to model survival time up to a reasonable horizon, and
then reset the survival distribution to shift to the curve adjusted to the new environmental
conditions. However, this procedure would be fully rigorous only if the memoryless property
P (T > s + t|T > s) = P (T > t) was veri�ed; only the exponential distribution satis�es
this condition. However, as 90% of occupancy durations are shorter than 105 minutes, the
prediction of problematically long opening durations will occur very rarely, so that this
compromise would appear not to be necessary.

4.2.5 Integration of individual behaviours
If everyone is thinking alike, then somebody isn't
thinking.
Attributed to Gen. George S. Patton (1885-1945)

The models developed above were derived from data relating to the whole set of occu-
pants and for the entire surveyed period. We examine here variations in behaviour among
the surveyed occupants and provide a method to account for the observed behavioural
diversity.

Variability between occupants
We provide in Table 4.7 the principal indicators concerning general conditions and be-
havioural di�erences for all the surveyed occupants (or their combinations). In order to
distinguish between �active� and �passive� occupants a possibility is to use as an indicator
the percentage of time occupants leave their windows open during occupancy. We see that
this ratio ranges from 13.5% to 47.7% with respect to su�ciently long occupancy durations
(see Table 2.5), with half of the occupants grouped between 19.5% and 42.7%.

Furthermore, di�erent occupants may vary not only in the intensity of their behaviour
but also in its nature. For example in Figure 4.8 we present the obtained logistic models
for di�erent occupants. It can be seen that a minority of occupants is weakly in�uenced
by thermal stimuli (the probability to observe their window to be open varies little with
θout and θin). Nevertheless, for the majority of them, the slopes of the univariate models
for these variables are not very di�erent; the di�erences arising mainly in the intercepts.
Variability may thus be meaningfully summarised, as a �rst approximation, by a single
parameter: the characteristic temperature θ50 = −a/b.
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Ref. Nb. Survey Ratio Regr. param. θout,50 θin,50 Predic-
Pers. duration open aout bout [◦C] [◦C] tive

001-04-27 2 730 0.210 -3.721 0.157 23.7 26.8 No
001-28-X 2 699 0.343 -3.532 0.202 17.5 25.0 No
001-17-30 2 931 0.459 -1.522 0.109 14.0 24.1 No
001-17-35 2 206 0.460 -3.304 0.178 18.6 24.8 Yes
002-21-24 2 275 0.400 -6.431 0.367 17.5 23.7 No
002-16-25 2 334 0.470 -0.951 0.057 16.6 12.3 Yes
002-01-16 2 153 0.051 -5.506 0.256 21.5 27.1 No
002-11-16 2 496 0.178 -3.941 0.152 25.9 26.6 Yes
003-07 1 2808 0.159 -3.703 0.127 29.1 26.8 No
004-36 2 321 0.181 -5.818 0.308 18.9 32.4 No
004-26-36 1 2292 0.263 -4.804 0.240 20.0 24.4 No
101-15-28 2 606 0.188 -3.497 0.147 23.8 27.6 No
101-22 1 1896 0.172 -5.703 0.261 21.9 27.3 No
103-23 1 272 0.135 -7.011 0.268 26.2 27.5 No
103-03 1 2191 0.348 -1.159 0.044 26.4 18.3 No
103-42∗ 1 195 0.913 2.963 -0.052 NA NA Yes
103-29∗ 1 56 0.874 1.750 0.009 NA NA Yes
104-19∗ 1 2808 0.204 -1.724 0.029 NA NA Yes
105-38 1 2808 0.380 -2.091 0.133 15.7 25.1 No
106-06-39 2 2808 0.326 -3.362 0.187 18.0 26.0 No
201-31 1 2808 0.427 -2.573 0.174 14.8 23.1 Yes
202-05-23 2 457 0.195 -4.751 0.286 16.6 23.9 No
203-09 2 1550 0.246 -2.411 0.093 25.9 28.1 Yes
203-08-14 1 517 0.249 -4.537 0.340 13.4 23.8 No
203-12-40∗ 2 147 0.930 1.773 0.036 NA NA Yes
204-18 1 1048 0.381 -3.392 0.205 16.6 24.8 No
204-10 1 1759 0.477 -1.360 0.126 10.8 23.7 No

Table 4.7: Variability between occupants: reference, number of occupants, duration of
observations (days), overall proportion of time open, logistic regression parameters using
θout, indoor and outdoor characteristic temperatures and presence of predictive behaviour.
Asterisks show occupants for which at least one regression parameter was not statistically
signi�cant.
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Figure 4.9: Occupant speci�c action probabilities based on the most in�uential physical
variable
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Figure 4.10: Bivariate plots between all individual regression parameters, with local poly-
nomial regression, correlations and histograms

It is worth noticing that some occupants have open windows at high θout, while others
follow the decreasing trend shown in Figure 4.2(b) to prevent the incoming of hot outside
air. We qualify this behaviour as �predictive� if the polynomial terms in the logit are
signi�cant (see Table 4.7). We see that nine observed occupants adopt this preventive
strategy.

Similarly, di�erences in behavioural patterns between occupants may be noticed if we
derive individual transition probabilities for the discrete-time Markov process based on the
most in�uential physical predictor only (θin for P01,arr, P10,arr and P01,int, θout for P10,int

and θout,dm for P01,dep and P10,dep). The regression parameters are presented in Table 4.8
and the obtained action probability curves in Figure 4.9. These results suggest that occu-
pants generally display the same type of behaviour, but at higher or lower temperatures.
Furthermore, the predictive scheme described above, i.e. refraining from opening windows
for hot outside conditions, is reproduced by the same occupants.

Figure 4.10 shows the main patterns linking these regression parameters, which may
inform an explicit simulation of individual diversity for integration in simulations. Further
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Pers P01,arr(θin) P10,arr(θin) P01,int(θin)
Ref. a b a b a b

001-04-27 -13.9 ± 3.9 0.39 ± 0.16 7.5 ± 2.5 -0.45 ± 0.11 -14.6 ± 1.7 0.38 ± 0.07
001-28-X -19.2 ± 1.6 0.71 ± 0.06 7.3 ± 3.3 -0.46 ± 0.14 -12.8 ± 1.0 0.34 ± 0.04

001-17-30∗ -18.5 ± 2.7 0.67 ± 0.11 4.4 ± 4.6 -0.30 ± 0.19 -14.4 ± 2.4 0.40 ± 0.10
001-17-35 -5.6 ± 1.3 0.12 ± 0.06 11.6 ± 1.9 -0.61 ± 0.09 -10.9 ± 1.1 0.27 ± 0.05
002-21-24 -28.4 ± 7.2 1.04 ± 0.29 36.5 ± 19.9 -1.60 ± 0.86 -26.3 ± 3.6 0.88 ± 0.15
002-16-25 -20.7 ± 3.4 0.71 ± 0.13 5.2 ± 6.3 -0.31 ± 0.26 -20.4 ± 1.8 0.63 ± 0.07
002-01-16 -19.9 ± 3.1 0.71 ± 0.12 0.7 ± 4.6 -0.20 ± 0.20 -10.5 ± 2.0 0.21 ± 0.08
002-11-16 -7.5 ± 2.4 0.22 ± 0.10 13.6 ± 2.7 -0.77 ± 0.13 -18.2 ± 1.8 0.61 ± 0.08

003-07 -20.1 ± 1.7 0.65 ± 0.07 3.8 ± 2.4 -0.28 ± 0.10 -16.9 ± 2.0 0.42 ± 0.08
004-36 -17.4 ± 1.4 0.58 ± 0.06 14.0 ± 1.4 -0.80 ± 0.07 -15.9 ± 1.2 0.44 ± 0.05

004-26-36∗ -26.2 ± 5.9 0.97 ± 0.26 9.5 ± 5.3 -0.61 ± 0.25 -20.3 ± 5.1 0.67 ± 0.22
101-15-28 -4.1 ± 2.0 0.05 ± 0.09 8.6 ± 2.1 -0.49 ± 0.10 -14.9 ± 1.7 0.41 ± 0.07

101-22 -27.9 ± 2.8 0.91 ± 0.11 9.1 ± 1.7 -0.51 ± 0.07 -32.5 ± 1.9 1.06 ± 0.07
103-23 -12.8 ± 1.3 0.37 ± 0.05 -5.1 ± 4.3 0.01 ± 0.18 -13.6 ± 1.7 0.28 ± 0.07
103-03∗ NA NA NA NA -17.0 ± 6.5 0.44 ± 0.26
103-42∗ 0.2 ± 9.1 -0.03 ± 0.33 -27.9 ± 14.1 0.85 ± 0.49 4.5 ± 8.6 -0.31 ± 0.31
103-29∗ -28.0 ± 9.2 1.04 ± 0.34 0.8 ± 7.0 -0.19 ± 0.30 -13.2 ± 6.8 0.39 ± 0.26
104-19 -24.9 ± 2.1 0.81 ± 0.08 -9.9 ± 4.7 0.21 ± 0.19 -24.5 ± 1.6 0.72 ± 0.06
105-38 -13.3 ± 1.3 0.42 ± 0.05 12.8 ± 1.4 -0.68 ± 0.06 -14.8 ± 1.0 0.44 ± 0.04

106-06-39 -19.4 ± 1.2 0.67 ± 0.05 16.3 ± 1.7 -0.84 ± 0.07 -22.2 ± 1.3 0.67 ± 0.05
201-31 -12.3 ± 1.0 0.39 ± 0.05 -3.1 ± 1.4 -0.04 ± 0.06 -15.5 ± 0.7 0.43 ± 0.03

202-05-33 -7.4 ± 2.7 0.18 ± 0.12 5.6 ± 4.2 -0.41 ± 0.20 -12.7 ± 3.1 0.30 ± 0.14
203-09 -18.5 ± 2.7 0.71 ± 0.12 10.9 ± 4.8 -0.59 ± 0.21 -27.0 ± 3.1 0.93 ± 0.13

203-08-14 -15.2 ± 1.6 0.48 ± 0.07 1.3 ± 2.7 -0.24 ± 0.12 -18.5 ± 1.4 0.50 ± 0.06
203-12-40 9.3 ± 8.4 -0.42 ± 0.35 -14.7 ± 11.7 0.38 ± 0.46 -9.9 ± 4.6 0.25 ± 0.19

204-18 -14.4 ± 1.5 0.49 ± 0.06 8.6 ± 2.1 -0.50 ± 0.09 -23.5 ± 1.7 0.77 ± 0.07
204-10 -20.0 ± 1.9 0.69 ± 0.08 14.7 ± 2.0 -0.71 ± 0.08 -14.3 ± 1.3 0.38 ± 0.05
Pers P10,int(θout) P01,dep(θout,dm) P10,dep(θout,dm)
Ref. a b a b a b

001-04-27 -1.4 ± 0.3 -0.18 ± 0.02 -8.4 ± 2.3 0.08 ± 0.15 -1.0 ± 0.7 -0.13 ± 0.05
001-28-X -4.4 ± 0.1 -0.01 ± 0.01 -5.7 ± 0.7 0.08 ± 0.05 -3.1 ± 0.3 0.06 ± 0.02
001-17-30 -2.3 ± 0.5 -0.08 ± 0.02 NA NA -1.1 ± 1.4 -0.07 ± 0.07
001-17-35 -1.5 ± 0.1 -0.15 ± 0.01 -9.1 ± 1.9 0.22 ± 0.11 -1.8 ± 0.4 -0.06 ± 0.03
002-21-24 -0.2 ± 0.4 -0.19 ± 0.04 -11.3 ± 5.5 0.45 ± 0.36 -3.5 ± 2.3 0.18 ± 0.16
002-16-25 0.1 ± 0.4 -0.19 ± 0.02 -7.5 ± 1.5 0.13 ± 0.08 0.2 ± 1.1 -0.09 ± 0.06
002-01-16 -5.4 ± 0.3 0.01 ± 0.02 -8.2 ± 2.8 0.16 ± 0.17 -3.8 ± 0.6 0.07 ± 0.03
002-11-16 1.1 ± 0.3 -0.26 ± 0.02 -7.0 ± 1.3 0.18 ± 0.08 0.6 ± 0.8 -0.18 ± 0.05

003-07 -4.0 ± 0.3 -0.05 ± 0.01 -7.6 ± 0.8 0.05 ± 0.05 -3.5 ± 0.5 -0.01 ± 0.03
004-36 -1.1 ± 0.2 -0.21 ± 0.01 -8.0 ± 0.6 0.16 ± 0.04 -1.0 ± 0.4 -0.19 ± 0.03

004-26-36 -0.7 ± 0.4 -0.20 ± 0.03 NA NA -0.2 ± 0.7 -0.23 ± 0.05
101-15-28 -1.3 ± 0.2 -0.15 ± 0.01 -5.4 ± 0.7 0.03 ± 0.05 -3.1 ± 1.0 -0.08 ± 0.07

101-22 -3.0 ± 0.4 -0.08 ± 0.02 -8.1 ± 0.9 0.13 ± 0.06 0.2 ± 0.7 -0.21 ± 0.04
103-23 -5.9 ± 0.2 0.04 ± 0.01 -9.1 ± 1.4 0.16 ± 0.07 -6.7 ± 1.0 0.10 ± 0.05
103-03∗ -0.9 ± 1.0 -0.17 ± 0.05 NA NA NA NA
103-42∗ -5.5 ± 1.2 0.01 ± 0.05 NA NA NA NA
103-29∗ -6.6 ± 0.7 0.08 ± 0.03 NA NA -5.3 ± 0.9 0.25 ± 0.05
104-19 -8.1 ± 0.4 0.15 ± 0.02 -11.9 ± 1.5 0.31 ± 0.07 -8.1 ± 1.1 0.20 ± 0.05
105-38 -2.5 ± 0.1 -0.09 ± 0.01 -6.2 ± 0.4 0.09 ± 0.03 -2.2 ± 0.3 -0.08 ± 0.02

106-06-39 -3.1 ± 0.1 -0.09 ± 0.01 -8.5 ± 0.7 0.21 ± 0.04 -3.0 ± 0.3 -0.03 ± 0.02
201-31 -4.3 ± 0.2 -0.05 ± 0.01 -6.4 ± 0.3 0.20 ± 0.01 -2.9 ± 0.3 -0.08 ± 0.02

202-05-33 -1.4 ± 0.2 -0.19 ± 0.02 -8.1 ± 2.0 0.14 ± 0.19 -2.6 ± 1.2 -0.16 ± 0.12
203-09 -1.9 ± 0.2 -0.18 ± 0.02 -6.6 ± 1.1 0.14 ± 0.12 -1.3 ± 0.6 -0.13 ± 0.05

203-08-14 -4.9 ± 0.2 -0.01 ± 0.01 -8.3 ± 1.2 0.14 ± 0.07 -3.2 ± 0.3 -0.04 ± 0.02
203-12-40 -4.5 ± 1.3 -0.06 ± 0.06 -3.6 ± 3.2 0.07 ± 0.16 4.0 ± 5.5 -0.51 ± 0.33

204-18 -4.3 ± 0.1 -0.05 ± 0.01 -7.8 ± 0.8 0.22 ± 0.06 -1.5 ± 0.3 -0.14 ± 0.02
204-10 -2.1 ± 0.2 -0.15 ± 0.01 -4.5 ± 0.2 0.12 ± 0.02 -0.9 ± 0.3 -0.15 ± 0.02

Table 4.8: Occupant speci�c parameters for action probabilities on windows including a
single variable. Asterisks are used to identify occupants for which at least one regression
parameter was not statistically signi�cant.
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Figure 4.11: Observed proportion of windows open: extension to the case of two windows

discussion is also provided in Section 7.3.2.

Group actions
No clear di�erence in behaviour related to total opening duration or regression parameters
is distinguishable in Tables 4.7 and 4.8 between o�ces with one or two occupants. In this
latter case, one possibility is to assume that occupants act independently and the �activity�
in an o�ce is aligned to that of the most active (or assertive) of the occupants. Similarly,
none of the distributions displayed in Figures 4.8 and 4.9 show di�erentiated behaviour
between single and double-occupied o�ces.

When using the discrete or continuous time random processes to predict group actions,
two variants may be suggested. A �rst possibility is to explicitly model the occupancy
of each potential occupant, and launch the window opening model for each of them. An
alternative would be to adapt the sub-model for actions during presence to the special case
where a second arrival may occur in an already occupied o�ce. This sub-model will then
predict higher transition probabilities.

4.2.6 Use of several windows
In the individual o�ces, each occupant has the possibility to freely interact with two
windows. In Section 4.2.2 we considered the probability that at least one window is open.
We may now perform a similar logistic regression � on the subset of individual o�ces � for
the probability that both windows are open. For the binary outcome �at least one window
open�, the distribution for these o�ces is logit(p) = −2.259 + 0.1172 · θout, which gives
θ50 = 19.3◦C, while for two windows open this becomes logit(p) = −4.181+0.1288·θout, and
thus θ50 = 32.5◦C. Both distributions and observed proportions are shown in Figure 4.11
in which the slopes are similar. Furthermore, inspection of individual results suggests
that this phenomenon may be observed o�ce by o�ce. The distributions di�er principally
in the intercept, so we may more conveniently characterise the new distribution for two
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windows by the shift ∆θ50 in characteristic temperature: considering all individual o�ces,
we obtain ∆θ50 = 13.2◦C. Another possibility is to use ordinal logistic regression (see
Section 3.2.6).

We may integrate in the Markov model the possibility to act on multiple windows by
adding other possible transitions. For n windows, transition probabilities Pij from i to j
windows open (0 ≤ i, j ≤ n) are arranged in an (n + 1) × (n + 1) matrix. For instance,
with three simulated windows and two currently open, the closing of one or both of open
windows is modelled by P21 or P20 in the case of both and a further opening by P23, with
P22 = 1 − P20 − P21 − P23. These transitions probabilities may be included in a 4 × 4
matrix containing 12 independent elements:

Pij =




P00 = 1−∑
k 6=0 P0k P01 P02 P03

P10 P11 = 1−∑
k 6=1 P1k P12 P13

P20 P21 P22 = . . . P23

P30 P31 P32 P33 = . . .




This requires the inference of n · (n + 1) probability distributions for each occupancy
transition. We may similarly derive survival curves for delays until actions on additional
windows.

We do not attempt to examine here the probability for two windows to be open in o�ces
with more than one occupant, as individual occupancies are determinant but unknown.

4.3 Discussion
Post hoc ergo propter hoc.
Correlation does not imply causation.

4.3.1 Summary
From the development of a Markov chain model predicting explicit actions on windows, we
observed that indoor conditions describe opening actions better than do outdoor conditions
� this being our interaction stimulus. But closing actions tend to be better described by
outdoor conditions, based on perceived draughts or a risk of overheating when θout > θin;
likewise whether windows will be left open overnight for cooling purposes. Therefore if we
consider the aggregate dataset it is understandable that for a univariate static probabilistic
model θout is statistically stronger than θin (Section 4.2.2), but this does not make it a
better model. This is partly because the previously mentioned subtleties are ignored and
partly because, as noted earlier, when using θout alone the predicted window states are
independent of the design of the building; so that occupants of very di�erent adjacent
buildings (eg. with minimal and high façade glazing ratio) would be predicted to interact
with their windows with similar probability. For such a hypothetical building θout may
again be the best predictor for the (aggregate) logistic model, but with drastically di�erent
parameters; in particular θout,50 is expected to be lower in the highly glazed case.

Any model based on θout only is thus strongly building-dependent and without gener-
ality, requiring separate calibration for each building to which it is applied � an impossible
task. Furthermore, it cannot be excluded that the static probabilistic model with both θin

and θout could be dampened by this lack of generality. On the other hand, although such
a model with just θin is expected to describe occupants' actions with more generality, this
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also misses important subtleties, particularly in relation to the closing of windows, which
undermines its predictive accuracy.

The obtained action probabilities for the discrete-time Markov process (Section 4.2.3)
solve this problem, as they directly link the probability for an occupant to take action with
the direct environmental stimulus (θin), whilst also accounting for the fact that θout has
a determinant in�uence on intermediate closing probability (the sole situation where θout

has a direct connection to the occupant). A possible lack of generality is that the closing
probabilities which depend on θout are likely to depend on window size and opening angle,
possibly needing further calibration according to these parameters. The same remarks
apply to our continuous-time random process (Section 4.2.4).

In summary then not only do the presented models improve the quality of predictions;
they also account for the real stimuli motivating adaptive actions, so improving upon their
generality.

4.3.2 Cross-validation
In this work we have presented models of occupants' interactions with windows based on
three di�erent methods. We describe here our validation procedure to perform a consistent
evaluation of their predictive powers. In addition to this, we will also compare the results
from these models with a Bernoulli random variable with constant probability (a random
guess based on observed overall opening proportion p = 0.308, see Table 2.5), with previous
published work (the two versions of the Humphreys algorithm [70, 77], see Section 4.1.1)
and with variants based on our models (eg. a discrete-time Markov process with partial
sub-models for departure9) and a hybrid model (a Markov process with opening durations
predicted by a continuous process).

We assess the predictive power of the models by checking four aspects:

• Discrimination. Does the model reproduce well the list of observed window states?

• Overall prediction. Does the model predict a consistent overall opening ratio
throughout the simulation period?

• Dynamics. Does the model predict consistent number of actions and delays between
actions?

• Aggregated results. Is the predicted total number of open windows consistent
with observations?

Based on these criteria we will retain the best performing model.
For this validation exercise we have performed 20 repeated simulations using 5 minutes

time steps for the whole period with available measurements for the 14 measured o�ces,
producing 20× 14 = 280 sets of simulated window states Wsim(t), to be compared with 14
sets of observed states Wobs(t). This procedure was repeated for each of our models and
their variants as well as for the Humphreys algorithm10.

To avoid any bias in the validation process, for all variants we withdraw one year of
measurements (which then forms the validation dataset) and infer regression parameters
from the data of the remaining years (the training dataset). Based on these parameters,

9This allows a comparison with the approach taken by Yun and Steemers [75, 76].
10We used the logistic model based on θin and θout adjusted to our data (Section 4.2.2) to simulate both

versions of the Humphreys algorithm.
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Model TPR FPR ACC Prop. Actions Dur. Dur. Quartiles
open open closed of error

Exact 100.0% 0.0% 100.0% 30.6% 2.409 115 1275 +0.000 +0.000 +0.000
Bernoulli processes
- Random guess (p = ropen) 30.2% 30.2% 58.7% 30.2% 116.5 5 15 −1.810 +2.048 +3.714
- Logistic model with θin 34.0% 29.4% 59.2% 30.7% 111.1 5 15 −0.952 +1.952 +3.333
- Logistic model with θout 43.8% 24.8% 65.2% 30.4% 96.40 5 10 −0.143 +1.286 +2.286
- Logistic model with θin and θout 43.8% 24.6% 65.3% 30.4% 96.13 5 10 −0.381 +1.048 +2.095
- Logistic model with polyn. θout 45.2% 24.3% 66.0% 30.6% 93.34 5 10 −0.190 +1.095 +2.048
Markov processes
- With all variables 38.6% 17.6% 68.5% 28.9% 1.522 1125 4510 −1.238 +0.095 +1.048
- With one variable 10.5% 5.1% 68.9% 6.7% 1.741 90 4550 −4.381 −1.476 +0.143
- Close at long departures 24.1% 11.6% 68.3% 15.2% 1.830 190 5235 −4.333 −1.381 +0.095
- Close at all departures 11.5% 5.2% 69.0% 7.0% 2.086 40 4240 −5.667 −1.905 +0.000
Continuous processes
- Weibull distributions 28.8% 19.0% 64.8% 22.1% 112.6 5 5 −0.810 +1.476 +2.905
- Hybrid model 43.2% 16.1% 71.3% 24.3% 1.463 185 4815 −0.952 +0.048 +0.905
Humphreys algorithm
- Version 2007 30.1% 32.8% 56.6% 31.8% 0.181 14040 20680 −2.238 +1.762 +4.238
- Version 2008 18.5% 13.9% 65.7% 15.1% 0.012 153700 622400 −3.429 −0.286 +0.857
Deterministic models
- Always closed 0.0% 0.0% 69.8% 0.0% 0 NA ∞ −6.000 −2.000 +0.000
- Always open 100.0% 100.0% 30.2% 100.0% 0 ∞ NA +8.000 +12.000 +14.000

Table 4.9: Validation parameters: true positive rate, false positive rate, accuracy, total
proportion of simulated time steps with window open, average number of opening actions
per day, median duration (min.) of openings and closings and quartiles of the distribution
of the error on total number of windows open

we simulate the window states at the validation set and repeat this procedure until all
the data have been selected once as validation sets. With eight years of measurements,
this corresponds to an eight-fold cross-validation. This procedure was preferred to random
sub-sampling validation as it ensures that representative subsets of seasonal conditions are
used as training sets.

Discrimination

A general validation procedure should involve comparing each model's ability to directly
reproduce observed window states. We would thus obtain results that may be classi�ed in
four groups, as mentioned in Section 3.2.3: a predicted open window is (i) truly open (TP),
(ii) falsely open (FP, Type I error); a predicted closed window is (iii) truly closed (TN),
(iv) falsely closed (FN, Type II error). We present these proportions for each simulated
model in Figure 4.12. Based on the de�nitions provided in Section 3.2.3, we may then
accumulate these results to de�ne the overall true positive rate (TPR), the false positive
rate (FPR) and the accuracy ACC = (TP + TN)/(P + N), which gives the proportion of
correct predictions.

Based on the twenty repeated simulations, these indicators are computed and displayed
in Table 4.9. Applying the concepts introduced in Section 3.2.3, we may also draw the
corresponding points in the receiver-operating space (Figures 4.13(a)-4.13(b)), in which our
ideal model would be located at minimum x and maximum y. Each small point corresponds
to a single simulation of an o�ce, while parameters referring to the aggregated simulation
results of a model are plotted as bigger solid points.

As expected from our previous statistical tests, a Bernoulli random variable based on
the univariate logistic model with θin performs much worse than with θout. The distribu-
tion with two variables discriminates slightly better compared with θout alone, while the
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Figure 4.12: Classi�cation of simulation results

polynomial logit with θout o�ers best discrimination among the tested Bernoulli processes
(Figure 4.13(b)).

The discrete-time Markov process gives lower values of TPR and FPR. This suggests
that this model is more �conservative�, that is it predicts less openings than the Bernoulli
processes (and misses slightly more of them), but on the other hand much less false openings
are predicted. Furthermore, it has higher overall accuracy. We can also observe that the
quality of predictions decreases drastically if we attempt to treat actions on departure
simplistically.

The Weibull distribution for the continuous-time random process is generally slightly
less �conservative� than the Markov process, albeit with a slightly lower accuracy. However,
this model is computationally much faster. In an attempt to �nd a good compromise
between accuracy and speed we have therefore developed a hybrid model based on the
discrete-time Markov process, using a Weibull distribution for opening durations only.
Our simulations show that this provides the highest accuracy, while increasing TPR and
reducing FPR compared with the plain Markov model. According to the discrimination
criteria, this model o�ers the best performance.

Overall window opening ratio
Based on the total presence duration Tpres,tot and the total window opening time Topen,tot,
we de�ne for each o�ce the overall window opening ratio as ropen = Topen,tot/Tpres,tot. We
show observed and predicted values in Table 4.9 and Figure 4.14. Overall opening ratios
predicted by the Markov processes are rather low, particularly when night ventilation
behaviour is neglected. The Bernoulli processes generally reproduce well this parameter,
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Figure 4.14: Observed and simulated proportion of windows open

likewise the Humphreys algorithm. However the Markov process predicts the greatest
variability between results.

It is worth noting that all the models predict similar total opening ratios between
simulated o�ces, which shows that the added re�nements do not reproduce this variability
between occupants.

Number of actions, opening and closing median durations
As expected, the models based on Bernoulli random variables do not predict coherent
delays between actions (Table 4.9), as they are not explicitly based on any dynamics
in their formulation. The Markov model overestimates these durations; that is it does
not predict enough actions from occupants. The hybrid model best reproduces observed
opening durations, while predicting a coherent number of actions. As with the Markov
model, the Humphreys algorithm predicts durations that are too long, which may be caused
by too large a deadband (indeed a signi�cant proportion of actions occurs at moderate
temperatures) or by ignoring the determinant in�uence of occupancy transitions.

Aggregated results
We extend here our validation approach to the global simulation results and check whether
the models are able to reproduce observed window openings on a large scale. Based on
individual simulations of window states in the 14 o�ces, we compute the total number of
windows open Nsim(t) =

∑14
k=1 Wk(t) for each simulation. Averaging over the 20 sets of

Nsim(t) we deduce the mean predicted number of windows open at each time step N̄sim(t).
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Figure 4.15: Box-and-whisker plots of observed and simulated opening and closing dura-
tions

Comparing with the observed number of windows open Nobs(t), we may compute the error
ε(t) = N̄sim(t)−Nobs(t) at each time step.

We show in Table 4.9 the quartiles of this error for each model. From this we observe
that the hybrid model o�ers the best performance on aggregated results, with smallest error
magnitude. Furthermore, comparisons of measured and predicted numbers of windows
open (Figures 4.16-4.17) indicate that this model reproduces well the temporal variation
of window openings11.

Overall recommendation

From these validation results, we recommend the use of a hybridised model including a
discrete-time Markov model for the prediction of openings and a Weibull distribution for
their duration. Although, this model somewhat underestimates the overall opening ratio,
we observed that it o�ers the highest accuracy, produces the best discrimination between
window states, reproduces acceptably the delays between actions and o�ers the most re-
liable aggregated predictions at the scale of a whole building. It also predicts realistic
opening durations that are not constrained by the choice of the time step � an additional
advantage that the cross-validation process did not underline. A detailed description of
this algorithm for implementation in building simulation tools is provided in Section 7.1.

We may expect improved predictive accuracy when this algorithm is applied in building
simulation tools, where it is coupled with an air �ow model: indeed our validation procedure
is based on observed temperatures, which do not evolve under the in�uence of simulated
actions, likewise probabilities of further actions.

11This refers to the period from 27 January 2005 to 14 January 2006, which o�ers representative climatic
conditions and uninterrupted measurements.
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Figure 4.16: Observed and mean simulated number of windows open for 5 minute time
steps on a period of a year using the Bernoulli process based on θout and θin (top), the
Markov model (middle) and the continuous-time process (bottom)
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Figure 4.17: Observed and mean simulated number of windows open for 5 minute time
steps on a period of a year using the hybrid model (top), the polynomial logistic model
(middle) and the Humphreys algorithm, version 2007 (bottom)
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4.3.3 Treating opening angles
We do not treat in this work the behaviour of occupants regarding window opening angles
as this data was not recorded during our �eld surveys. We however do propose two possible
ways to account for them.

A simple approach might involve a sub-model to predict tilting or axial opening from
closed to open, based on relevant environmental parameters. If an axial opening is per-
formed, the opening angle φ may be drawn (using the inverse function method) from a
probability distribution, which we expect to be mainly dependent of θout, window size and
possibly vwind and αwind. If the window may be tilted, a preliminary algorithm chooses
between tilting and axial opening.

This approach neglects the possibility to vary the angle whilst the window is open. If
this needs to be accounted for, an approach similar to that of Fritsch et al. [59] would seem
to be a sensible solution. This implies the de�nition of transition probabilities Pα,β from
angle α to β, depending on the most in�uential parameters.

4.4 Conclusion
Based on almost eight years of observations we have developed three di�erent modelling
methods for the prediction of actions on windows: an inhomogeneous Bernoulli process
based on a logistic probability model (Section 4.2.2), a discrete-time Markov process with
sub-models for di�erent occupancy statuses (Section 4.2.3) and extended this latter to a
continuous-time random process (Section 4.2.4). Supported by rigorous cross-validation,
we have demonstrated the superiority of a discrete-time Markov process approach and its
strong added value compared with existing models (Section 4.3). We have furthermore
inferred a continuous-time model that could be e�ciently used for a fast calculation of
opening and closing durations.

We have �nally tested possible combinations in these approaches and selected a hybrid
model. This hybrid combines the accuracy of the discrete-time Markov process with the
e�ciency of the continuous-time model for opening durations. For this we also describe in
Section 7.1 a step-by-step process by which the algorithm may be implemented.

We have also studied the diversity in individual behaviours and described a possible
method to integrate them if necessary; likewise a method to integrate in the Markov model
the possibility of acting on multiple windows.

However, there remain some outstanding issues to be addressed in the modelling of win-
dow opening and closing behaviour; particularly in respect to the angle of window opening
as opposed to simply the state open and closed. Finally we are mindful that, although
we have demonstrated the validity of the formulation of our proposed new algorithm, the
parameters for its calibration are strictly speaking currently limited to just one building.

It would thus be desirable to make use of measurements from other buildings (residential
in particular), in which opening angles are also recorded, to have a stronger basis for
calibration and thus application to other simulated buildings. Such surveys might also
usefully include other variables which may in�uence actions on windows, such as radiant
temperature or indoor relative humidity (particularly for tropical climates). Factors related
to indoor air quality (eg. CO2 or pollutant concentration) should also be treated; however
it is plausible that the inclusion of Tpres in our intermediate openings model (P01,int) could
implicitly account for this (at least in part).

Finally, although they are based on cross-validation, the values of the indicators of
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Table 4.9 strictly refer to the performance of the algorithms based on data from the building
where observations are validated. They allow for a comparison of the predictive powers of
the variants tested, but they do not necessarily estimate the accuracy of the algorithms
if applied to other buildings. Simulation and comparison with data from other surveys
(eg. using data from one building as training set and perform validation on data from
another building) are necessary to reliably estimate the accuracy of these algorithms for
their application to other situations.



Chapter 5

Modelling actions on shading devices

Based on seven years of continuous measurements (Section 2.1), we have analysed in detail
the occupancy, thermal and visual parameters in�uencing actions on shading devices in
order to derive an accurate model for the prediction of their usage in o�ce buildings. This
chapter begins by presenting some of the key �ndings from these analyses. Informed by
other developments in the literature, we go on to propose an approach for a comprehensive
stochastic model for simulating blind usage. This model is based on a Markov process
taking rigorously selected predictors (initial blind status, indoor and outdoor illuminance)
as input variables to predict lowering and raising actions performed by occupants. A sep-
arate sub-model then predicts the chosen shaded fraction. An assessment of the predictive
accuracy of simulations is then presented for several modelling variants using our measured
data, from which the best performing model variant is selected. Based on local visual stim-
uli, the form of this model is expected to be directly applicable to other buildings. Finally,
individuals' behaviours are examined and a possible approach for modelling behavioural
diversity is discussed.1

5.1 Introduction
Shading devices play a central role in the heat gains of a building and therefore on its
energy performance. It is thus useful to predict their use by occupants, particularly where
automatic controls are lacking, in dynamic building thermal simulation tools, in order
to correctly assess the availability of daylight, overheating risk and the visual comfort of
occupants. We present in this introduction a short summary of previous research in this
domain and outline the need for further developments.

5.1.1 State of the art
Past research in the domain of occupants' actions on blinds was based on two motivations:
�rst, the development of control algorithms to allow automated systems to adjust shading
in order to optimise solar heat gains and visual comfort; second, the prediction of actions
performed by occupants in order to integrate them into building simulation tools. We
are interested here in the latter approach. To this end we brie�y review here previously
published �ndings.

1A substantial proportion of this chapter was presented at the 11th International Building Performance
Simulation Association Conference [89]. An extended version has also been accepted for publication in the
Journal of Building Performance Simulation [90].
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Based on analysis of variance of two months' measurements in a single building, Rea [91]
observed that blind occlusion varied signi�cantly between di�erent sky conditions (cloudy
or clear), the building orientation (east, south and west) and the interactions between the
levels of these latter variables. He noticed that occupants made little attempt to change
blind position during the day.

From measurements on four buildings, Inoue at al. [92] noticed that the frequency of
blind usage varied with orientation and weather conditions and that it was very particular
to the building surveyed. They concluded that if the direct solar radiation on a façade
exceeded some value between 12 and 58 W/m2, blind occlusion is then proportional to
sunlight penetration depth.

Reinhart [78, 79] developed the Lightswitch-2002 algorithm, based on a review of studies
in several countries, which dynamically models manual and automatic control of blinds
and lights on a 5 minutes time step, and was integrated into ESP-r [20]. This model
distinguishes two types of behaviour towards blinds use: dynamic (adjusted on a daily
basis) and static (permanently lowered). For this blinds are lowered if the irradiance on the
workplace reaches the threshold of 50 W/m2; they are otherwise kept open. Lightswitch-
2002 appears to be the �rst attempt to develop a formal algorithm for the prediction of
actions on blinds. It does nevertheless have some limitations: it predicts that blinds are
opened only once a day and it uses a rigid threshold for visual comfort.

Nicol and Humphreys [68] and Haldi and Robinson [74] mentioned an increase in the
proportion of blinds lowered as indoor (and outdoor) temperature rises. These former go
on to suggest that the e�ect seems marginal and that it may simply reformulate the e�ect
of a primary variable linked to visual stimuli. Instead, they recommend the use of outdoor
illuminance as the explanatory variable.

In their pilot study of eight o�ces Sutter et al. [93] observed that occupants mostly
set their blinds fully raised or lowered. They also reported an �hysteresis phenomenon�
in the use of blinds; that is the illuminance level at which occupants lower their blinds
is higher than that at which they raise them. It was noticed that most occupants keep
their blinds down until the illuminance is very low, before raising them. They observed
that a logistic function (see Section 3.2) � with the logarithm of external vertical global
illuminance as driving variable - �ts well the percentage of blinds raised. The possibility
of an independent e�ect of temperature was also suggested.

Using Bayesian analysis, Lindelöf and Morel [94] analysed actions on lighting and blinds
using data from the LESO building (see Section 2.1.1) to infer a probability distribution
of visual discomfort that reaches a minimum for horizontal workplane illuminance of 800
to 1200 lux.

Mahdavi et al. [95, 96, 97] observed from a �eld survey in three buildings, that actions on
shading devices occurred on average once every week, with signi�cant di�erences between
occupants.

Finally, based on measurements in two air-conditioned buildings, Inkarojrit [98] tested
a model formulated as logistic probability distributions, with a range of di�erent param-
eters; retaining four predictors: average luminance of the window, maximum luminance
of the window, vertical solar radiation and self-reported sensitivity to brightness. The
experimental design did not however support the development of a comprehensive model,
as only the behaviour on arrival is studied.
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Actions Arrival Intermediate Total Full Partial
Lower blinds
Lowering 2105 (2.3%) 3624 (0.33%) 5729 (0.48%) 10.5% 89.5%
Raising 1297 (1.4%) 3541 (0.32%) 4838 (0.40%) 66.8% 33.2%
No action 88928 (96.3%) 1103967 (99.45%) 1192895 (99.12%)
Upper blinds
Lowering 2308 (2.5%) 4139 (0.37%) 6447 (0.53%) 45.6% 54.4%
Raising 1495 (1.6%) 4061 (0.37%) 5556 (0.46%) 70.3% 29.7%
No action 88527 (95.9%) 1102932 (99.26%) 1191459 (99.01%)
Total 92330 (7.7%) 1111132 (92.3%) 1203462 (100%)

Table 5.1: Classi�cation of observed actions on lower and upper blinds with respect to
occupancy status (2nd to 4th columns) and the proportion of actions to adjust blinds to
their fully (un)shaded fractions (5th and 6th columns)

5.1.2 Perspectives
This short review underlines the need for further research in order to correctly integrate
occupants' behaviour with respect to blinds, as the majority of published studies have not
been supported by the data required to infer comprehensive models (or the opportunity
for doing so has not been taken) accounting for the range of possible explanatory variables
and how behaviour might vary at arrival, during occupancy and upon departure. In order
to correctly predict occupant behaviour we use a rigorous statistical methodology to select
the relevant driving variables for actions. In this chapter we also propose an algorithm for
application in dynamic building simulation tools, with a higher degree of realism than is
the case with the deterministic inputs of Lightswitch-2002.

5.2 Patterns of actions on blinds
We present brie�y in this section several preliminary observations which should provide
useful guidance for the choice of an appropriate modelling approach. The statistical soft-
ware R [86] was used for all data analyses and for the programming of models.

Two o�ces (201 and 202) have a very particular con�guration of blinds and so were
removed from the database. A statistical summary of all the relevant variables measured
during occupied periods is presented in Table 2.4 and Figure 2.6(b).

5.2.1 Actions and occupancy-related e�ects
Table 5.1 shows an overview of actions performed by occupants with respect to occupancy
status, based on �ve minute time steps. It can be noticed that occupants adjust their
blinds more often on arrival than during their presence, up to 5.7 times more often for
lower blinds and 5.5 times more often for upper blinds. A sensible model should thus
account for these di�erentiated action probabilities. On the contrary, there is no signi�cant
increase in action rate when occupants leave their o�ces. Actions at departure are thus
merged with intermediate actions in Table 5.1. Occupants do not seem therefore to adjust
their blinds for predictive purposes, for instance to prevent excess solar gains during their
absence. This fact may advocate for the use of an automatic controller to optimise heat
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gains during occupants' absence. Finally, we do not observe any signi�cant di�erences in
occupancy-related behaviour between o�ces and between �oors.

Actions outside the arrival period are extremely rare, occurring during less than a one
hundredth of our 5 minute time steps. However, it is not yet clear whether these actions at
arrival are an intrinsic e�ect of occupancy transition (eg. the occupant perceives a sudden
di�erence in the visual environment upon arrival, motivating action), or whether it is more
likely that the blind position is inadequate after an unoccupied period due to climatic
changes.

Table 5.1 also reveals that lowering actions are more frequent than raising. This pat-
tern is linked to the fact that lowering blinds to their fully shaded position are much
less commonly performed than full raising actions (Table 5.1, 5th and 6th columns). This
shows that occupants set their blinds more carefully when lowering them (which results
in repeated partial lowering actions), where care is taken to maintain view and a suit-
able internal illuminance, than when raising them (where are less perturbed by surplus
illumination).

It can also be noticed that upper blinds are slightly more frequently used. A likely
explanation lies in the fact that lowered upper blinds leave occupants' view almost unob-
structed, and so they are preferred as a �rst choice to reduce glare.

5.2.2 Observed shaded fractions
A histogram of the prevailing unshaded fractions is given in Figures 5.1(a)-5.1(b). We
observe that lower blinds are in a fully raised position 67.1% of occupied time and fully
lowered 5.2% (56.4% and 21.7% for upper blinds), extreme unshaded fractions are thus
overrepresented (around 75% of occupied periods). This pattern may be due to the fact
that blinds are set in movement by pressing a command, while another press is needed
for stopping it. We may expect a di�erent behaviour for other types of command, such as
crank-operated shading devices.

Upper blinds are four times more likely to be fully lowered; partly because these blinds
do not obstruct the view, but also because of the e�ciency of the anidolic re�ector in
redirecting external illumination.

The chosen fractions display small variations among the surveyed o�ces. The occur-
rence of fully raised lower blinds exceeds 75% in o�ces 104, 105 and 106 (Figure 5.1(c)),
which may be a consequence of the greater distance between occupants' desktop and the
external façade (so that greater proportion of the sky vault is directly visible).

5.2.3 Variables in�uencing the state of blinds
In order to develop a predictive model for blind position, it is of interest to study the
variation of the above shaded fractions in conjunction with key environmental variables.
To this end we show in Figure 5.2 the repartition of lower and upper blind positions as
functions of θin, θout, Ein and Egl,hor.

The state of lower blinds seems not to be directly linked with any of these variables.
However clear increases in upper shaded fraction are noticeable when θin, θout and Egl,hor

rise.
An interesting approach to infer a distribution predicting the state of blinds with respect

to their unshaded fraction is to perform ordinal logistic regression (see Section 3.2.6), which
is appropriate for non-binary outcomes, as a shaded fraction can take any value between 0
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(c) Lower blinds: box-and-whisker plots of observed
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(d) Upper blinds: box-and-whisker plots of observed
unshaded fractions per o�ce

Figure 5.1: Prevailing shaded fractions in the surveyed o�ces for the whole occupied period.
Box-and-whisker plots show the 1st and 3rd quartiles of unshaded fractions as boxes, the
median fraction as a thick line and the most extreme point inside 1.5 times the interquartile
range as whiskers beyond which we have outliers, and solid squares for means.
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Figure 5.2: Plots of probability distributions for lower (top) and upper (bottom) unshaded
fractions, conditional on Ein, Egl,hor, θin and θout. Observed prevalence of unshaded frac-
tions is shown as a gray scale ranging from fully lowered (dark gray) to fully raised (light
gray).

and 1. For this the proportional odds model gives a probability for the unshaded fraction
B to be at least a fraction Bj as the function:

p(B ≥ Bj |x1, . . . , xn) =
exp(aj +

∑n
i=1 bixi)

1 + exp(aj +
∑n

i=1 bixi)
(5.1)

where Bj may be set to any unshaded fraction between 0 and 1. With this convention, we
have a regression parameter bi per predictor xi and an intercept aj per threshold shaded
fraction Bj . We have carried out this procedure with several variables of interest, without
convincing results, as the quality of adjustment is low (see Table 5.3). Although the
obtained distributions summarise, in a single formula, the position of blinds with respect
to chosen predictors, they do not describe the dynamics of actions and their application
with Monte-Carlo simulation is not straightforward, implying sampling from a multinomial
distribution. It is thus more appropriate to directly model actions rather than probability
distributions for the state of blinds.

5.2.4 Stimuli for action

Before formally inferring a model for the probability of raising and lowering blinds, we
studied the state of several variables of interest, when actions occur. We show in Figure 5.3
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the kernel density estimators2 of indoor illuminance, indoor temperature, sun elevation
and azimuth at the moment of lowering and raising, to be compared with their baseline
distributions on the total presence duration.

From these observations, we notice that the distributions of Ein and Egl,hor strongly
di�er from the prevaviling conditions during time steps when actions are performed. As
expected, low values of these latter variables are associated with raising actions, and con-
versely for lowering actions. This provides strong evidence for the prevalence of visual
stimuli for performing actions on blinds. The distributions of thermal variables θin and
θout are not signi�cantly modi�ed when actions are taken.

Actions are more often performed at speci�c sun elevation and azimuth. However,
further analysis should assess the existence of an independent e�ect: for instance, Figure 5.3
(bottom right) shows increased lowering actions in the morning and raising actions in the
late afternoon, but this can be an indirect consequence of rising and lowering values of Ein

and Egl,hor.
Finally, these distributions do not di�er strongly between lower and upper blinds. A

similar set of driving variables is thus responsible for both these actions. Distributions of
other available variables were analysed, producing no noticeable shifts in distributions.

5.3 Model for actions on blinds
In order to account for the real dynamic processes leading occupants to perform actions
on blinds, we infer actual probabilities of lowering or raising blinds, provided relevant
physical parameters, determined through statistical analysis of observations. Our approach
is �rst to determine the driving variables in�uencing actions on lower blinds and then to
formulate lowering and raising probabilities (Sections 5.3.1-5.3.2). Based on the observed
over-representation of actions on arrival, we will distinguish occupancy situations (arrived,
intermediate and departing) and check for the signi�cance of their di�erences. As noted
earlier, besides actions we should also model the chosen position of our blinds and not
simply whether an action has taken place or not (Section 5.3.3). This reasoning is also
applied to the case of upper blinds (Section 5.3.4).

We deduce the action probabilities as logistic models (Section 3.2), where we adopt the
following notation:

logit(p) = log(p/(1− p)) = a + bθin
θin + bθoutθout + bEinEin + bEoutEgl,hor

+bIgIgl,hor + bIdIdiff,hor + bIbIbeam + bBLBL + bBUBU + bLfL, (5.2)

where a and bi are the regression parameters; as summarised in Table 5.2. Following a
similar method as in Chapter 4, starting with univariate models we proceed to consider
models with several variables; continuing this procedure to other predictors until no further
addition may provide extra signi�cance.

2The kernel density estimator based on a sample X1, . . . , Xn from distribution f is de�ned as

f̂(x) =
1

nh

n∑
j=1

g

(
x−Xj

h

)
,

where h > 0 is the bandwidth and g(x) is a kernel function (a symmetric probability density with mean
zero and unit variance), we used here the standard normal density.
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Figure 5.3: Histograms of observed values of Ein, Egl,hor, θin, θout, ζ and α during the
whole measurement period (gray rectangles). Kernel density estimates of the distribu-
tions of these variables when lowering (red) and raising (blue) actions were performed are
superposed, for lower (solid lines) and upper (dashed lines) blinds.
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Type Parameters Lower blinds Upper blinds
Estimate χ2 Estimate χ2

Plower,arr a -7.41 ± 0.16 -7.29 ± 0.11
bEin (10.35 ± 0.19)·10−4 3005.04 (9.48 ± 0.21)·10−4 2041.65
bBL 2.17 ± 0.16 177.79
bBU 2.18 ± 0.10 431.97
bEgl,hor

(6.66 ± 0.76)·10−6 76.73
Praise,arr a -1.520 ± 0.051 -1.699 ± 0.041

bEin (-6.54 ± 0.46)·10−4 202.87 (-5.24 ± 0.54)·10−4 92.84
bBL -3.139 ± 0.068 2127.15
bBU -3.916 ± 0.094 1738.22
bEgl,hor

(-21.8 ± 1.3)·10−6 283.34
Plower,int a -8.013 ± 0.086 -8.211 ± 0.059

bEin (8.41 ± 0.13)·10−4 4173.20 (8.34 ± 0.14)·10−4 3506.19
bBL 1.270 ± 0.086 216.84
bBU 1.533 ± 0.056 741.96
bEgl,hor

(5.69 ± 0.53)·10−6 115.4
Praise,int a -3.625 ± 0.030 -3.629 ± 0.025

bEin (-2.76 ± 0.22)·10−4 155.24 (-2.90 ± 0.26)·10−4 125.00
bBL -2.683 ± 0.040 4600.57
bBU -3.365 ± 0.051 4398.09
bEgl,hor

(-16.86 ± 0.68)·10−6 622.32
Pfull lower a -0.27 ± 0.14 -0.435 ± 0.097

bBL -2.23 ± 0.16
bBU 0.150 ± 0.096
bEgl,hor

(0.91 ± 1.33)·10−6 (2.50 ± 0.79)·10−6

Pfull raise a 0.435 ± 0.062 1.543 ± 0.044
bBL 1.95 ± 0.11
bBU -0.56 ± 0.10
bEgl,hor

(-2.31 ± 0.11)·10−5 (-2.12 ± 0.11)·10−5

Table 5.2: Regression parameters and analysis of deviance for action probabilities and for
full lowering and raising probabilities (in all cases, p < 0.001 according to the Wald and
likelihood ratio tests)



88 CHAPTER 5. MODELLING ACTIONS ON SHADING DEVICES

Model Lower blinds Upper blinds
AUC R2

N B Dxy AUC R2
N B Dxy

P (B > Bj |θin) 0.519 0.002 0.220 0.039 0.604 0.050 0.236 0.207
P (B > Bj |θout) 0.509 <0.001 0.221 0.018 0.616 0.064 0.233 0.232
P (B > Bj |Ein) 0.530 0.003 0.220 0.060 0.541 0.001 0.245 0.081
P (B > Bj |Egl,hor) 0.541 0.005 0.219 0.081 0.629 0.074 0.229 0.258
P (B > Bj |Ein, Egl,hor) 0.629 0.074 0.229 0.258 0.648 0.092 0.226 0.295
Plower,arr 0.833 0.191 0.021 0.665 0.865 0.232 0.023 0.730
Praise,arr 0.881 0.172 0.014 0.762 0.893 0.256 0.015 0.786
Plower,int 0.778 0.081 0.003 0.555 0.821 0.118 0.004 0.642
Praise,int 0.861 0.091 0.003 0.722 0.841 0.142 0.004 0.682
Pfull lower 0.564 0.051 0.090 0.128 0.527 0.002 0.248 0.054
Pfull raise 0.715 0.162 0.190 0.431 0.702 0.110 0.192 0.403

Table 5.3: Goodness-of-�t estimators for ordinal logistic models (top) and transition prob-
abilities based on binary logistic models (bottom)

5.3.1 Actions on arrival on lower blinds
The best model accounting for the variation of these probabilities for lowering actions
on arrival with a single predictor uses indoor horizontal illuminance Ein as the driving
variable. Observed and �tted probabilities are shown in Figure 5.4(a), where we see that
the probability of lowering a blind is well described by the �tted curve. We then consider
a second variable, and observe that the initial lower unshaded fraction before action BL

induces the greatest increase in the predictive accuracy (Figure 5.4(c)). In other words the
future position of the blind depends strongly on its previous position. Other variables do
not bring any signi�cant contribution if included as a third predictor.

For raising actions upon arrival we �nd that BL is the most in�uential variable (Fig-
ure 5.4(b)), while a model with Ein �ts only poorly. We also �nd that a model with both
these variables o�ers a marginal but still signi�cant improvement (Figure 5.4(d)). This sug-
gests that if the occupants �nd their blind lowered on arrival they are more concerned with
having an unobstructed view than by e�ective visual stimuli. Goodness-of-�t indicators
(area under the ROC curve, Nagelkerke's R2, Brier score and Somer's Dxy) are displayed
in Table 5.3; the high values of AUC show that observed actions can be reliably reproduced
while the values of R2

N are considered as good in the context of logistic regression models.
Note that the parameters displayed in Table 5.2 determine the �nal form of the model.

Furthermore, the level plots of Figure 5.4 include the �tted regression surfaces which
directly provide values for action probabilities given Ein and BL.

5.3.2 Actions during presence and at departure on lower blinds
The variable selection process retains Ein and then BL for lowering probability (Fig-
ure 5.4(e)), and BL and then Ein for raising (Figure 5.4(f)); likewise on arrival. As
expected from the observations in Table 5.1, the predicted probabilities are lower than
on arrival, which con�rms a speci�c behaviour in this situation. Goodness-of-�t indicators
are also lower than on arrival (Table 5.3). Furthermore, some probability increase due to
direct glare is evident when considering speci�c domains of ζ and α, which is discussed in
Section 5.5.
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(b) Raising actions on arrival versus ini-
tial unshaded fraction
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(e) Lowering actions during presence
versus indoor illuminance and initial un-
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sus indoor illuminance and initial un-
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Figure 5.4: Level plots of observed action probabilites on lower blinds (given on a quasi-
logarithmic scale), versus bins of indoor and outdoor temperature, with contour lines from
the logistic regression surface
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We have also examined the possibility of a purely seasonal e�ect on behaviour at
departure, eg. whether occupants preventively lower their blinds when leaving during a
heat wave to avoid heat gains during their absence. After examining actions with respect to
both daily and monthly mean outdoor temperatures we did not notice any such behaviour.

Actions during presence thus do not di�er fundamentally from actions on arrival, as
the same variables in�uence these actions, but their frequency is lower. This may be seen
by the roughly parallel contour lines from the regression surfaces in Figure 5.4 and from
the regression parameters in Table 5.2.

5.3.3 Choice of lower blind position

We have also studied occupants' choices of unshaded fraction when performing an action.
From this we observe (Table 5.1) that the general behaviour di�ers greatly in terms of
whether a lowering or raising action is performed. We model the choice of unshaded
fraction by �rst determining whether a full action (to fully raised or lowered) takes place.
Once again we have used forward selection to identify key variables to infer a distribution
for the probability of fully lowering and fully raising blinds, retaining Egl,hor and BL as
predictors. The probability Pfull of performing full lowering or raising actions can then
be written as logit(Pfull) = a + bEoutEgl,hor + bLBL, using the regression parameters given
in Table 5.2. The observed proportion of full actions is shown in Figures 5.5(a)-5.5(b),
together with contour lines from the �tted model.

If a full action is not taken, a second sub-model must determine the shaded fraction
from a relevant distribution. We studied observed lowering actions to a partial unshaded
fraction, and observed that the increase in shading ∆B is well approximated by a Weibull
distribution (see Section 3.4 for its de�nition), with scale parameter depending on the
initial shaded fraction. Maximum likelihood estimation then yields:

f(∆B|BL,init) =
α

λ(BL,init)
(

∆B

λ(BL,init)
)α−1 exp(−(

∆B

λ(BL,init)
)α), (5.3)

with shape α = 1.708 and scale λ(BL,init) = exp(−2.294 + 1.522 · BL,init). The �tted
distribution for ∆B is shown in Figure 5.5(c) for several values of BL,init. Figure 5.5(c)
shows that occupants rarely choose slight or almost full lowering when setting their blinds
until a non-total fraction.

But we have also found that the distribution of chosen fractions for partial raising
actions does not signi�cantly di�er from a uniform distribution, which we use therefore
in the �nal model. A re�ned treatment is anyway of less central importance, as partial
raising actions are much less frequent than partial lowering actions (Table 5.1).

The approach of modelling �rst whether an action to fully raised or lowered fraction is
performed and if this is not the case, following this by a second model to predict the chosen
partial fraction has some drawbacks. It implies the use of two distinct stochastic models
to predict unshaded fraction choices; it also neglects the signi�cant correlation of the error
terms in these models. However, the particularly high prevalence of full actions results in
an extremely biased distribution of chosen fractions that would be di�cult to model with
a single process. Therefore, in spite of this additional complexity, the retained approach
o�ers a sensible compromise between accuracy and accessibility for implementation.
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(b) Probability of full raising
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Figure 5.5: Level plots of observed probabilites of full actions, versus bins of indoor il-
luminance and initial unshaded fraction, with contour lines from the logistic regression
surface
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5.3.4 Model for actions on upper blinds
We have performed similar analyses for the inference of a model for the upper blinds. We
found that Ein, BU and Egl,hor were signi�cant parameters for lowering and raising actions.
Figure 5.6 shows observed and predicted action probabilities for domains of Ein and BU .

For all these sub-models, the inclusion of Egl,hor brings signi�cant additional predictive
value (Table 5.3), which was not the case for the lower blinds. This most likely relates to
the particular purpose of the anidolic re�ector to enhance internal daylight levels whilst
Egl,hor is low (and that of the blinds to prevent excess internal illumination whilst Egl,hor

is high).
The choice of upper shaded fraction is modelled similarly to those of lower blinds, with

higher predicted probabilities of complete actions (Figures 5.6(e)-5.6(f)).

5.4 Predictive accuracy
Un coup de dés jamais n'abolira le hasard.
A roll of the dice will never abolish chance.
Poem (1897) of Stéphane Mallarmé (1842-1898)

5.4.1 Modelling variants
Based on these results, we have developed a simple algorithm for the simulation of blind
usage, which is described in detail in Section 7.1 and graphically summarised in Figure 7.2.
We consider four variants of decreasing complexity for this algorithm, in order to evaluate
the accuracy induced by each of its elements:

• Model M1: We use the expressions inferred in Section 5.3 for Plower, Praise, Pfull lower,
Pfull raise and f(∆B).

• Model M2: Same as M1, with f(∆B) modelled as a uniform probability distribution.

• Model M3: Same as M2, with Pfull lower and Pfull raise treated as constants, with values
from Table 5.1.

• Model M4: Same as M3, with Plower and Praise treated as constants, with values from
Table 5.1.

5.4.2 Criteria
We describe here our procedure for rigorously evaluating the predictive power of our al-
gorithm with its variants. We assess the predictive power of the models by checking four
aspects:

• Overall activity: Is the predicted number of actions consistent with observations?

• Mean prediction: Does the model predict a consistent mean overall unshaded fraction
throughout the simulation period?

• Distribution of shading: is the proportion of blinds fully lowered and fully raised
acceptably reproduced?



5.4. PREDICTIVE ACCURACY 93

0 500 1000 1500 2000 2500 3000 3500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Indoor illuminance (lx)

U
ns

ha
de

d 
fr

ac
tio

n

0

0.001

0.0025

0.005

0.01

0.025

0.05

0.1

0.25

0.5

1

 0.01 
 0.02 

 0.03 

 0.04 

 0.05 

 0.06 
 0.07 

 0.08 

 0.09 

 0.1  0.11 
 0.13 

 0.15 

(a) Lowering actions on arrival

0 500 1000 1500 2000 2500 3000 3500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Indoor illuminance (lx)

U
ns

ha
de

d 
fr

ac
tio

n

0

0.001

0.0025

0.005

0.01

0.025

0.05

0.1

0.25

0.5

1

 0.005 

 0.01 

 0.015 

 0.02 

 0.025 

 0.03 
 0.035 

 0.04 
 0.045 

 0.05 

 0.055 
 0.06 

 0.08 

(b) Raising actions on arrival
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(c) Lowering actions during presence
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(f) Probability of full raising

Figure 5.6: Level plots of observed action probabilites on upper blinds (top and middle)
and probabilites of full actions (bottom), versus bins of indoor illuminance, initial unshaded
fraction and outdoor illuminance, with contour lines from the logistic regression surface
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Model Lowering Raising Mean unshaded Prop. Prop. Quartiles of
actions actions fraction fully lowered fully raised error

Lower blinds
Exact 5729 4838 84.6% 5.2% 67.1%
M1 3919 3546 79.9% 2.3% 49.9% -1.692 -0.946 -0.140
M2 3854 3859 79.2% 2.8% 52.5% -1.859 -1.054 -0.220
M3 3980 3592 81.0% 2.7% 57.0% -1.483 -0.809 -0.004
M4 3965 2436 55.7% 21.8% 37.9% -4.615 -3.819 -2.944
Upper blinds
Exact 6447 5556 67.6% 21.7% 56.4%
M1 3799 2469 60.3% 9.8% 31.1% -2.495 -1.300 0.413
M2 3774 2447 59.7% 10.0% 30.6% -2.600 -1.506 0.457
M3 3706 2882 57.8% 21.5% 36.4% -2.600 -1.461 0.074
M4 3863 2849 44.5% 44.2% 34.3% -4.608 -2.923 -0.659

Table 5.4: Diagnostics for predictive accuracy: Mean simulated number of lowering actions,
raising actions, average unshaded fraction, proportion of time fully lowered and fully raised
and quartiles of the distribution of the error on aggregated unshaded fractions for lower
(top) and upper (bottom) blinds

• Aggregated results: Is the predicted total unshaded fraction in the building consistent
with observations?

It is however not possible to perform a direct assessment of the associated discrimination as
was the case in Chapter 4, as the predicted outcome is not binary for unshaded fractions.

In applying the above tests we have performed 20 repeated simulations using 5 minutes
time steps for the whole period with available measurements and for the 12 measured
o�ces, producing 20 × 12 = 240 sets of simulated lower and upper unshaded fractions
(BL,sim(t), BU,sim(t)), to be compared with 12 sets of observed states (BL,obs(t), BU,obs(t)).
This procedure was repeated for each of our models. Table 5.4 summarises the performance
indicators, together with Figures 5.7 to 5.9.

The total number of actions is underestimated for all models, indicating that these
latter often neglect to predict an action that was performed. However missed actions will
mostly result in comfortable daylight levels enabled by observed actions, which will decrease
subsequent action probability (so that there is some in-built compensation). Nevertheless
we observe that the magnitude of the estimation is coherent, and the AUC indices �
measuring the proportion of correctly classi�ed actions � range from from 78% to 89%.

The simulated mean unshaded fraction (〈BL,sim(t)〉, 〈BU,sim(t)〉) seems reliable, al-
though it is slightly lower than observed. Our models based on visual stimuli (M1, M2 and
M3) perform much better (Table 5.4) than the model with constant action probabilities
(M4). From Figure 5.7(c) we can also see from the vertical clusters of results that this
parameter does not vary strongly for repeated simulations of individual o�ces.

The simulated distribution of unshaded fractions for lower blinds also reproduces re-
liably the observed fractions, with low spread among simulation replicates. However, the
predicted proportion of fully lowered and raised blinds is slightly too low (Table 5.4, 5th

and 6th columns). The obtained shading distribution is less satisfactory for upper blinds.
However this is not problematic in this particular case, since the speci�c design of the
anidolic windows is such that unshaded fractions between 0 and 0.6 have little impact on
solar gains (the zenith angle from the centre of the vertical plane of the window to the
base of the blinds remains small). In general, the model M4 with constant probabilities
performs poorly, which underlines the added value of visual stimuli in a model for actions
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Figure 5.7: Graphical diagnostics for validation using the model M1
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on blinds.
We extend empirical comparisons to include simulation to the scale of the whole build-

ing and check whether the models are able to reproduce the total observed shading levels
for all o�ces. Based on individual simulations of blind states in the 12 o�ces, we compute
the total unshaded fractions Bsim(t) = (

∑12
k=1 Bk(t))/12 for each simulation. Averaging

over the 20 sets of Bsim(t) we deduce the mean predicted unshaded fraction at each time
step B̄sim(t) (Figure 5.8(c)). Comparing with the observed total unshaded fraction Bobs(t),
we may compute the mean error ε(t) = B̄sim(t)−Bobs(t) at each time step (Figures 5.8(a)-
5.8(b)).

We show in Table 5.4 the quartiles of this error for each model. From this we observe
that the full model (M1) and a partial model (M3) o�er the best performance on aggre-
gated results, with smallest error magnitude. Furthermore, comparisons of measured and
predicted unshaded fractions (Figures 5.9(a)-5.9(b)) indicate that these models reproduce
acceptably well the temporal variation of blinds' position3.

In conclusion, the models including visual stimuli in action probabilities (M1, M2 and
M3) o�er more robust predictions and their use is essential for integration in building
simulation. The performance of the most re�ned models (M1 and M2) is however similar
compared to the more basic model M3.

5.5 Discussion
Like most previous surveys, our measurements come from a single con�guration of blinds,
which potentially limits the generality of our results. There is a great diversity in the
available types of shading devices, and di�erences in their use are evident (eg. occupants
may interact di�erently with curtains, blinds with blades, Venetian blinds or shutters).
Furthermore, our data are also currently restricted to an o�ce type environment; in which
the importance of other factors such as privacy may not be as high as they are in the home.
The type of control may also play a role, as occupants of our survey may easily adjust their
blinds simply by pressing a button. We cannot exclude that the ease of use of shading
devices in�uences the probabilities of action and the chosen unshaded fractions. It is also
possible that measurements in other climatic contexts would lead to dissimilar results, for
instance when actions on air conditioning systems are favoured in lieu of shading devices
or when the sunpath is very di�erent.

These issues bring out the necessity to develop a general method supported by a large
dataset including measurement for diverse con�gurations of blind and building context.
Nevertheless, our approach based on local stimuli (indoor horizontal illuminance) o�ers
promise for extension to other con�gurations of shading device and building context. In-
deed we may expect to �nd the same driving variables, but with di�erent action prob-
abilities depending on shading device accessibility. The most building-speci�c feature is
expected to be the choice of shaded fraction.

Our transition probabilities do not include outdoor radiation parameters such as Igl,hor,
Idiff,hor or Ibeam. Our statistical analyses showed that the relevant visual stimuli are al-
ready included with Ein and Egl,hor. Furthermore, even if they were found to be more
in�uential, their use would be problematic as their in�uence on occupants' actions varies
with the glazed surface and the current shaded fraction, which would make their prediction

3This refers to the period from 27 January 2005 to 14 January 2006, which o�ers representative climatic
conditions and uninterrupted measurements.
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Figure 5.9: Monthly box-and-whisker plots of observed and mean simulated total unshaded
fractions on a period of a year using the model M1

purely speci�c to our building. The use of indoor visual stimuli is thus more coherent, pro-
vided that a daylight model is coupled with simulations. Although horizontal workplane
illuminance is the surveyed environmental variable that best explains actions on shading
devices, there may well exist better predictors, such as the CIE glare index (CGI) [99, 100]
or the CIE uni�ed glare rating system (UGR) [101]:

CGI = 8 log10 2
1 + (Ed/500)

Ed + Ei

n∑

i=1

L2
sωs

P 2
, UGR = 8 log10

0.25
Lb

n∑

i=1

L2
sωs

P 2
, (5.4)

where Ed and Ei are the direct and indirect vertical illuminances at the eye, Ls the lumi-
nance of the glare source, ωs the solid angle subtended by the source, Lb the general �eld
of luminance controlling the adaptation levels of the observer's eye and P Guth's posi-
tion index (depending on the observer's line of sight and the azimuth and elevation of the
source). Another interesting indicator is daylight glare probability (DGP), proposed by
Wienold and Christo�ersen [102] who suggested that it better relates with glare sensation.
It is de�ned as

DGP = c1Ev + c2 log

(
1 +

∑

i

L2
s,iωs,i

Ec4
v P 2

i

)
+ c3, (5.5)

with c1 = 5.87 · 10−5, c2 = 9.18 · 10−2, c3 = 0.16 and c4 = 1.87. Furthermore, its
de�nition as a probability is interesting in relationship with action probabilities. However,
its applicability to our database is undermined by the fact that variables such as Ls and
Ev cannot be deduced from our measurements, even if we have a mean to deduce the solid
angle ωs. Furthermore, it may not be directly applicable to our situation, as our occupants
sit perpendicular to the window and thus glare occurs out of the main �eld of vision.

The sun position (ζ, α) was not found to be a signi�cant addition as raw variables
to models including local visual stimuli and initial blind position. Figure 5.10 shows the
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Figure 5.10: Level plot of deviance residuals of the model for lowering actions during
presence including Ein and BL, with respect to sun position

deviance residuals (see Section 3.2.5) of the model for lowering actions during presence
including Ein and BL. A domain centered on ζ = 15◦, α = 140◦ shows a strongly increased
observed action probability not treated by the model, which is likely to correspond to
the sun positions involving direct glare, based on the con�guration of the o�ces. The
present formulation of our model does not include the treatment of actions in response to
direct glare risk; however a modi�cation of the model to include this stimulus would be
straightforward.

Finally, our models do not include thermal stimuli, as visual variables alone explain
observed variations in actions on blinds. However, these parameters could play a direct
role in buildings which utilise daylight less e�ciently; where occupants would need to lower
blinds for thermal reasons rather than in response to perceived glare.

5.6 Individuals' behaviours
The models developed above were derived from data relating to the whole set of occupants
and for the entire surveyed period. We examine here variations in behaviour among the
surveyed occupants and provide a method to account for observed behavioural diversity
amongst them.

Table 5.5 shows for each individual or combination of occupants (in double o�ces) the
regression parameters for univariate probabilities of actions on lower blinds, based on the
most in�uential predictor only (Ein for lowering and BL for raising actions). The obtained
curves are shown in Figure 5.11, where it is also evident that for the majority of occupants
the slopes b of the action probabilities are reasonably similar; the di�erences arising mainly
in the intercepts a.
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Figure 5.11: Occupant speci�c action probabilities based on their most in�uential variables
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Pers Plower,arr Praise,arr Plower,int Praise,int

Ref. a b · 103 a b · 103 a b · 103 a b · 103

001-28-X -6.39 ± 0.42 1.41 ± 0.14 -2.71 ± 0.19 -3.64 ± 0.58 -6.66 ± 0.16 0.86 ± 0.07 -3.87 ± 0.08 -3.58 ± 0.26
001-17-30 -8.17 ± 0.81 1.83 ± 0.26 -1.49 ± 0.24 -3.34 ± 0.37 -7.83 ± 0.23 1.15 ± 0.08 -3.56 ± 0.12 -2.68 ± 0.17
001-17-35 -4.98 ± 0.48 1.07 ± 0.20 -2.10 ± 0.38 -3.39 ± 0.84 -5.92 ± 0.25 0.81 ± 0.12 -3.78 ± 0.20 -2.23 ± 0.37
002-21-24 -6.39 ± 0.75 1.00 ± 0.27 -0.38 ± 0.45 -4.49 ± 0.61 -6.96 ± 0.27 1.05 ± 0.11 -1.93 ± 0.26 -4.46 ± 0.37
002-16-25∗ 18.07 ± 11.60 4.36 ± 3.40 -3.13 ± 0.56 -2.36 ± 0.80 -8.26 ± 0.42 0.93 ± 0.17 -4.87 ± 0.31 -2.32 ± 0.41
002-01-16 -6.82 ± 1.69 1.22 ± 0.54 -1.53 ± 0.45 -2.84 ± 0.75 -7.87 ± 0.77 0.98 ± 0.25 -3.69 ± 0.31 -3.02 ± 0.55
002-11-16 -8.59 ± 1.32 1.93 ± 0.41 -1.15 ± 0.40 -3.78 ± 0.56 -7.52 ± 0.28 1.00 ± 0.11 -3.17 ± 0.28 -3.67 ± 0.37

003-07 -5.09 ± 0.14 1.30 ± 0.06 -0.85 ± 0.14 -4.08 ± 0.24 -6.47 ± 0.10 1.04 ± 0.05 -3.20 ± 0.08 -3.07 ± 0.15
004-26-36 -5.72 ± 0.17 1.04 ± 0.07 -1.60 ± 0.14 -3.42 ± 0.21 -6.71 ± 0.10 0.84 ± 0.05 -4.18 ± 0.09 -2.44 ± 0.14

101-22 -6.67 ± 0.31 1.23 ± 0.14 -4.63 ± 0.32 -3.69 ± 0.91 -7.15 ± 0.14 1.16 ± 0.08 -4.92 ± 0.10 -3.08 ± 0.27
103-03 -5.62 ± 0.20 1.54 ± 0.08 -1.12 ± 0.18 -3.78 ± 0.30 -6.39 ± 0.09 1.10 ± 0.04 -2.89 ± 0.08 -2.98 ± 0.12
103-42 -6.12 ± 1.24 1.50 ± 0.41 2.82 ± 1.99 -8.90 ± 3.15 -9.30 ± 1.15 2.08 ± 0.39 0.15 ± 0.76 -7.37 ± 1.27
103-29 -4.59 ± 0.65 1.13 ± 0.30 -2.10 ± 0.43 -3.15 ± 1.19 -7.07 ± 0.53 1.29 ± 0.23 -4.30 ± 0.31 -3.34 ± 0.96
104-19 -6.64 ± 0.21 1.65 ± 0.08 0.32 ± 0.19 -5.45 ± 0.27 -7.25 ± 0.11 1.38 ± 0.05 -1.36 ± 0.11 -4.86 ± 0.15
105-38 -8.59 ± 0.61 1.80 ± 0.19 -0.80 ± 0.28 -4.34 ± 0.34 -9.43 ± 0.38 1.47 ± 0.12 -3.07 ± 0.14 -3.22 ± 0.19

106-06-39 -5.57 ± 0.20 1.01 ± 0.08 -0.96 ± 0.20 -4.13 ± 0.28 -7.64 ± 0.16 0.87 ± 0.07 -3.96 ± 0.12 -3.12 ± 0.18
201-31 -6.25 ± 0.25 1.07 ± 0.10 -0.49 ± 0.30 -6.12 ± 0.44 -8.04 ± 0.16 0.83 ± 0.06 -3.39 ± 0.24 -4.73 ± 0.30

202-05-33 -5.56 ± 0.41 0.88 ± 0.16 1.03 ± 0.80 -7.85 ± 1.40 -6.78 ± 0.21 0.70 ± 0.09 -1.05 ± 0.33 -6.66 ± 0.57
203-09 -4.99 ± 0.27 0.87 ± 0.11 1.70 ± 0.68 -7.56 ± 0.82 -6.56 ± 0.18 0.47 ± 0.09 -0.22 ± 0.27 -6.48 ± 0.33

203-08-14∗ -4.91 ± 0.42 0.19 ± 0.25 -3.98 ± 0.70 -2.23 ± 1.27 -6.53 ± 0.19 0.17 ± 0.12 -5.18 ± 0.25 -2.13 ± 0.46
203-12-40∗ -5.94 ± 1.74 -0.01 ± 1.13 -2.70 ± 0.60 -4.36 ± 1.86 -6.83 ± 0.56 0.25 ± 0.31 -5.60 ± 0.54 -3.59 ± 1.48

204-18 -6.95 ± 0.60 1.79 ± 0.20 0.12 ± 0.52 -5.13 ± 0.73 -9.06 ± 0.50 1.81 ± 0.17 -2.26 ± 0.25 -3.58 ± 0.34
204-10 -6.17 ± 0.30 1.14 ± 0.10 1.20 ± 0.28 -6.74 ± 0.45 -7.67 ± 0.20 0.88 ± 0.07 -2.61 ± 0.25 -5.10 ± 0.39

Table 5.5: Occupant speci�c parameters for action probabilities on lower blinds including
a single variable. Asterisks are used to identify occupants for which at least one regression
parameter was not statistically signi�cant.

Figure 5.12 shows the main patterns linking these regression parameters. For all cases,
intercepts and slopes are strongly correlated; it is thus meaningful to summarise the vari-
ability between occupants by the characteristic illuminance E50 = −a/b for which the
probability of action is equal to 0.5. This allows an indirect measure of the notion of
�activity� or �passivity� of individual occupants, introduced by Reinhart [78, 79]; those
displaying a low value of E50 being more likely to perform lowering actions at less extreme
illuminance levels.

It is particulary noticeable in Figures 5.11(a) and 5.11(c) that occupants of single o�ces
display higher values of E50 and thus act on their blinds with higher probability. The strong
correlations between all regression parameters for arrival and during presence (Figure 5.12)
are also interesting: occupants individually display a coherent level of adaptive activity in
both these situations, action probability being higher on arrival.

5.7 Conclusion
We have developed a model for the prediction of actions on shading devices based on a
long term survey. It is formulated as transition probabilities, based on a su�cient set of
driving variables. This model represents a clear improvement compared to currently used
deterministic methods. We have also rigorously tested this model against measured data
with satisfactory results.

The model is based on general assumptions, for application to a wide class of buildings.
Although our data relate to a very speci�c building design, group of occupants and shading
system, we have nevertheless found conclusively that the driving variables for actions are
local stimuli on the workplane, which directly links visual comfort, visual variables and
actions. The form of the model should thus be readily adaptable to other situations, but
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to be able to model the range of situations with con�dence considerably more data is
required with which to derive the relevant model calibration parameters. The model may
also be integrated with any dynamic building thermal simulation program which includes
predictions of indoor illuminance. Finally, we have also studied individuals' diversity in
the use of shading devices and suggested how this diversity may be accounted for in the
model.
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Chapter 6

Environmental comfort

Il faut un minimum de confort pour pratiquer la vertu.
Virtue requires a minimum of comfort.
Thomas Aquinas (ca. 1225-1274), Opera omnia

Environmental comfort and indoor environment quality more generally are important
factors in building performance simulation, as the �nal purpose of a building is to ensure
the comfort of its occupants. In this chapter, we propose a global approach to better
understand and predict occupant comfort, and account for its close relationship with the
adaptive actions treated in Chapters 4 and 5.

This chapter begins with a brief review of the relevant research in the �elds of thermal
and visual comfort (Section 6.1). Based on preliminary observations and comparisons
with current accepted adaptive models for thermal comfort, we underline the need for
further research (Section 6.2). From our data, we go on to compare di�erent approaches
for the prediction of thermal comfort (Section 6.3), including an explicit distribution of
thermal sensation and an analytical probability of thermal comfort, followed by an analysis
of the in�uence of adaptive actions on comfort temperature (Section 6.4)1. A similar
approach is then applied to the prediction of visual sensation and comfort (Section 6.5).
We conclude by proposing a general formulation of control action probability based on
the perception of comfort and action inertia (Section 6.6), where occupant comfort is
put in its appropriate place as the central underlying concept in occupants' behaviour
and adaptation. We go on to discuss how environmental as well as personal interactions
in�uence human comfort, which in turn may in�uence subsequent control actions. We
�nally discuss future perspectives for research in environmental comfort (Section 6.7).

6.1 State of the art

We present in this section the key de�nitions related to thermal (Section 6.1.1) and visual
(Section 6.1.2) comfort and discuss key outcomes from research that has been conducted
until now.

1The methodology presented in Section 6.4 has been presented at the 10th International Building
Performance Simulation Association Conference [103], at the CISBAT Conference 2007 [104] and published
in the journal Building and Environment [74].
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6.1.1 Thermal comfort
Ce qui a été cru par tous, et toujours, et partout,
a toutes les chances d'être faux.
That which has always been accepted by everyone,
everywhere, is almost certain to be false.
Paul Valéry (1871-1945), Tel Quel (1943)

Sensation, comfort and acceptability
Thermal comfort is de�ned by ASHRAE as that state of mind which expresses satisfaction
with the thermal environment [105]. As thermal comfort is based on perception it must
be measured subjectively. Most studies and standards use the seven-point ASHRAE or
the Bedford scale [35, 106] (Table 6.1) to quantify thermal sensation, from which our
questionnaire (Table 2.3) is inspired.

Rating ASHRAE scale Bedford scale Satisfaction
−3 Cold Much too cool Not satis�ed
−2 Cool Too cool (too cold)
−1 Slightly cool Comfortably cool
0 Neutral Comfortable Satis�ed

+1 Slightly warm Comfortably warm
+2 Warm Too warm Not satis�ed
+3 Hot Much too warm (too hot)

Table 6.1: Thermal sensation and satisfaction scales

For both scales, it is assumed that a person reporting one of the three central categories
(−1 to +1) is in a state of thermal comfort. Previous studies generally observed the close
agreement between the notions of comfort and acceptability. For instance, Berglund [107]
found that subjects' thermal comfort votes rated as comfortable or slightly uncomfortable
were perceived as acceptable. More recently, based on an experiment with stationary con-
ditions in a climate chamber, Zhang and Zhao [108] concluded that the notions of thermal
sensation, acceptability and comfort seem to be equivalent for uniform environments, while
in the non-uniform case a limited deviation regarding overall thermal sensation was noticed
(explained by non-uniformity of thermal sensation). Similar discrepancies exist in the case
of transient environments.

Several studies have shown that the central category may not necessarily always be
the preferred subjective thermal sensation. For example, based on a simultaneous survey
of thermal sensation and preference, Humphreys and Nicol observed that in the case of
warm indoor temperatures, occupants' preferred sensation tended to be slightly warmer
than neutral [109].

Fanger's stationary heat balance model
The model of Fanger [106], subsequently integrated to the ISO 7730 Standard [35], proposes
a model based on a stationary human thermal heat balance to compute the predicted
mean vote (PMV) of a population of occupants � the mean thermal sensation in a given
environment � based on the ASHRAE sensation scale (Table 6.1).
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Variable Symbol, unit Domain of validity
Air temperature Ta [K], θa [◦C] 10 to 30◦C
Mean radiant temperature Tmr [K], θmr [◦C] 10 to 40◦C
Relative air speed v [m/s] 0 to 1 [m/s]
Partial vapour pressure p [Pa] 0 to 2700 [Pa]
Speci�c activity m [W/m2] 46 to 230 [W/m2] (0.8 to 4 met)
Speci�c work w [W/m2]
Clothing level Icl [m2K/W] 0 to 0.310 [m2K/W] (0 to 2 clo)

Table 6.2: Parameters for the Fanger equation

Based on extensive studies of subjects placed in climate chambers, Fanger derived an
equation for the PMV using the following heat balance equation with parameters given in
Table 6.2,

PMV = (0.303 exp(−0.036m) + 0.028) ·
·
(
m− w − 0.00305(5733− 699(m− w)− p)− 0.42(m− w − 58.15)

−1.7 · 10−5m(5867− p)− 0.0014m(307− Ta)

−3.96 · 10−8f(T 4
cl − T 4

mr)− fh(Tcl − Ta)
)
, (6.1)

in which f is the fraction of clothed surface, h the convective heat transfer coe�cient and
Tcl the surface temperature of clothing, which are given by

f =
{

1.00 + 1.290 · Icl (for Icl < 0.078 m2K/W)
1.05 + 0.645 · Icl (for Icl > 0.078 m2K/W)

h = max(2.38(Tcl − Ta)1/4, 12.06 · v), (6.2)
Tcl = 308.9− 0.028(m− w)− Icl ·

(
3.96 · 10−8f(T 4

cl − T 4
mr) + fh(Tcl − Ta)

)
. (6.3)

Equation (6.1) is obtained through multiplying a coe�cient for change in metabolic rate:
(0.303 exp(−0.036m) + 0.028), by the di�erence between heat production (m − w) and
contributions to heat losses (appearing sequentially in Equation (6.1): vapour di�usion,
sweat evaporation, latent respiration, dry respiration, radiation and convection).

The partial vapour pressure can be obtained from the relative humidity φ through
p = psat(T )φ, and the saturation vapour pressure psat can be deduced through the Go�-
Gratch equation [110],

log10(psat) = −7.90298 · (373.16
T

− 1) + 5.02808 · log10(373.16/T )− 1.3816 · 10−7

·(1011.344·(1− T
373.16

) − 1) + 8.1328 · 10−3 · (10−3.49149·( 373.16
T

−1) − 1) + log10(1013.246) (6.4)

This yields an implicit formulation of the PMV, therefore Equations 6.1 to 6.3 must be
solved iteratively with a computer2. We show in Figure 6.1 calculations of the PMV for
several domains of its driving variables.

2However, a simpli�ed approach proposed by Sherman [111] allows a reasonably precise computation
of PMV without iteration, in which the PMV is a linear function of the air temperature and mean radiant
temperature and a quadratic of the dew point.
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(a) PMV as a function of air temperature and air
speed, with �xed φ, m, Icl
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(b) PMV as a function of air temperature and rela-
tive humidity, with �xed va, m, Icl
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(c) PMV as a function of air temperature and
metabolic activity, with �xed va, φ, Icl
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(d) PMV as a function of air temperature and cloth-
ing level, with �xed va, m, φ

Figure 6.1: Fanger's PMV predictions, assuming θmr = θa, w = 0 W/m2, Ichair = 0.13 clo,
and when �xed, φ = 50%, va = 0 m/s, m = 1.2 met, R = 0.7 clo,
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Optimal conditions correspond thus to a zero PMV. A related parameter for assessing
global thermal comfort is the predicted percentage of dissatis�ed (PPD) in a population,
which can be predicted from the PMV through the following empirical relationship:

PPD = 1− 0.95 · exp(−0.003353 · PMV 4 − 0.2179 · PMV 2). (6.5)

According to which we have at best 5% of dissatis�ed people, corresponding to PMV = 0,
which expresses the impossibility of creating optimal conditions satisfying a whole set of
occupants, but that it is possible to create an environment where the percentage of satis�ed
is maximal.

Limitations of Fanger's model

The model of Fanger reproduces generally well observed thermal sensation and satisfaction
in controlled steady state environments such as air-conditioned buildings. However, its
predictions are known to be generally poor in naturally-ventilated buildings, where the
environment is more variable. Several causes for this failure to provide accurate predictions
in such environments have been put forward (for instance by Newsham [112], Olesen and
Parsons [113], Humphreys and Nicol [114] and van Hoof [115]):

• Fanger's model is based on a simpli�ed calculation of the heat balance of the human
body, which does not account for any inertia in heat storage. This can lead to
signi�cant errors in transient environments.

• The prediction of thermal sensation away from neutrality is based upon the principle
of thermal load (Equation (6.1)), which is criticised.

• The model ignores the processes of acclimatisation; that is, occupants' thermal expec-
tations may evolve in relation to the climatic context and their thermal experience.

• The model does not account for occupants' ability to adjust their environment to
restore their thermal comfort through the use of buildings controls (windows, blinds,
fans) or their personal characteristics (clothing). Furthermore, the mere knowledge
that these adaptive opportunities are available may enable occupants to feel com-
fortable for a wider range of temperatures.

In particular, numerous �eld studies have underlined the positive and crucial impact
of adaptive opportunities on occupant comfort. For instance, Oseland [116] and Leaman
and Bordass [117] found that occupants' perceived ability to control their environment
signi�cantly impacts their satisfaction with that environment, and that occupants were
more forgiving of discomforting in�uences in buildings that provided good opportunities
for occupant control. Quantitatively, Brager et al. [118] observed a 1.5◦C di�erence in the
neutral temperature between occupants with high and low degree of control over windows.
More recently, Karjalainen noticed that perceived control was higher and room temperature
satisfaction better in homes than o�ces, where adaptive actions are less constrained [119].

This decisive impact of adaptive opportunities on the sensation of comfort � physi-
cal, physiological and psychological � motivated the development of other methods for
predicting thermal comfort. Called adaptive comfort models these are presented below.
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Figure 6.2: Adaptive comfort temperature according to international standards

Adaptive comfort models

Adaptive comfort models attempt to account for observed variations in comfort tempera-
ture induced by occupants' ability to adapt their environment, in order to overcome the
limitations of Fanger's model. These adaptive opportunities induce a change of paradigm
in the understanding of thermal sensation, summarised by Nicol and Humphreys [120] in
1973, who stated that �subjective warmth should be seen as an active link in the control
system, and not as a mere passive response to the thermal environment�.

Adaptive comfort models typically predict a neutral or comfort temperature, de�ned as
�the operative temperature at which either the average person will be thermally neutral or
at which the largest proportion of a group of people will be comfortable� [121]. Until now,
this comfort temperature has, based on its observed seasonal dependence, been related to
some running mean value of outdoor temperature.

CEN standard. The recent CEN standard [122] uses the exponentially weighted running
mean of the daily mean air temperature as a predictor, as follows:

θrm = (1− α)θod−1 + αθrm−1 = (1− α)(θod−1 + αθod−2 + α2θod−3 + . . .), (6.6)

with θod−i being the daily mean temperature i days before and α a constant, having a
recommended value α = 0.8. The CEN standard de�nes the comfort temperature using
a linear regression between reported comfort temperature and the above exponentially
weighted running mean outdoor temperature, de�ned in CIBSE Guide A [123] as:

θcomf =

{
22.6 + 0.09 · θout,rm (θout,rm ≤ 10◦C)
18.8 + 0.33 · θout,rm (θout,rm > 10◦C)

whose dependence is shown in Figure 6.2(a).
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ASHRAE standard. The ASHRAE standard 55-2004 [105] proposes on the other hand
a similar model that takes monthly mean outdoor temperature θout,mm as a predictor, based
on the observations of De Dear and Brager [124, 125, 126]:

θcomf = 17.8 + 0.31 · θout,mm, (10◦C ≤ θout,mm ≤ 33◦C) (6.7)

with zones de�ning predicted 80% and 90% proportions of satis�ed (Figure 6.2(b)).

Dynamic detailed human body models
In order to overcome some of the �aws of Fanger's model, another approach taken was
to develop detailed dynamic models of human thermoregulation. The �rst model, pro-
posed by Gagge, Stolwijk and Hardy in 1966 [127, 128], represents the human body as
three cylinders (head, trunk and extremities), each of them being divided into at least two
concentric layers to account for the anatomical and functional di�erences of importance
in thermoregulation. The model simulates the heat �ow between adjacent layers (by con-
duction), likewise the heat exchanges with the environment (by conduction, convection,
radiation and evaporation).

Zhang et al. [129, 130] have since developed a model based on re�nements to the ap-
proach of Gagge, Stolwijk and Hardy; but now with an unlimited number of body segments,
a re�ned blood �ow model, a clothing node (to model heat and moisture capacitance), the
inclusion of conductive heat transfer to external contact surfaces, the explicit calculation
of radiation heat transfer and a radiation heat �ux model.

This approach was also re�ned by the extremely detailed model proposed by Fiala
[131, 132]. In this model the human organism is separated into two interacting systems of
thermoregulation: the controlling active system (accounting for regulatory responses such
as shivering, vasomotion and sweating) and the controlled passive system (including the
heat transfers taking place inside the human organism and at its surface). This latter is
based on a representation of the human body as �fteen spherical or cylindrical elements
(head, face, neck, shoulders, arms, hands, thorax, abdomen, legs and feet) composed of
concentric layers (brain, lung, bone, muscle, viscera, fat and skin) subdivided into tissue
nodes.

The models of both Fiala and Zhang have been calibrated to observed thermal sensation
and extensively validated for a wide range of thermal conditions (including transient and
nonuniform thermal environments) and metabolic activity. These advanced models have
been successfully applied to predict comfort based on detailed simulations of the indoor
environment, coupled with computational �uid dynamics (CFD) models [133, 134, 135]; a
�eld in which research is now very active.

However, these models need extensive computational resources, such that the wide
scale use of these techniques is currently beyond reach. Nevertheless, with its high level of
detail this approach o�ers much future promise for the precise prediction of thermal com-
fort in the indoor environment (including comprehensive predictions of local and overall
sensation, asymmetric conditions and draughts [136, 137]). Nevertheless, as with Fanger's
approach the modelling of the e�ects of occupants' adaptation of their personal environ-
ment characteristics is currently ignored.

6.1.2 Visual comfort
A large number of studies report that visual comfort depends mainly on local illuminance,
but also on secondary parameters, including illuminance distribution in the indoor space,
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Figure 6.3: Statistical summary of reported thermal (left), visual (centre) and olfactory
(right) sensations

colour temperature, local glare and the ability to have a view out. Last but not least,
illuminance levels from daylight are not perceived to be equivalent to similar levels provided
by electric lighting [138].

A large number of studies have observed that daylight is more comfortable than electric
lighting [138], which is not surprising . For instance, Wells [139] observed that 69% of �eld
survey subjects believed that daylight was better for their eyes than electric light and
89% thought that the availability of a view out was important. Research performed by
Laurentin et al. [140] observed that subjects perceived an illuminance of 300 lux as pleasant
if it arose from daylight and unpleasant in the case of electric lighting.

From �eld studies signi�cant variations in preferred illuminance levels have also been
observed between individuals. In their review of published experimental evidence of pre-
ferred illuminance domains, Nabil and Mardaljevic [141] noticed that daylight illuminance
below 100 lux is considered insu�cient and that 100 to 500 lux is rated as e�ective. At
higher levels of between 500 and 2000 lux its perception varies from desirable to tolerable,
and higher values are supposed to create visual discomfort.

Based on a Bayesian analysis of actions on blinds and lighting performed in the LESO
building (Section 2.1.1), Lindelöf proposed a non-parametric estimation for the probability
of visual discomfort [33, 94]. This latter reaches a global minimum of 30% at about 500 lx
and increases moderately until 2500 lx, from which its slope increases sharply.

6.2 Preliminary observations
6.2.1 Statistical summary
We �rst examine the distribution of observed sensation votes (Figure 6.3) and summarise
the overall comfort conditions prevailing in the surveyed building. For this we will use two
de�nitions of thermal and visual comfort: an occupant is considered strictly comfortable
if the vote falls in the central category, and loosely comfortable for a vote among the
three central categories (which is the usual de�nintion of comfort, see Table 6.1) of the
bidirectional sensation scales.

Occupants reported to be strictly thermally comfortable on 72.0% of occasions and
loosely comfortable for 94.7%. The occurrence of visual comfort is even higher with 82.8%,
and up to 99.4% for its loose de�nition. The distribution of comfort votes is signi�cantly
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biased towards a warm sensation for thermal comfort, while it is almost symmetric for
visual sensation.

The proposed scale for olfactory sensation does not display such a symmetry in its
formulation (it is unidirectional) so that the observed distribution is non-symmetric. Only
6.9% qualify it as worse than acceptable, while 49.8% of votes are explicitly positive;
although the maximum rating of �Excellent� is very rarely chosen (0.3%).

Individual occupants have reported between 43.7% and 99.0% of their answers to be
strictly thermally comfortable (between 84.6% and 100% for loosely comfortable). These
proportions range from 34.8% to 96.4% for strict visual comfort (from 96.5% to 100% for
loose comfort; it is lower than 100% for only nine occupants).

We have shown in Section 2.3.2 that the questionnaire was administered for a represen-
tative subset of the prevailing global indoor thermal and visual conditions, which makes
these proportions a valid summary of the overall environmental conditions experienced in
the building. The high number of comfortable votes shows that the building generally
delivers a good quality indoor environment to its occupants. On the other hand, the small
amount of uncomfortable events makes departure from comfort more di�cult to detect,
particularly when the loose de�nition of comfort is used. For this reason we will generally
study strict comfort in more detail in this chapter, to allow for more precise estimates of
(dis)comfort conditions.

6.2.2 Application of the adaptive model
In this section, we check whether our data is in agreement with previously proposed adap-
tive models for thermal comfort (mentioned in Section 6.1.1). The usual practice for the
derivation of their regression coe�cients is to perform linear regression between the com-
fort indoor temperature θcomf and the retained temporal average of θout, where θcomf is
de�ned as proposed by Gri�ths [142] as θcomf = θin−2Sth, based on the observation of De
Dear and Brager [125] that an increase of temperature of 1◦C corresponds to a 0.5 increase
in thermal sensation.

Using an alternative method, we also perform linear regression between θin and the
retained temporal average of θout, but using the data points corresponding to comfortable
votes only. An advantage of this approach is that we remove the assumed relationship
between θin and Sth, which allows for the direct use of untransformed data, based on
temperatures that are explicitly rated as comfortable. The drawbacks lie in the use of a
restricted subset of the database and in the assumption that this subset is representative
of the potential comfort conditions3.

We do not provide a comparison with the predictions from Fanger's model, as some key
variables (vair, θmr) were not surveyed in our experimental campaign and because there is a
growing consensus that this model is inapplicable to transient environments (Section 6.1.1).

Results based on events rated comfortable
Comparison with CEN standard. Using our data to perform a linear regression be-
tween θin and θout,rm for indoor thermal comfort, as recommended within the CEN stan-

3Such a problem may occur when the amount of temperature measurements rated as uncomfortable
is insu�cient. In this case, there is no guarantee that the subset of data points rated as comfortable is
unbiased, so that the regression may be misleadingly based on a non-representative subset of the whole
domain of comfortable conditions. However, regression using the method of Gri�ths requires similar
assumptions.
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ture, with local polynomial regression
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(c) Observed indoor temperature and thermal com-
fort votes versus monthly mean outdoor tempera-
ture, with local polynomial regression
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(d) Observed comfortable indoor temperature ver-
sus monthly mean outdoor temperature with local
polynomial and linear regression and comfort line
predicted by the ASHRAE standard

Figure 6.4: Comparison with the adaptive models given in the CEN and ASHRAE stan-
dards
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dard, we obtain:

θin,comf =

{
(22.24± 0.04) + (0.060± 0.005) · θout,rm (θout,rm ≤ 10◦C)
(16.90± 0.31) + (0.378± 0.016) · θout,rm (θout,rm > 10◦C)

Figures 6.4(a)-6.4(b) present both local polynomial and linear regressions as well as the raw
data. The local polynomial models the key tendencies in the data and matches closely the
partitioned CEN regression equation. Also presented in Figure 6.4(a) are local polynomial
regression lines corresponding to strict cold (lower) and hot (upper) discomfort; so that it
is visible that a su�cient amount of uncomfortable events bound the comfortably rated
data points, thus resolving the potential drawback of only using a subset of the available
data.

Comparison with ASHRAE standard. Performing linear regression on θout,mm as
proposed in the ASHRAE standard, we obtain using our data:

θin,comf = (22.04± 0.04) + (0.104± 0.003) · θout,mm.

In this case the derived values for both the intercept and the slope are much lower than
those given in the standard. This may be due to climatic and/or building design di�erences
between the two datasets used for the development of these standards. Based on our
data, we see in Figures 6.4(c)-6.4(d) that θout,mm is more weakly associated with observed
variations in θin,comf than is the case using θout,rm.

Analysis based on the method of Gri�ths.
As with McCartney and Nicol [66], we deduce the comfort temperature from θin and Sth.
Performing linear regression, we obtain for the CEN standard equation (Figure 6.5(a)):

θin,comf =

{
(22.38± 0.04) + (0.046± 0.005) · θout,rm (θout,rm ≤ 10◦C)
(19.52± 0.28) + (0.230± 0.014) · θout,rm (θout,rm > 10◦C)

Similarly, based on the monthly mean outdoor temperature adopted by the ASHRAE
standard: (Figure 6.5(b)):

θin,comf = (22.18± 0.04) + (0.090± 0.002) · θout,mm.

Remarks
From the above observations, it seems clear that θout,rm is a better quality predictor of
comfort than θout,mm; this is supported by previous research, while the use of monthly
means has attracted some criticism4.

In spite of the good observed agreement with the CEN adaptive comfort model, we
do not consider this approach to be fully satisfactory; in particular θout,rm seems to be
a simplistic predictor for the variations in comfort temperature, supposed to account for
occupants' expectations and adaptive actions. For these latter, the link between θcomf and
θout,rm may arise from a spurious correlation, which should be reformulated to take the

4For instance, Nicol and Humphreys point out in their recent article [121] that the temperature can be
very variable within a month and that the value of monthly mean is subject to misinterpretation.
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Figure 6.5: Comparison with the adaptive models given in the CEN and ASHRAE stan-
dards, based on the method of Gri�ths

actual in�uencing predictors as explanatory variables, by analysing explicitly the impact
of adaptive actions on comfort temperature. In particular, we may expect a di�erent
behaviour of θcomf if a smaller or larger range of control actions is available compared with
those available within the buildings from which these regression were derived. This issue
is discussed in Section 6.4.

6.3 Predicting thermal comfort
Previous research largely documents that indoor temperature is the most in�uential vari-
able on thermal comfort (Figure 6.6(a)). In the following we focus on indoor temperature
as the driving stimulus for thermal comfort and propose an informative probabilistic ap-
proach.

6.3.1 Distribution of thermal sensation
Rather than simply performing a linear regression to predict a mean comfort temperature,
it is of greater interest to study the distribution of comfort votes with respect to its driving
variable � indoor temperature (Figure 6.6(b)). The large spread observed above suggests
the use of a probabilistic approach. We propose then to model the distribution of thermal
sensation with respect to indoor temperature as a proportional odds ordinal logistic model
for P (Sth|θin), formulated as

p(Sth ≥ Sj) =
exp(aj + b · θin)

1 + exp(aj + b · θin)
, (6.8)
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Figure 6.6: The link between thermal sensation and indoor temperature

where the regression parameters are given in Table 6.3 (left). Equation (6.8) proposes
a detailed prediction of thermal sensation, from which the probability of strict comfort
p(Sth = 0) = p(Sth ≥ 0) − p(Sth ≥ 1) is easily deduced; likewise the probability of
loose comfort. This also enables a rigorous treatment of the dependent variable � thermal
sensation � which is a discrete variable.

Figure 6.6(b) o�ers a useful graphical summary of the observed and �tted distributions
of thermal sensation with respect to indoor temperature, and shows that the �tted ordinal
logistic probabilities correctly represent the measured distributions. For any chosen value
of θin on the x-axis, the probability distribution of Sth may be read along the associated
vertical line.

It can be noticed that the central thermal sensation represents the absolute majority of
the outcomes for temperatures between ca. 18◦C and 27◦C. However, it cannot be excluded
that this phenomenon could be caused by the wording that was adopted for the thermal
sensation scale, where the proposed central category may cover a wider semantic range than
other alternatives, rather than an intrinsic bias of the population of this building (which
presents its occupants with many adaptive opportunities) towards thermal neutrality.

6.3.2 Thermal comfort probability
Although such a prediction of thermal sensation distribution informative, it is of more
direct interest (in terms of usability) to simply predict a probability of comfort. The
drawback of this formulation compared to ordinal probabilities is that we would only
examine whether (strict or loose) comfort is achieved, which may seem less comprehensive
than a measure like Fanger's PMV. However, the probability of (dis)comfort is directly
related to the predicted percentage of dissatis�ed (PPD) which is of interest to assess the
acceptability of the indoor environment.

Occupant discomfort is de�ned by the occurrence of the events �being too cold� or
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Thermal sensation Visual sensation
Estimate Wald Z Estimate Wald Z

aj , (Sj = −1) -6.44 ± 0.38 -16.83 1.00 ± 0.48 2.06
aj , (Sj = 0) -8.95 ± 0.36 -24.59 -2.64 ± 0.35 -7.48
aj , (Sj = +1) -13.22 ± 0.39 -33.59 -7.64 ± 0.41 -18.79
aj , (Sj = +2) -14.95 ± 0.41 -36.89 -10.80 ± 0.52 -20.62
aj , (Sj = +3) -16.59 ± 0.43 -39.04
b 0.485 ± 0.016 30.24 0.769 ± 0.057 13.41
Goodness AUC = 0.715, Dxy = 0.43, Γ = 0.436 AUC = 0.709, Dxy = 0.419, Γ = 0.423
of �t τa = 0.193, R2

N = 0.173, B = 0.009 τa = 0.133, R2
N = 0.109, B = 0.003

Table 6.3: Ordinal logistic regression parameters on thermal (left) and (visual) sensation
votes

Type a Z b Z LR AUC Dxy Γ τa R2
N B

Strict
pcold 4.49 ± 0.55 8.1 -0.287 ± 0.024 -11.9 152.40 0.643 0.286 0.290 0.053 0.049 0.090
phot -15.84 ± 0.53 -30.1 0.591 ± 0.021 27.7 969.07 0.779 0.558 0.565 0.161 0.236 0.120
pdark 2.52 ± 0.42 6.1 -0.750 ± 0.069 -11.0 129.86 0.735 0.471 0.475 0.088 0.111 0.089
pbright -3.21 ± 0.13 -24.9 (6.3 ± 0.7) ·10−4 9.0 74.18 0.689 0.378 0.387 0.056 0.073 0.071
Loose
pcold 5.70 ± 1.74 3.3 -0.453 ± 0.078 -5.8 36.85 0.727 0.454 0.488 0.009 0.057 0.009
phot -21.21 ± 0.97 -21.8 0.731 ± 0.038 19.4 152.40 0.643 0.286 0.290 0.053 0.049 0.090
pdark 0.53 ± 1.05 0.5 -1.08 ± 0.21 -5.2 22.46 0.894 0.788 0.859 0.005 0.214 0.004
pbright -7.00 ± 0.69 -10.2 (9.6 ± 2.8) ·10−4 3.4 11.13 0.775 0.550 0.669 0.004 0.097 0.004

Table 6.4: Regression parameters and goodness-of-�t estimators for thermal and visual
strict and loose discomfort probabilities based on the whole set of surveyed occupants

�being too hot�, from the point of view of strict or loose (dis)comfort (Section 6.2.1), to
which a probability can be assigned. Using the strict de�nition of comfort, the probability
of being too cold is de�ned as pcold = Prob(Sth < 0), while we set phot = Prob(Sth > 0)
for the probability of being too hot. In both cases, the discomfort probability pdiscomf is
directly obtained from pcold and phot:

Prob(Sth 6= 0) = Prob(Sth < 0) + Prob(Sth > 0), pdiscomf = pcold + phot, (6.9)

from which the comfort probability pcomf = 1 − pdiscomf = 1 − pcold − phot is deduced.
However, the associated property pcold + phot + pcomf = 1 does not necessarily hold when
pcold and phot are separately �tted to the data. In this case, the term pcold · phot must be
considered, which gives

pdiscomf = pcold + phot − pcold · phot (6.10)
pcomf = 1− pdiscomf = (1− pcold) · (1− phot). (6.11)

These probabilities potentially depend on a large set of environmental variables, the most
signi�cant of which should be included in a predictive model. We have chosen to �t logistic
distributions to pcold and phot and check for the signi�cance of available variables. We �nd
that indoor temperature is a signi�cant predictor for pcold and phot (Table 6.4) and that
the inclusion of further predictors does not signi�cantly improve the quality of �t.

The obtained distributions of pcold, phot and pcomf are displayed in Figure 6.7, for
both strict and loose de�nitions of thermal comfort. From this we observe that the �tted
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(b) Loose de�nition of comfort

Figure 6.7: Fitted thermal comfort probabilities (black line), and discomfort probabili-
ties (blue and red lines) with standard errors (dashed lines) and observed proportions of
comfortable votes with their binomial 95% con�dence intervals

distributions are in close agreement with observed proportions of comfort and discomfort.
In the case of loose comfort, we observe that pcomf reaches a maximum of close to 95%,
which reproduces the classical observation of Fanger with respect to the PPD, and that
it is consistently superior to 90% in the interval 17.5◦C to 25.9◦C; which does not match
with Fanger's near Gaussian distribution of PPD.

The slope associated with pcold is smaller than for phot, likewise its precision, statisti-
cal signi�cance and goodness-of-�t estimators (Table 6.4). This is due to the rather low
frequency of cold events, which dampens the accuracy of discomfort predictions in low
temperature domain. If more measurements were performed in these conditions we may
have expected a sharper increase in discomfort probability (for instance, with the current
regression parameters, pcold = 0.9 is reached for 8◦C, which is not coherent).

The uncertainties on regression parameters are bigger when �tting for loose comfort,
which is based on less frequent discomfort events. Furthermore, the result is less in-
formative (the probability distribution is almost �at) as our measurements do not cover
e�ectively enough the temperature ranges where strong discomfort should be prevalent.
Finally, slope estimates are larger with loose comfort, as the rare discomfort events are
more clearly separated from comfortable data points than with the strict de�nition.

Compared to the ordinal logistic regression model above, this approach allows for the
representation of non-equal slopes in pcold and phot and thus to include the possibility of
an asymmetry in pcomf .

6.3.3 Individual behaviours
Être soi-même!... Mais soi-même en vaut-il la peine?
To be oneself !... But is oneself worthy of being?
Paul Valéry (1871-1945), Mauvaises pensées et autres
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Figure 6.8: Fitted thermal comfort probabilities (black line), and discomfort probabili-
ties (blue and red lines) with �t standard errors (dashed lines), observed proportions of
comfortable votes with their binomial 95% con�dence intervals and box plots of reported
comfort temperatures (part 1)
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Figure 6.9: Fitted thermal comfort probabilities (black line), and discomfort probabili-
ties (blue and red lines) with �t standard errors (dashed lines), observed proportions of
comfortable votes with their binomial 95% con�dence intervals and box plots of reported
comfort temperatures (part 2)
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Ref. N Ncold Nhot acold bcold ahot bhot p̂comf θ̂comf θ50,cold θ50,hot

1 51 4 9 19.62 -0.967 -29.26 1.167 0.860 22.8 20.3 25.1
3 243 65 57 13.58 -0.597 -11.18 0.398 0.616 25.4 22.8 28.1
4 244 13 10 18.68 -0.951 -30.94 1.149 0.957 23.5 19.6 26.9
5 120 22 20 8.83 -0.427 -16.39 0.581 0.751 24.7 20.7 28.2
6 578 72 92 16.57 -0.770 -8.51 0.275 0.784 25.1 21.5 31.0
9 222 15 23 12.64 -0.697 -21.47 0.839 0.892 22.1 18.1 25.6
10 263 15 82 54.30 -2.477 -21.83 0.837 0.883 23.3 21.9 26.1
11 384 38 73 15.70 -0.752 -13.87 0.503 0.784 23.9 20.9 27.6
16 415 58 118 11.27 -0.542 -13.21 0.492 0.685 23.8 20.8 26.9
18 204 8 19 -1.13∗ -0.089∗ -32.99 1.245 0.952 21.9 NA 26.5
19 248 25 15 3.61 -0.254 -18.82 0.691 0.859 22.6 14.2 27.2
25 138 28 23 12.24 -0.551 -20.19 0.713 0.758 25.4 22.2 28.3
26 313 24 37 20.08 -0.999 -22.74 0.856 0.906 23.2 20.1 26.6
27 177 2 8 29.91 -1.531 -34.22 1.296 0.984 22.7 19.5 26.4
28 214 15 2 11.70 -0.635 -39.72 1.377 0.980 25.2 18.4 28.8
30 410 77 79 12.76 -0.608 -25.66 0.958 0.808 24.2 21.0 26.8
31 661 14 243 22.39 -1.258 -31.79 1.367 0.946 20.6 17.8 23.3
36 276 35 46 22.61 -1.088 -15.46 0.595 0.784 23.0 20.8 26.0
37 283 3 12 11.64 -0.770 -28.88 1.127 0.984 21.2 15.1 25.6
38 224 51 43 8.86 -0.410 -9.98 0.384 0.498 23.9 21.6 26.0
39 429 17 112 38.24 -1.784 -33.70 1.339 0.896 23.1 21.4 25.2
All 6685 686 1187 4.49 -0.287 -15.84 0.591 0.815 22.2 15.6 26.8

Table 6.5: Occupant speci�c summary of thermal comfort probability: total number of
answers, number of discomfort answers, logistic regression parameters for discomfort prob-
abilities, maximum �tted comfort probability and its corresponding temperature and char-
acteristic temperatures for discomfort. Asterisks are used to identify statistically non-
signi�cant parameters.
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Method

We observe also the statistical signi�cance of a multi-level factor for individuals in the
analysis of deviance of pcold and phot. We performed thus a similar analysis by splitting
the database by occupants, in order to express variations among individuals in terms of
parameters of pcomf . However, the analysis was not relevant for some of them, mostly
because they had not been surveyed for a su�ciently long period, or because the structure
of their answers was not coherent. We removed from the analysis the individuals that did
not satisfy the following conditions:

• At least two votes of too cold and two votes of too hot (for the convergence of the
�t),

• At least 40 answers (for acceptable standard errors on estimates),

• The obtained probability phot is an increasing function of θin, and conversely for pcold

(for subject-matter considerations).

Six individuals did not meet these requirements and so were removed from the database.
The observed individual comfort probability distributions are displayed in Figures 6.8-6.9,
and their regression parameters in Table 6.5.

Individual diversity

It can be seen from Figures 6.8-6.9 that our individuals display considerable variability in
the domains where they report to be comfortable. Individual comfort probabilities may be
determined using the coe�cients acold, bcold, ahot and bhot. However, as the intercepts a do
not have a direct physical interpretation, it is more informative to consider characteristic
discomfort temperatures5 θ50,cold = −acold/bcold and θ50,hot = −ahot/bhot as a basis for
comparison (Table 6.5). These parameters show modest but signi�cant variations amongst
individuals: θ50,cold has a sample mean of 19.9◦C and a standard deviation of 2.2◦C (26.8◦C
and 1.6◦C for θ50,hot).

There is no strong relationship between θ50,cold and θ50,hot; their correlation coe�cient is
just 0.27. This demonstrates that occupants show di�erences in the widths of temperature
intervals where they are comfortable, which is visible in Figures 6.8-6.9. The characteristic
discomfort temperatures θ50 and the slopes b show mild correlations of 0.22 and 0.52, which
do not indicate a clear dependence between these parameters.

Some occupants display a signi�cant asymmetry in pcomf that can be evaluated through
the slopes b: comfort decreases more slowly for hot temperatures if bhot < −bcold (and
conversely if bhot > −bcold) while bhot

∼= −bcold denotes symmetry.
Based on these observations, a possible approach to model occupant variability in

thermal comfort probability might involve drawing independently θ50,cold and θ50,hot from
appropriate distributions6; likewise for bcold and bhot.



124 CHAPTER 6. ENVIRONMENTAL COMFORT

bcold

14 18 22

−0.22 −0.43

24 28

0.40 0.32

0.5 0.7 0.9

−
2.

5
−

1.
0

−0.43
14

18
22 θ50−cold

−0.39 0.27 0.64 −0.56

bhot

−0.52 −0.49

0.
4

1.
0

0.81

24
28

θ50−hot

0.83 −0.26

θcomf−max

21
23

25

−0.51

−2.5 −1.0

0.
5

0.
7

0.
9

0.4 1.0 21 23 25

pcomf−max

Figure 6.10: Bivariate plots between parameters from individual regression on thermal
comfort probability, with local polynomial regression, correlations and histograms
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6.4 Comfort temperature and adaptive actions
We adopt here another approach where we directly examine the distribution of reported
comfort temperatures and their dependence on other variables. Having at our disposal
simultaneous data for occupants' actions on controls and instantaneous thermal comfort
votes, it is of interest to determine whether the use of the studied controls plays a role
in the reported comfort temperatures of occupants: whether there is feedback from the
adaptive action on perceived thermal sensation and thereby on comfort.

Figure 6.11 shows the distribution of thermal sensation with respect to indoor temper-
ature and the status of windows. The slope associated with θin lowers from 0.543± 0.027
for windows closed to 0.396± 0.027 for windows open. This means that when windows are
open, our thermal sensation is less sensitive to a temperature increase. For example, the
inferred values for P (Sth = 0) at θin = 29◦C is 0.266 when windows are closed and 0.333
when they are open.

However an analysis of the e�ect of adaptive actions on thermal sensation distribution
requires a large dataset to obtain reliable estimates, which is achieved here only in the case
of actions on windows. Furthermore, it is of more interest and of direct applicability in
our work to consider rather the e�ect of actions on comfort temperature than on thermal
sensation.

Figure 6.12 shows the distribution of indoor temperature with respect to reported ther-
mal sensation, distinguishing whether a given adaptive action is exercised (either alone or
possibly in conjugation with others). In many cases we observe signi�cant o�sets in the
mean temperature at which a given thermal sensation vote is reported. It is of particu-
lar interest that there are positive o�sets where windows are opened and where fans are
switched on, for the central sensation vote7, which are signi�cant according to the two
sample t-test (p < 0.001). In other words for the same vote occupants tolerate higher
temperatures when they have exercised these forms of adaptive control action!

6.4.1 E�ects of adaptive actions on thermal sensation: empirical adap-
tive increments

To ascertain the value added from adaptive actions we determine the di�erence in mean
temperature for neutral thermal sensation votes with and without having exercised a given
adaptive action. This is equivalent to the notion of adaptive increments proposed by
Baker and Standeven [143], and later reformulated by Oseland et al. [144], albeit based on
assumed boundary condition changes to the steady state Fanger model.

The corresponding increments may be read (approximately) from Figure 6.12; they
vary from 1.2◦C for windows to 1.8◦C for fans. However, these latter are generated for
cases when the control action in question has or has not been exercised, but others may
have been. To precisely estimate the in�uence of a given control action, the data should
be �ltered to cases of no signi�cant control action and exclusively the control action in
question.

5The temperature at which pcold = 0.5 (or phot = 0.5), see Section 3.2.1, and thus the temperature
above which the state of discomfort becomes more likely than comfort.

6Normality seems to be a reasonable assumption for characteristic discomfort temperatures, as assym-
metry or heavy tails are very unlikely in this context. However, measurements on a larger set of occupants
would be needed to draw a clear conclusion using statistical tests for normality.

7As in Section 6.2.2, this approach needs the assumption that the temperatures rated as comfortable
form a representative set of the whole range of comfort temperatures.
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Modelling framework
A rigorous method to evaluate these adaptive increments is to �t a linear model for the
prediction of the comfort temperature θcomf , formulated as

θcomf,ij = µ + βi + εij , (6.12)

where i = 1, . . . , I and j = 1, . . . , Ji; I is the number of considered adaptive actions and
Ji the number of observations per level. Setting the case �without� action as the reference
group, µ can be interpreted as the mean comfort temperature when no action is taken
and the values obtained for βi are the e�ects on the comfort temperature produced by a
given adaptive action, with εij being the �t residuals, assumed to be normally distributed
with a mean of zero. With this convention, the values obtained for βi can then be directly
interpreted as the empirical adaptive increments in comfort temperature produced by the
associated adaptive action. Furthermore, this convention on the reference group allows for
a direct application of related statistical tests, in order to select adaptive actions that have
a signi�cant impact on θcomf .

Variable selection
Some adaptive actions do not have a binary nature like the opening and closing of windows,
switching on and o� fans or consumption or not of drinks, but can rather be exercised
incrementally or on a continuous basis. This is the case of clothing, activity and the use of
blinds, for which we display the distributions of reported comfort temperatures for their
respective levels (Figure 6.13). These actions can be integrated in Equation (6.12) either
as continuous variables or as factors with multiple levels.

As expected from its constrained nature, the addition of activity and the status of
blinds in this adaptive comfort model is not statistically signi�cant (whether included as
multiple level factors or as continuous variables), likewise the binary actions on doors and
the intake of cold and hot drinks. However, the current clothing level and actions on
windows and fans are signi�cant and are thus retained in the �nal model.

We include clothing level as a transformed variable ∆I = Icl,max − Icl where Icl,max =
0.95 clo at its maximum. With this convention ∆I measures the degree of clothing removal
which is a better de�nition of clothing adaptation as an adaptive action.

We tested for the signi�cance of interactions between adaptive actions as additional
terms in the model. However, no two-term interactions were found to be signi�cant, which
may simply be due to inadequate sample sizes for combinations of actions, as estimated
standard errors are large. Therefore, we cannot provide clear evidence that these interac-
tions do or do not have an appreciable impact on results8.

Final model for adaptive actions
Our �nal model retains thus W , F and ∆I = Icl,max − Icl as parameters, with R2 = 0.085
and F = 54.21 (p < 0.001). The regression parameters and the analysis of variance are
provided in Table 6.6. Our results are graphically summarised in Figure 6.14 with box

8A full list of adaptive increments and their interactions with reasonable uncertainty would require a
much larger dataset, or imply a strictly designed experiment with constrained control actions, which is not
the meaning of an experiment on free adaptation to the indoor environment. For instance, as fans were
never used without other concomittant actions, this increases the uncertainty of its associated estimate
compared to a designed experiment.
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Figure 6.13: Adaptive increments for factors with multiple levels

Regression parameters ANOVA
Variable Estimate t p-value DF SS MS F p-value
a 23.29 ± 0.06 370.13 < 0.001
W 0.50 ± 0.08 6.17 < 0.001 1 245.2 245.2 104.7 < 0.001
F 0.70 ± 0.33 2.13 0.034 1 15.0 15.0 6.4 0.012
∆I 1.44 ± 0.20 7.18 < 0.001 1 120.8 120.8 51.6 < 0.001
Residuals 1724 4038.8 2.3

Table 6.6: Parameters estimates and analysis of variance from the linear model for adaptive
actions
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Figure 6.14: Joint in�uence of signi�cant actions on comfort temperature, with notches
along the medians denoting their statistical uncertainty, and solid squares for means (W:
windows, F: fans, C: low clothing level (≤ 0.5 clo), c: intermediate clothing level (between
0.6 and 0.8 clo))

plots of observed comfort temperatures for all signi�cant combinations of controls (where
the absence of evidence for constructive interactions between controls is visible), and in
Table 6.6 with the numerical estimates of the associated increments. It can be observed in
Figure 6.14 that our data do not show any signs of skewness or unequal variance between
groups. Moreover normal quantile and residuals plots, which are not displayed here, do
not show any evidence to limit the scope of application of this linear model.

Finally it is of interest to compare these empirical adaptive increments with those of
Oseland et al. [144], who predicted increments of 1.1 ◦C for windows and 2.2-2.8 ◦C for
fans. These proposed increments are all larger than we have observed.

6.4.2 Individual variations and expanded model
Chaque homme porte la forme entière de l'humaine
condition.
Every man bears the whole stamp of the human condition.
Michel de Montaigne (1533-1592), Essays (III.2)

Individual comfort temperatures. Variations in the comfort temperature among
building occupants are signi�cant (Figure 6.15), in particular with respect to those that
were not surveyed in a particular season. A linear model θcomf,ij = µ + αi + εij taking
the individual occupant as a unique factor αi explains a signi�cant part of the observed
variance in comfort temperature (R2 = 0.372).

Taking the overall mean comfort temperature as a reference, the regression parameters
are simply the o�sets of the mean comfort temperatures for each occupant (displayed as
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black squares in Figure 6.15) with intercept a = 23.40 ± 0.03. These parameters range
from -1.91◦C (Ref. 23) to +1.90◦C (Ref. 18), which is a variation of a similar amplitude
as observed for θ̂comf , θ50,cold and θ50,hot. With a model including together factors for
individuals and adaptive actions we observe an improved quality of �t to R2 = 0.488, but
with signi�cantly increased standard errors.

Extended model for comfort temperature. Finally, we �t a model adding θout,rm:

θcomf,ijk = µ + αi + βj + γθout,rm + εijk, (6.13)

where i = 1, . . . , N , j = 1, . . . , J , k = 1, . . . , Kij ; N is the number of occupants, J the
number of considered adaptive actions and Kij the number of observations with respect
to occupant i and adaptive action j. With this model the coe�cient of determination
reaches R2 = 0.574. Thus the proportion of explained variance in the comfort temperature
exceeds 50% with the inclusion of adaptive actions, individual di�erences and θout,rm (to
be compared with R2 = 0.226 if θout,rm is the sole predictor).

Variable Coef. DF SS MS F p-value
Windows β1 1 245.20 245.20 224.7 < 0.001
Fans β2 1 14.96 14.96 13.7 < 0.001
Clothing β3 1 120.84 120.84 110.8 < 0.001
Individuals α 16 1799.15 112.45 103.1 < 0.001
Season γ 1 377.20 377.20 345.7 < 0.001
Residuals ε 1707 1862.41 1.09

Table 6.7: Analysis of variance from the linear model for adaptive actions, individuals and
exponentially weighted running mean outdoor temperature

The analysis of variance associated with this extended model is shown in Table 6.7. It
is striking that with this model the regression parameter associated with θout,rm is strongly
reduced to γ = 0.099±0.005, and that its contribution in the analysis of variance is similar
to that of adaptive actions and much smaller than individual speci�cities. As this model
includes many predictors in comparison with available data, the associated standard errors
are in�ated and the parameters' stability is reduced. However, this does not undermine its
usability and obtaining more precise parameters is simply a matter of database size.

Results from the method of Gri�ths. A similar analysis may be carried out using
the assumption of Gri�ths (see Section 6.2.2) on the relationship between temperature and
thermal sensation, by de�ning the comfort temperature as θcomf = θin − 2Sth. The model
including adaptive actions only gives µ = 23.30±0.05, βW = 0.53±0.07, βF = −0.88±0.18
and β∆I = 0.81±0.17 with R2 = 0.047. This approach produces similar results; noteworthy
changes include the change of sign of βF , which was itself weakly signi�cant using the
alternative approach, with a smaller �tted value of β∆I . The �t of the extended model
for comfort temperature leads to comparable conclusions; with this convention we obtain
R2 = 0.418 and γ = 0.084± 0.006. Analysis of variance also supports these conclusions.

Remarks. As a conclusion, we underline that this model o�ers signi�cant improvements
compared to previously published adaptive comfort models:
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Figure 6.16: Residual in�uence of θout,rm on θcomf , after �tting for adaptive actions and
individual speci�cities

• It separates the contribution of each key predictor for comfort temperature.

• It puts a seasonal variable such as θout,rm in its appropriate place, which accounts
to a certain extent for seasonal acclimatisation caused by changes in occupants'
expectations of the indoor environment, or other unexplained factors. Figure 6.16
shows that the slope associated with θout,rm on residuals after �tting for actions and
individuals is strongly reduced.

• It allows for a calculation of comfort temperature based on available adaptive actions
in a particular situation (eg. if clothing adaptation is possible but actions on windows
are not).

However, more data (from other buildings and climates) are needed to strengthen the gen-
erality of these conclusions and provide reliable parameters for general application of this
model. Nevertheless, in spite of the need for further data this approach opens interesting
perspectives for the future evolution of adaptive comfort standards as explicit considera-
tion of the weight of adaptive actions is given, which therefore makes this model adjustable
to situations where only a subset of possible actions is available.

It is particularly interesting to underline that with this approach not only the slope
associated with θout,rm is strongly reduced, but also that on the lower domain of θout,rm

the gradient is almost inexistent, while it is strongly dampened for high values of θout,rm

(Figure 6.16).
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Figure 6.17: The link between visual sensation and indoor illuminance

6.5 Predicting visual comfort
In the previous section we studied the linear link between thermal sensation and indoor
temperature. Here we apply a similar rationale to attempt to infer a relationship between
indoor illuminance and visual sensation. However in this case, we observe that measured
illuminance increases exponentially rather than linearly with respect to reported visual
sensations (Figure 6.17(a)). As for thermal sensation, we propose to treat their relationship
through a probabilistic rationale.

6.5.1 Distribution of visual sensation
In a similar fashion to our modelling of thermal sensation, we also model the distribution of
visual sensation (Figure 6.17(b)) with respect to indoor illuminance, as an ordinal logistic
model for P (Svis|Ein),

p(Svis ≥ Sj) =
exp(aj + b · log(Ein))

1 + exp(aj + b · log(Ein))
, (6.14)

with regression parameters given in Table 6.3 (right). The logarithmic transformation of
Ein forces the assignment of negative visual sensations for low illuminances, a reasonable
outcome even though such dark conditions were not surveyed by our questionnaire. It
is noteworthy that neutral visual sensation dominates for the entire surveyed range of
illuminances.

6.5.2 Visual comfort probability
We infer a probability distribution for visual comfort using the same principles that we
applied to thermal comfort. In this case, the probabilities of being too dark pdark and
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Figure 6.18: Fitted visual comfort probabilities (black line), and discomfort probabilities
(blue and red lines) with standard errors (dashed lines), observed proportions of comfort
votes with their binomial 95% con�dence intervals

being too bright pbright (using either a strict or loose de�nition) are estimated, from which
discomfort and comfort probabilities pcomf are obtained:

pdiscomf = pdark + pbright − pdark · pbright (6.15)
pcomf = 1− pdiscomf = (1− pdark) · (1− pbright). (6.16)

We observe as expected that Ein is a signi�cant predictor for both logistic models and
that no other variable brings a signi�cant contribution to pdark and pbright. The obtained
probabilities are displayed in Figure 6.18. The transformed variable log(Ein) was used as
a predictor for pdark, as the resulting quality of �t is higher and the observed proportions
of strict discomfort are better described using this transformation.

The extremely low frequency of visual sensation votes outside the three central cate-
gories implies that the obtained probability remains almost �at for the whole range of the
surveyed values of Ein. The strict probability of comfort is thus of much greater interest.
We observe from this de�nition that pcomf reaches a maximum of 0.87 for Ein = 1090 (lx).

It is of interest to compare this probability of visual comfort to that one inferred by
Lindelöf [33, 94] through Bayesian analysis of actions on blinds and lighting. This analysis
led to the di�erent conclusions that the comfort probability9 reaches a maximum at about
500 lux and that this probability never exceeds 0.7. This emphasises the fundamental
di�erence between discomfort probability and action probability, an issue discussed in
detail in Section 6.6.

Finally, we did not observe any visual equivalent to the thermal adaptive increments
introduced in Section 6.4, based on the analysis of comfort illuminances with respect to
blinds and lighting status, outdoor illuminance and outdoor global and di�use irradiance.

9The author de�nes it as �the probability that the user would judge the visual environment as uncom-
fortable if prompted to do so�.
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Ref. N Ndark Nbright adark bdark abright bbright p̂comf Êcomf E50,dark E50,bright

3 243 16 3 5.907 -1.253 -10.91 6.653·10−3 0.927 976 111.7 1640
4 244 6 5 16.036 -3.252 -261.068 75.11·10−3 0.999 3282 138.6 3476
6 578 51 2 14.305 -2.662 -7.556 1.413·10−3 0.990 1634 215.8 5348
10 263 14 27 -0.013 -0.388 -2.613 1.623·10−3 0.808 250 1.0 1610
11 384 29 22 1.556 -0.633 -3.327 0.302·10−3 0.905 1608 11.7 11008
16 415 81 43 9.581 -1.816 -4.414 1.424·10−3 0.906 1068 195.8 3100
26 313 30 5 3.698 -0.842 -4.270 0.602·10−3 0.895 1990 80.9 7088
30 410 45 54 7.542 -1.437 -3.756 2.123·10−3 0.787 764 190.4 1769
All 6851 538 433 2.515 -0.750 -3.207 0.627·10−3 0.869 1044 28.5 5116

Table 6.8: Occupant speci�c summary of visual comfort probability: total number of
answers, number of discomfort answers, logistic regression parameters for discomfort prob-
abilities, maximum �tted comfort probability, comfort illuminance and characteristic illu-
minances for discomfort

However, when less adequate lighting is used, the e�ect of increased discomfort from ar-
ti�cial lighting noticed by Laurentin et al. [140] could possibly be modelled by �adaptive
decrements� generated by the absence of daylight.

6.5.3 Individual behaviours
We applied similar criteria to select individual occupants in order to study their speci�c
probabilities of discomfort, based on the statistical signi�cance of their speci�cities. Un-
fortunately in this case, a much smaller number of individual datasets (just eight) meet
our selection requirements from the point of view achieving an acceptable quality of �t.
The comfort probabilities for our nine retained occupants are presented in Figure 6.19, for
whom the regression parameters are presented in Table 6.8.

Occupants clearly report with very similar probabilities that their environment is un-
comfortably dark; which contrasts with signi�cant variability with respect to the percep-
tion of being uncomfortably bright, some of them being comfortable at high illuminances
(Ref. 4, 6, 11, 26 and 38, like many other discarded occupants) while other are more sen-
sitive to glare (Ref. 3, 10, 16 and 30), which causes an increase in pbright at intermediate
values of Ein.

6.6 Linking actions and comfort
We have studied in detail the probability of action on windows (Chapter 4) and shading
devices (Chapter 5), the probability of thermal and visual comfort and the factors in�uenc-
ing comfort temperature. In this section, we show how these concepts are inter-related in a
general formulation of human adaptive actions as a response to environmental discomfort.
In Section 6.6.1 we show how discomfort leads to action, while we discuss in Section 6.6.2
the feedback to perceived comfort in response to occupants' actions.

6.6.1 A general formulation of human adaptive actions
The notion of action inertia. Figure 6.20(a) shows the probability of thermal discom-
fort deduced from pcomf together with the probability of actions on windows at arrival and
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Figure 6.19: Fitted visual comfort probabilities (black lines) and discomfort probabili-
ties (blue and red lines) with �t standard errors (dashed lines), observed proportions of
comfortable votes with their binomial 95% con�dence intervals and box plots of reported
comfortable illuminances
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Figure 6.20: Comparing discomfort and action probabilities

during presence10, as derived in Chapter 4. These curves appear to follow a common trend,
although the �tted action probabilities are lower than the comfort probabilities.

From the observation that as discomfort probability increases, so does action proba-
bility, we may hypothesise that discomfort causes action, and we may regard the o�set
between the two as an inertia towards action, a concept proposed by Robinson [69]. We
may de�ne this action inertia through some formulation of the discrepancy between action
probability and discomfort probability, which can be expressed for example as:

I(θin) =
pdiscomf(θin)

pact(θin)
. (6.17)

This temperature-dependent estimate of inertia is rather complex, but it is both informative
and o�ers a direct link between discomfort and action, as we directly obtain pact(θin) =
(1/I(θin)) · pdiscomf(θin).

Action inertia with respect to thermal comfort. In the case of actions on windows,
this inertia is di�erent between arrival (lower) and during presence, which corresponds to
the observed higher reactivity in this special case. Figure 6.21(a) shows that as pdiscomf(θin)
increases the action inertia decreases which is an expected result, while it reaches a maxi-
mum around θin = 26◦C.

The intermediate probability of closing actions is based on outdoor temperature, which
undermines the meaning of action inertia, as it implies two di�erent variables; so we con-
sider this no further. We do not study the action inertia for the case of actions on departure,
as they are based on predictive rationale rather than on a reaction to recently experienced
thermal discomfort.

10For the purposes of this analysis, we consider actions probabilities based on the single most in�uential
variable: θin for P01,arr, P10,arr and P01,int, and θout for P10,int.
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Figure 6.21: Behaviour of the stimulus-dependent action inertia, shown on a logarithmic
scale

We notice in Figure 6.21(a) that the behaviour of action inertia is very similar between
actions on arrival and during presence, with higher values in this latter case; consistent with
observed behaviours. Action inertia reaches a maximum at a temperature close to 26◦C,
above which it decreases, corresponding to a higher reactivity to discomfort as temperature
rises.

Action inertia with respect to visual comfort. A similar reasoning can be applied
to study the link between visual comfort and actions on blinds. Figure 6.20(b) shows
the probability of visual discomfort with the probabilities of actions on blinds (derived in
Chapter 5, using Ein as the sole predictor).

It is noticeable that occupants display signi�cant inertia in relatively dark conditions,
when they are able to switch on electric lighting to counteract visual discomfort. Therefore,
a comprehensive estimation of inertia towards visual stimuli needs also to account for
actions on lights. This behaviour may also be caused by the relatively low rate of change
of illuminance, as the sky darkens relatively gradually.

We observe a regular decrease of inertia as the illuminance rises (Figure 6.21(b)). It
is striking that there is almost continuity between inertia towards dark and bright stimuli
when the dominant contribution changes. If switch-on probabilities for lighting were avail-
able, we could expect to obtain a strong decrease in action inertia for low illuminances, as
for pdark.

6.6.2 Comfort feedback of adaptive actions
We have observed that adaptive actions lead to a shift in comfort temperature that allows
occupants to feel comfortable in hotter or colder conditions than would be the case if no
action was exercised. In order to account for this phenomenon, we can de�ne an adaptation-
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corrected temperature θad:

θad = θin − θ̃(θin) = θin −
∑

i

p(θin) · βi, (6.18)

where θ̃(θin) is the adaptive correction de�ned from the empirical adaptive increments βi

and p(θin), the probabilities for the controls to be used.
With this de�nition, we can study the variation of θad (the perceived temperature

accounting for adaptive actions) as θin increases. We observe in Figure 6.22 for example
that the di�erence between θad and θin increases for higher temperatures, which corresponds
to a higher probability of performing adaptive actions11 and therefore to a bene�t from
the associated adaptive increments. It is worth noting that some actions considered for the
calculation of θad (like the use of a fan or changing the clothing level) alter the temperature
at which one is neutral, without altering the actual temperature; while others, such as
opening a window, chie�y alter the room temperature itself. For this latter case, the
deduced increment already accounts both for this physical e�ect and the non-physical
e�ects dealt with in the previous case.

The four presented curves correspond to di�erent available adaptive opportunities. In
the case of no possible adaptation, θin and θad coincide. When actions on windows, fans and
clothing are possible, the di�erence between adaptation-corrected and actual temperature
becomes signi�cant; for instance when θin = 28◦C the occupant perceives a temperature
θad of 26.5◦C.

11The probability for fans to be switched on is deduced from the expression published by Haldi and
Robinson [74]. The derivation of ordinal probabilities for clothing levels is provided in Appendix A.
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Figure 6.23: A proposal for a new perspective to understand the interactions between the
environment, occupant comfort and adaptive actions

This estimation of the e�ect of control actions on thermal comfort enables a more rigor-
ous estimation of the acceptable conditions in naturally-ventilated buildings. Furthermore
this analysis underlines the positive impact of unconstrained adaptation on occupant com-
fort and on target indoor temperatures, which can be set higher or lower provided that
occupants have adequate freedom to use windows, fans and to adapt their clothing levels.

This quanti�cation of the e�ects of adaptive actions on occupants' comfort partly con-
�rms our preliminary hypothesis (Section 1.2). However, the separation of physical, phys-
iological and psychological feedback in this e�ect remains to be studied.

Finally, our data preclude an examination of the impact of performed actions on sub-
sequent actions (the probability of which may depend on feedback from prior actions);
but based on our results, we suggest that θad accounts for this e�ect, and that subsequent
action probabilities should take θad instead of θin as an input variable to account for the
feedback from prior actions. This assertion needs con�rmation following further detailed
measurements. Our analysis of actions on windows and shading devices did not isolate
any signi�cant interaction between these latter, however various adaptive actions linked to
thermal comfort (windows, fans, clothing) are expected to be connected.

6.7 Discussion and perspectives
We have studied the conditions which lead to the states of thermal and visual comfort in
o�ce buildings and the impact of adaptive opportunities in the thermal case (formulated
as adaptive increments). Finally, we have proposed a rigorous approach to examine the
link between actions and comfort. We have also explored the interactions between thermal,
visual and olfactory comfort (Appendix B).

The above concepts have been integrated into a modelling approach in which we con-
sider interactions between environmental stimuli, occupants' actions and comfort. More
speci�cally, while the classical scheme separately considers the prediction of actions and
the assessment of comfort (Figure 6.23(a)), our �ndings allow us to consider comfort and
actions as a single concept through the notion of inertia, and to assess the impact of actions
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on comfort using adaptive increments (Figure 6.23(b)).
These adaptive increments reformulate the impact of physical variables (such as air

speed) modi�ed by occupants' adaptive actions, together with possible psychological factors
linked with the ability to act on the environment. They provide therefore a useful shortcut
to detailed simulations involving dynamic human body models [129, 130, 131, 132] coupled
with CFD simulation [133, 134, 135], while explicitly considering occupant adaptation to
his environment.

However, improving computing capabilities open new perspectives in the longer term to
such detailed simulation of the interactions between human comfort and the environment,
provided that the crucial mechanisms of adaptation are considered. But for the time
being the approach developed in this chapter o�ers a good compromise between simpli�ed
adaptive models and intractable complexity.
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Chapter 7

Integration with building simulation
software

Livet forstås baglæns, men må leves forlæns.
Life can only be understood backwards but it must be
lived forward.
Søren Aabye Kierkegaard (1813-1855)
Journalen JJ:167 (1843)

This chapter focuses on the integration and application of our models with dynamic
building and urban simulation tools. The procedures for model integration are described
in detail in Section 7.1, where we also discuss the integration of models of other actions of
interest. The speci�c situation of simulation at the urban scale is discussed in Section 7.2.
We conclude in Section 7.3 by discussing a proposition for behavioural modelling using an
agent-based approach.

7.1 Implementation in building simulation
Le simple est toujours faux. Ce qui ne l'est pas est
inutilisable.
What is simple is false, what is not is unusable.
Paul Valéry (1871-1945), ×uvres II (1942)

We present in this section proposals according to which the stochastic models developed
in this thesis should be integrated with dynamic building simulation software. Their source
code will shortly be available at the home page of the Sustainable Urban Development
Group of the Solar Energy and Building Physics Laboratory [145].

7.1.1 Implementation of the window model
Our model for the prediction of actions on windows is more complex than previously pub-
lished approaches. Its implementation however is relatively straightforward (Figure 7.1).

Its inputs include the previous, current and next occupancy states with their associated
durations, as well as the outdoor thermal conditions and rain presence. The former may
be calculated in a pre-process using a model such as that due to Page et al. [28, 29]
whereas the latter are readily available from climate �les. The principal di�culty lies in

143
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the dynamic prediction of indoor temperature, resulting from previous actions on windows
and the associated impact of their induced air �ows. However many detailed dynamic
thermal simulation programs such as ESP-r are coupled with bulk air�ow models which
resolve for both wind and buoyancy pressures.

Some possibly in�uential factors could not be studied with our data. These include
window opening angles α and indoor pollutant concentration, whose dynamic prediction
needs a speci�c sub-model (not displayed here) taking for example occupancy, ventilation
and material o�-gassing as inputs.

We present here the detailed steps for the implementation of our discrete-time Markov
process hybridised with a Weibull distribution to predict opening durations, retained in
Chapter 4 as the most accurate approach. Action probabilities are formulated as:

P01,arr =
exp(−13.88 + 0.312θin + 0.0433θout + 1.862fabs,prev − 0.45fR)

1 + exp(−13.88 + 0.312θin + 0.0433θout + 1.862fabs,prev − 0.45fR)
, (7.1)

P10,arr =
exp(3.97− 0.286θin − 0.0505θout)

1 + exp(3.97− 0.286θin − 0.0505θout)
, (7.2)

P01,int =
exp(−12.23 + 0.281θin + 0.0271θout − 8.78 · 10−4Tpres − 0.336fR)

1 + exp(−12.23 + 0.281θin + 0.0271θout − 8.78 · 10−4Tpres − 0.336fR)
, (7.3)

P01,dep =
exp(−8.75 + 0.1371θout,dm + 0.84fabs,next + 0.83fGF )

1 + exp(−8.75 + 0.1371θout,dm + 0.84fabs,next + 0.83fGF )
, (7.4)

P10,dep =
exp(−8.54 + 0.213θin − 0.0911θout,dm + 1.614fabs,next − 0.923fGF )

1 + exp(−8.54 + 0.213θin − 0.0911θout,dm + 1.614fabs,next − 0.923fGF )
, (7.5)

and the density of the probability distribution of opening durations as:
fop(t) = λα(λt)α−1 exp(−(λt)α), with α = 0.418, λ = 1/ exp(2.151 + 0.1720θout). (7.6)

We assume that climate data are available and that occupancy is �rst predicted through
a pre-processor for the whole simulation period. A detailed scheme describing the imple-
mentation procedure for a dynamic simulation of window states W (t) for time steps of
length δt = (ti+1 − ti) is provided in Figure 7.1(b), which involves the following steps:

1. The occupancy status (absence, arrival, ongoing presence or departure) is retrieved,
together with the concomitant presence or absence durations. The variables θout(ti),
θout,dm(ti) and fR(ti) are obtained from the climate data and θin(ti) from a coupled
thermal solver.

2. Case 1. If the occupant is absent, the window state is set as identical to its previous
state: W (ti+1) = W (ti).

2. Case 2. If the occupant arrives and the window is closed (W (ti) = 0):

a) We compute p(ti) = P01,arr(ti) and draw a random number 0 ≤ ri ≤ 1 from a
uniform distribution.

b1) If p(ti) > ri we set W (ti+1) = 0.
b2) If p(ti) ≤ ri, we draw a random number di from the Weibull distribution

fo(θout(ti)). If di < δt, we set W (ti+1) = 0. If di ≥ δt, we set W (ti+1) = 1 and
di+1 = di − δt.

2. Case 3. If the occupant arrives and the window is open (W (ti) = 1), we draw a
random number di from the Weibull distribution fop(θout(ti)), and perform the same
procedure as in Case 2 (b2).
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2. Case 4. If the occupant is in intermediate presence and the window is closed (W (ti) =
0):

1. We compute P01,int(ti) and draw a random number 0 ≤ ri ≤ 1 from a uniform
distribution.

2. If p(ti) > ri we set W (ti+1) = 0.
3. If p(ti) ≤ ri, we draw a random number di from the Weibull distribution

fop(θout(ti)), and perform the same procedure as in Case 2 (b2).

2. Case 5. If the occupant is in intermediate presence and the window is open (W (ti) =
1), we retrieve the decremented opening duration di calculated at the previous open-
ing. If di < δt, we set W (ti+1) = 0. If di ≥ δt, we set W (ti+1) = 1 and di+1 = di−δt.

2. Case 6. If the occupant leaves:

a) We compute p(ti) = P01,dep(ti) if W (ti) = 0 (or p(ti) = P10,dep(ti) if W (ti) = 1)
and draw a random number 0 ≤ ri ≤ 1 from a uniform distribution.

b1) If p(ti) > ri we set W (ti+1) = 0 (or W (ti+1) = 1).
b2) If p(ti) ≤ ri, we set W (ti+1) = 1 (or W (ti+1) = 0).

3. The volume of air exchanged nair(ti, ti+1) is computed, the thermal solver predicts
θin(ti+1) and we start the next time step.

7.1.2 Implementation of the blinds model
The model for the prediction of actions on blinds (Figure 7.2) also takes pre-processed
occupancy states as an input as well as outdoor illuminance which is readily derived from
di�use horizontal illuminance using an appropriate luminous e�cacy model. However, at
each step a prediction of indoor illuminance is also required, so that our dynamic thermal
model should also be coupled with a daylight model.

Based on the analyses of Chapter 5, the model for the prediction of actions on lower
blinds consists of the following action probabilities:

Plower,arr =
exp(−7.41 + 10.35 · 10−4Ein + 2.17BL)

1 + exp(−7.41 + 10.35 · 10−4Ein + 2.17BL)
, (7.7)

Praise,arr =
exp(−1.520− 6.54 · 10−4Ein − 3.139BL)

1 + exp(−1.520− 6.54 · 10−4Ein − 3.139BL)
, (7.8)

Plower,int =
exp(−8.013 + 8.41 · 10−4Ein + 1.270BL)

1 + exp(−8.013 + 8.41 · 10−4Ein + 1.270BL)
, (7.9)

Praise,int =
exp(−3.625− 2.76 · 10−4Ein − 2.683BL)

1 + exp(−3.625− 2.76 · 10−4Ein − 2.683BL)
. (7.10)

If an action is predicted, the probabilities to perform it up to a full (un)shaded fraction
are:

Pfull lower =
exp(−0.27 + 0.91 · 10−6Egl,hor − 2.23BL)

1 + exp(−0.27 + 0.91 · 10−6Egl,hor − 2.23BL)
, (7.11)

Pfull raise =
exp(0.435− 2.31 · 10−5Egl,hor + 1.95BL)

1 + exp(0.435− 2.31 · 10−5Egl,hor + 1.95BL)
. (7.12)
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Finally, if a partial action is predicted the increase in shading ∆B is drawn from the
distribution

f(∆B) =
α

λ
(
∆B

λ
)α−1 exp(−(

∆B

λ
)α), with α = 1.708, λ = exp(−2.294+1.522 ·BL,init). (7.13)

In the case of actions on upper blinds, we have:

Plower,arr =
exp(−7.29 + 9.48 · 10−4Ein + 2.18BU + 6.66 · 10−6Egl,hor)

1 + exp(−7.29 + 9.48 · 10−4Ein + 2.18BU + 6.66 · 10−6Egl,hor)
, (7.14)

Praise,arr =
exp(−1.699− 5.24 · 10−4Ein − 3.916BU − 21.8 · 10−6Egl,hor)

1 + exp(−1.699− 5.24 · 10−4Ein − 3.916BU − 21.8 · 10−6Egl,hor)
, (7.15)

Plower,int =
exp(−8.211 + 8.34 · 10−4Ein + 1.533BU + 5.69 · 10−6Egl,hor)

1 + exp(−8.211 + 8.34 · 10−4Ein + 1.533BU + 5.69 · 10−6Egl,hor)
, (7.16)

Praise,int =
exp(−3.629− 2.90 · 10−4Ein − 3.365BU − 16.86 · 10−6Egl,hor)

1 + exp(−3.629− 2.90 · 10−4Ein − 3.365BU − 16.86 · 10−6Egl,hor)
, (7.17)

Pfull lower =
exp(−0.435 + 2.50 · 10−6Egl,hor + 0.150BU )

1 + exp(−0.435 + 2.50 · 10−6Egl,hor + 0.150BU )
, (7.18)

Pfull raise =
exp(1.543− 2.12 · 10−5Egl,hor − 0.56BU )

1 + exp(1.543− 2.12 · 10−5Egl,hor − 0.56BU )
. (7.19)

This model has thus a similar level of complexity to that of the model for windows,
except that its internal structure includes two sub-models: one for the prediction of actions
and another for the choice of shaded fraction.

Based on our results, we have developed a simple algorithm for the simulation of blind
usage, which is based on the following steps (see Figure 7.2(b)):

• The occupancy status is checked. If no occupant is present, the state of blinds
remains constant.

• If Plower ≥ Praise, we use the Monte-Carlo method on Plower to determine whether
the blind is to be lowered. If no lowering is predicted, the Monte-Carlo method
determines whether a raising action occurs through Praise. The order of this procedure
is inverted if Plower < Praise.

• If an action is predicted, the Monte-Carlo method applied on Pfull lower or Pfull raise

predicts whether the blind is set up to a full extent. Otherwise the new shaded
fraction is drawn from a Weibull distribution.

• This procedure is performed sequentially for each type of blind.

7.1.3 Integration of complementary stochastic models
The relevant non-deterministic behavioural processes discussed in Chapter 1 are related in
a complex scheme presented in Figure 7.3, where the central model �rst predicts occupants'
presence. In this section, we describe the features of the other existing or future models
in�uencing energy �ows in buildings.
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Occupancy
As suggested in the preceding sections occupants' interactions depend on their presence,
so that a model of presence is central to our family of stochastic behavioural models.

A sound approach for the modelling of occupancy was developed by Page et al. [28, 29],
based on an inhomogeneous Markov chain, assuming the independence of occupants and
the superposition of two modes of absence: long absences and daily movements. The inputs
are a time-varying pro�le of the probability of presence and a parameter of mobility (the
ratio between the probabilities of unchanged and changed presence).

Arti�cial lighting
The initial research performed in this domain was conducted by Hunt in 1979 [146, 147,
148], who provided a description of the probability of people switching on the lights on
arrival as a function of the minimum daylight illuminance Emin in the working area1 (Fig-
ure 7.4):

p =





1 (if log10(Emin) ≤ 0.843)
a + c/ (1 + exp(−b(log10(Emin −m)))) (if 0.843 < log10(Emin) < 2.818)
0 (if log10(Emin) ≥ 2.818)

with a = −0.0175, b = −4.0835, c = 1.0361, m = 1.8223 (lx).
This attempt was seen as a basis for more accurate predictions of the energy consumed

in buildings, and represents the �rst stochastic model of occupants' behaviour; it has been
1This latter variable was retained among other visual variables as it was observed to be the best

predictor.
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integrated with ESP-r and SERI-RES [149] in the 1980s. However, the limited scope of this
model called for further developments. Consequently Pigg produced a model to predict
the switching o� of lights based on foreseen absence duration [150] and Reinhart worked
on the probability of switch-on during the day (intermediate switch-on) [79, 151]. This
resulted in the model proposed in Lightswitch-2002.

Electrical and water appliances
We may distinguish two main approaches for the simulation of the use of electrical ap-
pliances: bottom-up models which perform explicit simulation of the use of individual
appliances resulting in total load through aggregation of their predictions; and top-down
models that treat the appliances to simulate as a black box energy sink based on historic
data to project future results.

This latter approach, used for instance by Stokes [152] and Steemers and Yun [153],
allows for example for the identi�cation of signi�cant factors in�uencing the yearly energy
consumption of households.

Bottom-up approaches proposed by Paatero [154] and later by Page [28] are promising
but need more solid calibration and validation tests. Page distinguishes appliances by
their operation mode, which results in distinction between cases where they are (a) neither
switched on nor o� by occupants (eg. fridge), (b) switched on by an occupant but switched
o� independently of occupant presence (eg. washing machine) and (c) switched on and o�
by occupants (eg. television). Occupant behaviour (and its variability) can be explicitly
considered and simulations of appliance use are performed with respect to their switching
mode. In principle, this results in detailed predictions of power demand. Finally, with this
approach the consumption of water by appliances and the associated rejection of waste
water can also be handled, by extension.

Heating, ventilation and air-conditioning
Research is lacking in the study of human interactions with HVAC devices. We may
however hypothesise that a Markov process based on local indoor thermal stimuli would
provide a valid approach. Some research in this direction was performed by Tanimoto and
Hagishima [155] on the use of air-conditioning devices in dwellings, where probabilities of
switch-on and switch-o� are proposed as logistic functions of air temperature; and also by
Schweiker and Shukuya [156] on the use of air-conditioning during nighttime. However,
further experimental data are required to validate these hypotheses and to reach a su�cient
level of generality.

7.2 Implementation in urban simulation
The initial motivation for the work described in this thesis was to account for the impact
of occupants' behavioural diversity on simulations of urban resource (energy and matter)
�ows; more speci�cally to develop and integrate a comprehensive family of stochastic
models (which may optionally be substituted by the used deterministic pro�les and rules)
of occupants' presence and behaviour within CitySim [157] which is a software currently
under development.

CitySim's main purpose is to simulate building-related energy demand, storage and
supply at the urban scale, where it is particularly important to achieve a good compromise
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Figure 7.5: General scheme of the structure of CitySim

between modelling accuracy and computational e�ort. Its general structure, shown in
Figure 7.5, currently includes the following core models:

• Thermal solver. CitySim uses a thermal model developed by Kaempf and Robin-
son [158], based on the analogy with an electrical circuit represented by a resistor-
capacitor network.

• Radiation model. The Simpli�ed Radiosity Algorithm (SRA) of Robinson and
Stone [159, 160] is used to solve for the shortwave and longwave irradiance incident
on the surfaces de�ning our urban scene, as well as their luminance. This latter may
also be used to solve for indoor illuminance.

• Plant and equipment models. An HVACmodel computes the psychrometric state
(enthalpy) of the air at each stage in its supply (eg. outside, heat recovered, cooled
and de-humidi�ed, re-heated, supply). The family of models for energy conversion
systems accounts for a range of technologies that provide or store heat and electricity
to buildings. These include a thermal storage tank model for hot and cold �uids,
boilers, heat pumps, cogeneration systems, combined cogeneration and heat pump
systems, solar thermal collectors, photovoltaic cells and �nally wind turbines. These
models are discussed in detail by Kaempf [161]

Finally, the programming structure of CitySim is designed to support in the future an
agent-based simulation (Section 7.3) of occupants' presence and behaviour at the urban
scale. Work on their integration will start imminently.

Apart from the inclusion of behavioural models, a future planned development is the
inclusion of the simulation of the transport of goods and people � a key resources consumer
in the urban environment. For this we plan to couple CitySim with the Multi-Agent
Transport Simulation Toolkit (MATSim-T) [162], which simulates the sub-hourly transport
of individual people within a given urban scene, based on the transport network nodes and
the links between them as well as the locations of activities.
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7.3 Towards an agent-based modelling paradigm
I, at any rate, am convinced that He does not throw dice.
Albert Einstein (1879-1955), Letter to Max Born (1926)

Throughout our development of models for occupants' actions we have consistently
focused upon individuals acting under the in�uence of stimuli. Agent-based models (ABM),
in which the decisions of individual agents are simulated in order to observe their aggregated
e�ects on the whole system, provide a natural framework for modelling individuals' actions
in response to representations of their personal preferences.

7.3.1 Simulation steps
Population and characteristics. A simulation would start with the creation of a pop-
ulation of a determined number of agents. To enable the modelling of the diversity among
them, behavioural attributes would be stochastically assigned to each agent, through the
de�nition of characteristics of interest for the modelling context. To ensure a correct rep-
resentation of the system to be modelled, these attributes must be drawn from suitable
multivariate distributions based on census and survey data. Characteristics of potential
interest are listed below (Table 7.1), some of which may ultimately prove to be inter-related
with complex correlations.

Sociology Behaviour
Age, sex Occupancy pro�les
Marital status Mobility parameters
Relation with other agents Available activities
Income, wealth Preferred activities
Disability Activity pro�le
Car, motorbike ownership Thermal and visual comfort prob.
... Action inertia
... ...

Table 7.1: Hypothetical list of agents' attributes of interest

This generalist selection process is also �exible; it can be easily adapted to di�erent
contexts or to future changes in society (eg. transportation improvements, population
aging, land use changes, etc), based on new data, to reliably predict the impact of any
scenario of interest.

Finally, this approach is in agreement with subject-matter considerations in building
simulation: occupants' behaviour is a process generated by the intersection of a speci�c
occupant with a speci�c building. Agent-based models may explicitly describe this inter-
action through the simulation of a speci�c agent acting in a given zone.

Presence. The next step is to predict the presence of agents in the simulated system.
To do this, a model with generic input parameters such as that developed by Page (Sec-
tion 7.1.3) is appropriate; as the occupancy pro�le and the parameter of mobility may
be adjusted to distinct behaviours and schedules. The scope of this model needs however
to be extended in this context, as in its basic form it predicts a binary response which
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Figure 7.6: Hypothetical visual comfort probabilities with respect to occupant activity

is absence or presence (so that agents simply appear and disappear). The model output
needs thus to be extended to continuously track agents' locations.

Alternatively and as noted in Section 7.2, a third party transport simulation program
may be used to simulate occupants' arrival and departure times from buildings with our
simulation scene. But again these agents' locations within buildings would then need to
be tracked.

Events. Occupants' activities are events which are potentially of interest in the simu-
lation. We must bear in mind that the data used in this research work come from o�ce
environments exclusively, where activities are usually limited to reading, writing and com-
puter based tasks. This speci�c situation can have a strong impact on actions and comfort
and lead to rather speci�c results. For instance, the probability of visual comfort is ob-
viously in�uenced by the type of activity performed (Figure 7.6) and therefore indirectly
impacts the use of controls of interest such as lighting and blinds. Furthermore, predic-
tions of electrical appliance use may be seen as a post-processor of a model for occupants'
activities.

It is thus of interest to explicitly model activities, particularly in the context of residen-
tial buildings, from which comfort and action probabilities would be deduced. To do this,
very limited published experimental evidence exists (for instance the studies of Tanimoto
et al. [163, 164] and Tabak and de Vries [165]), but the analysis of data from time-use
surveys is a promising approach, which could possibly be implemented as a pre-processor
of actions, in conjunction with the occupancy model. Thus, from our original scheme con-
sidering presence as the sole input for actions we propose to head towards the agent-based
structure presented in Figure 7.7.



7.3. TOWARDS AN AGENT-BASED MODELLING PARADIGM 155
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Figure 7.7: From agents to interactions, through occupant presence and activity

Interactions. Once occupants' locations are determined, their behaviour towards ac-
tions of interest may be modelled. The models that we developed for actions on windows
and blinds are directly applicable to an agent-based modelling paradigm, as we explicitly
considered actions performed by individuals and assessed the associated behavioural diver-
sity. Similarly, the model Lightswitch-2002 [79, 151] for the simulation of electric lighting
use is appropriate for this purpose.

For the prediction of appliance use a bottom-up approach such as that proposed by
Page [28] or Paatero [154] is necessary, as top-down approaches do not explicitly consider
electricity use through speci�c actions. But as mentioned earlier such models need further
calibration and validation. Nevertheless this approach is more informative and �exible: the
distribution of electricity needs is readily obtained and changes in technology or household
equipment are easily integrated through the input parameters.

Finally, a wide calibration basis including data from di�erent types of buildings, cli-
mates and environment will strengthen the scope of application of the models. Further
acquisition of data is therefore to be envisaged.

7.3.2 Modelling of agents' diversity

Summarising individual patterns. The models for the probabilities of actions on
windows and shading devices developed in Chapters 4 and 5 are all formulated as logistic
models. Each probability depends thus on two parameters only (an intercept a and a
slope b) which completely determine the model. Therefore, the lists of obtained regres-
sion parameters (Tables 4.8 and 5.5) o�er comprehensive information on individual action
probabilities.

The intercept is a location parameter: its purpose is to express the position of the
logistic curve with respect to the driving variables. As mentioned earlier, in the case of
univariate models the characteristic value x50 = −a/b o�ers direct interpretability in terms
of values of the driving stimulus associated with a 0.5 action probability. Based on the
values of θin,50 and Ein,50 derived for individual occupants, we may thus operate a �rst
classi�cation of their sensitivity to environmental stimuli, those displaying lower values
being more likely to perform actions at low values of θin and Ein.

In the particular case of actions on windows, the frequency of occurrence of predictive
behaviour may be used to assign decreasing action probabilities for high values of θout,
based on observed polynomial logistic regression or on non-parametric estimates. Similarly
as action probabilities, individual distributions for opening and closing durations are fully
determined by the scale and the shape.
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Simulating behavioural diversity. The random selection of individuals' behaviours
through their regression coe�cients can be performed as a further pre-process in the sim-
ulation. As noticed in Sections 4.2.5 and 5.6, the regression parameters of separate action
probabilities (eg. on arrival and during presence) are correlated (Figures 4.10 and 5.12)
and thus cannot be simulated independently.

The sampling of individual behavioural pro�les may proceed in two ways. A �rst sim-
ple possibility is to directly use the values displayed in Tables 4.8 and 5.5. For this, if N
personal pro�les are known, an individual i ∈ [1, N ] may be randomly chosen from a uni-
form distribution for subsequent simulation using the corresponding regression coe�cients.
Indeed a new population of individuals may be selected and simulated by repeating this
process.

A more re�ned approach to simulate occupant variability would involve direct sampling
from the joint multivariate distribution of regression parameters considering their correla-
tions (graphically summarised in Figures 4.10 and 5.12). If a multivariate normal distri-
bution is found to be unappropriate, the use of methods such as the Hastings-Metropolis
Algorithm is necessary (see Ross for further discussion [166]). The advantage of this method
over the previous sampling procedure is the generation of new representative behaviours
rather than a repetitive use of predetermined regression coe�cients. However, a larger
dataset is necessary to accurately de�ne the properties of this multivariate distribution.



Chapter 8

Conclusion

Toute autre science est dommageable à celui qui n'a pas
la science de la bonté.
All other knowledge is hurtful to him who has not the
science of goodness.
Michel de Montaigne (1533-1592), Essays (I.24)

Summary
Based on eight years' continuous measurements of the indoor environment and of the use of
its controls, coupled with a speci�c questionnaire for the assessment of occupant comfort
and personal and environmental characteristics, we have performed a careful statistical
analysis, which results in the following advances:

• A model for the prediction of actions on windows performed by o�ce occupants,
based on a set of rigorously selected explanatory variables, veri�ed by a classical
cross-validation procedure and selected among other variants based on a combination
of predictive accuracy and computation cost.

• A model to predict o�ce occupants' interactions with shading devices based on a
set of rigorously selected explanatory variables (including local visual stimuli) with
a formulation that can be adapted to particular types of shading systems without
signi�cant structural modi�cations.

• A probabilistic method for the prediction of human thermal and visual sensation and
comfort, that allies simplicity and accuracy.

• A re�nement of the accepted adaptive thermal comfort model, which results in a bet-
ter understanding of the distinct roles of control on the environment, acclimatisation
and of individual speci�cities on variations of comfort temperature.

• A formulation of the link between comfort and actions through the de�nition of the
concept of action inertia, together with evaluation of the feedback from actions on
comfort. This closes the loop and places human comfort in its rightful central place.

• A better knowledge of individual speci�cities towards interactions with building con-
trols and proposed possibilities to account for this diversity.

157
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• A model for predicting clothing insulation whose formulation is in principle easily
adaptable to any type of environment. Models of the adaptation of other personal
characteristics have also been prepared, including the consumption of drinks and
changes in metabolic activity.

• An initial assessment of the interactions between thermal, olfactory and visual com-
fort.

• An analysis and quanti�cation of the factors in�uencing perceived productivity in
o�ce environments.

Contribution of the proposed stochastic models
The stochstic models for occupants' behaviour open new perspectives for dynamic simula-
tion programs. The following issues currently ignored by deterministic approaches are of
particular interest and can be tested in the near future:

• Increased accuracy. The integration of occupant behaviour will improve the re-
alism of building simulation results enabling the energy and comfort implications of
building design and controls to be more reliably assessed at the design stage.

• Improved basis for low energy design. In the particular case of passive and low
energy buildings, where the behaviour of occupants has a particularly crucial impact,
these methods have a special interest.

• Study of the variability. The variability of energy demand and indoor conditions
induced by stochastic models can be assessed through repeated simulations, which
yields distributions of results rather than deceptive �xed values.

• Impact of extreme behaviours. The design of buildings which are robust to a
wide range of behavioural types is made possible and veri�able, by directly testing
the impact of speci�c action probabilities on a building's energy balance.

Contribution of the research on comfort
Our research on environmental comfort results in an approach situated at reasonable dis-
tance of both the simplicity of currently accepted adaptive thermal comfort models and
the precision of detailed thermoregulatory models. Its reasonable level of detail leads to
advances in dynamic thermal simulation as well as for developing comfort standards:

• Conceptual advance. A general formulation of action probability in terms of com-
fort probability through action inertia represents a conceptually seductive theoretical
uni�cation of concepts usually separately treated.

• Simplicity and su�ciency. The proposed formulation of comfort probability as a
function with four free parameters is together relatively simple and accurate, where
thermal and visual comfort are easily simulated and evaluated through univocal
indicators (pcomf or pdiscomf).

• Adequacy for standards. The model for the evaluation of comfort temperature
represents a signi�cant advance in understanding the weight of driving variables for
adaptive comfort. Its relatively simple form may be proposed as a useful complement
for revised standards.
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• Generality and versatility. The revision to the adaptive comfort model is eas-
ily applicable to speci�c buildings with extended or restricted means of available
adaptation.

• Individual and collective satisfaction. Discomfort probability is a superior index
to PPD: the aggregation of individual discomfort probabilities results in a distribution
of discomfort probability with respect to diversity in preferences.

• Comfort for all? Simultaneously testing individual behaviours and comfort prefer-
ences together with environmental responses to these behaviours allows us to deter-
mine whether the predicted environmental response (eg. θin, Ein) corresponds well
with comfort preferences. Repeating this for the whole population allows us to iden-
tify for which there is an environmental mismatch with comfort preferences.

Longer term perspectives
In spite of these advances, there is considerable scope for further improvements in be-
havioural modelling and its applications in dynamic building and urban simulation tools.
For example, the following:

• Testing the increased accuracy of integrating variability among occupants in the
simulation, based on the simulation of agents.

• Quantifying the impact of societal changes on energy use; also based on the simulation
of agents.

• Agent-based modelling of occupants' behaviour, involving the generation of a popula-
tion and assignment of their characteristics; the modelling of their transport between
buildings and, whilst present, their activities and the possible interactions which de-
pend on these activities.

• This agent-based modelling approach would in the future enable us to model (a)
diversity between agents and the energy and comfort implications of this diversity
(b) the impact of policy measures to in�uence occupants' behaviour (eg. purchas-
ing/investment decisions and more environmentally responsible behaviour with re-
spect to resource use)

• Coupling of models of occupants interactions, the indoor microclimatic responses to
these actions, the feedback to perceived comfort using a thermoregulatory model and
the impact on subsequent interactions.
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Appendix A

Adaptation of personal
characteristics

The prediction of clothing level, metabolic activity and cold or hot drinks consumption
is of indirect relevance to building performance simulation. Unlike windows and blinds,
these features do not directly in�uence the heat gains of a building (although changes in
metabolic activity marginally modify occupants' metabolic heat production). However,
their impact on occupants' comfort is important (see Chapter 6). Personal characteristics
may thus have an indirect in�uence on other adaptive actions of interest for building energy
performance assessment.

This chapter presents our results for the prediction of occupants' choices of clothing
level (Section A.1), metabolic activity (Section A.2) and the consumption of cold and hot
drinks (Section A.2.3). For each topic we begin with a short review of available previous
research.

A.1 Clothing
The issue of clothing can be seen from di�erent perspectives. As pointed out by Morgan
and De Dear [167], clothing has an ergonomic function, but it relates also to cultural and
social aspects, to personality and corporate identity; while its primary function is to serve
as a simple layer of thermal insulation. Although in this work we are particularly interested
in the latter function, it is useful to bear in mind other factors which motivate our clothing
choices.

A.1.1 State of the art
Clothing has an important impact on the human heat balance. As such the reliable esti-
mation of clothing level is important for the estimation of thermal satisfaction eg. using
the ISO-7730 standard [35], where clothing level is a key variable (see Section 6.1). It is
however di�cult to perform precise estimates from �eld surveys without invasive methods.
Methods thus far employed for the estimation of clothing level are discussed by Olesen
[168].

A �rst �eld study on clothing behaviour was carried out by Humphreys on secondary
school children [169, 170]. It was observed that the proportion of children stripped to the
minimum allowed clothing ensemble was signi�cantly correlated with the room tempera-
ture. An analytical formulation of this proportion was proposed based on probit analysis.
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Although within-day changes of clothing also signi�cantly correlated with room tempera-
ture, the amplitude of this pattern was much smaller than day-to-day variations.

Further observations were carried out by Humphreys [171] where the focus was on
clothing outdoors. In this a logistic function of temperature for the probability of wearing
a light clothing ensemble was proposed. It was found that age and sex were not determinant
factors, that humidity was not an important variable and that sunshine had a marginal
e�ect.

Integrating and comparing the observations from these surveys, Humphreys proposed
to model the clothing level through an exponentially-weighted moving average of the room
temperature [172]. The regression parameters governing the in�uence of temperature and
the exponential decay of the running mean were found to not signi�cantly di�er among
the datasets.

Measurements performed by Nicol et al. in o�ces in Pakistan [62, 63] (see Section 4.1.1)
showed, using linear regression, that the number of items of clothing worn could be associ-
ated with both indoor (R2 = 0.653) and outdoor temperature (R2 = 0.666); likewise with
the comfort vote (R2 = 0.538), suggesting that subjects adapt their clothing as a function
of perceived thermal comfort. Outside of the interval 20◦C to 30◦C, clothing insulation
was found to remain constant. By way of explanation Nicol et al. proposed that clothing
adaptation stops when the limits of acceptable clothing in o�ce environments have been
reached.

Observations of clothing changes performed by Newsham and Tiller using a computer-
based questionnaire [173, 112] revealed that major or minor clothing adjustments were
performed for 15% of the hours preceding the survey. Approximately twice more clothing
removals were recorded than clothing additions.

In a detailed �eld survey of clothing and activity performed on 144 persons, Rowe [174]
observed a diurnal change in clothing insulation value for 38% of participants, based on
detailed indications of garments worn by respondents.

De Dear and Brager [125] observed that there was a signi�cant correlation (R2 = 0.25)
between the mean clothing level and indoor temperature. They found an even stronger
correlation with daily mean outdoor e�ective temperature (R2 = 0.49). Morgan and De
Dear subsequently summarised these �ndings, together with a comprehensive literature
review completed by additional research [167]. They underline previous experimental evi-
dences that clothing levels worn indoors are a�ected by gender (women tend to wear less
in summer, but more than males in winter), context, corporate dress codes, indoor climate
variability and outdoor weather. They go on to present a model to predict the mean daily
clothing value as a linear function of the previous mean daily outdoor temperature and
the predicted maximum temperature for the current day.

In summary, the use of clothing in o�ces is well documented by several �eld studies of
variable size and detail. However, improvements are desirable for the following reasons:

• There is a recurrent problem of measurement reliability for clothing level. Often a
computer-based electronic questionnaire is used; but self-reported insulation levels
are approximate with this method.

• The signi�cant variations due to di�erent dress codes of various o�ce environments
are known, but not treated. Furthermore, there is no available research relating to
residential environments.

• The in�uence of indoor or outdoor temperature is well documented. However, data
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Figure A.1: Temporal distribution of observed clothing levels

are often analysed with sub-optimal methods such as linear regression on mean cloth-
ing values, with a poor quality of �t, which undermines the utility of the models. A
comprehensive, optimal and validated modelling approach therefore remains elusive.

A.1.2 Results
General patterns
A preliminary observation from our dataset shows that occupants rarely adjusted their
clothing level during the working day; that they mostly choose a de�nite set of garments
at the start of the day which they do not adjust prior to departure. Among the surveyed
periods, lowering clothing level was mentioned for only 1.93% of the preceding hours, while
this fraction falls to 0.17% for clothing additions. However, only relatively coarse categories
of clothing were incorporated into our questionnaire, so that minor clothing adjustments
may have been neglected.

From the above observations it seems necessary to distinguish between adaptation of
clothing level between days and the occurrence of such adaptations during the day. By this
we mean that occupants may choose their attire at the beginning of the day as a predictive
strategy, based on historic experience (e.g. it was warm yesterday and I expect it to be
warmer still today, therefore I will reduce my clothing level today) and/or they may wear
several layers of clothing and remove these layers as a function of their thermal sensation
(e.g. it is cool at the moment, but I expect it to be warm this afternoon, therefore I
will provide myself with the possibility to reduce my clothing level during the day). Our
preliminary observations indicate that this latter opportunity is seldom exercised which
tends to support the approach adopted by Morgan and De Dear [167] to predict a static
mean daily clothing level. As an illustration, Figure A.1(a) shows that seasonal variations
have a very large amplitude compared to intra-day variations (Figure A.1(b)).

These observed proportions of clothing adaptation should however be interpreted with
caution, since it is possible that small adjustments of clothing level (such as shortening
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Figure A.2: Clothing level versus indoor and outdoor daily mean temperature

the sleeves or opening the collar of their shirts) are also performed by occupants, whether
consciously or not. There may thus exist small but nevertheless signi�cant variations
of clothing level of the order of 0.1 clo which may well occur more frequently than the
relatively large adjustments that we have observed.

Predicting daily clothing level

Linear regression. To facilitate comparisons with previous research, we perform linear
regression between observed clothing levels and thermal stimuli. Among outdoor temper-
ature and its derivatives, daily mean outdoor temperature produces the best model, far
better than indoor temperature:

Icl = 0.929− 0.0184 · θout,dm (R2 = 0.405) (A.1)
Icl = 1.719− 0.0445 · θin (R2 = 0.137) (A.2)

Furthermore a model including together θout,dm and θin does not yield any signi�cant
improvement based on analysis of variance (F = 6.05, p = 0.014) and the fact that the R2

remains almost unchanged at 0.406. Despite the fact that mean outdoor temperature is
a more e�ective predictor it is evident from Figure A.2 that this model is associated with
considerable dispersion which suggests the need for a more informative model formulation.

Ordinal logistic regression. Although clothing level is a continuous variable, our ques-
tionnaire only allowed us to collect approximate values corresponding to the proposed list
of items displayed in Table 2.2. Therefore, we have no choice but to study clothing level
as a categorical variable whose ordered discrete levels may be seen as de�ned by cutpoints
applied on an underlying unknown continuous variable. An ordinal logistic model (see
Section 3.2.6) is the appropriate approach in this situation.
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LR AUC Dxy Γ τa R2
N B

θout,dm 1763.9 0.760 0.520 0.523 0.444 0.400 0.104
θout,rm 1687.4 0.752 0.504 0.508 0.430 0.387 0.104
θout 1677.8 0.748 0.497 0.499 0.424 0.386 0.108
θout,mm 1485.1 0.731 0.461 0.466 0.394 0.355 0.105
θin 540.0 0.649 0.298 0.303 0.255 0.145 0.130
θout,dm, θin 1767.5 0.757 0.514 0.515 0.439 0.402 0.112

Table A.1: Goodness-of-�t estimators for logistic models including one or several variables

From Equation (3.17), we express the probability for the clothing level Icl to be superior
to a given threshold value Ij as a logistic distribution:

p(Icl ≥ Ij) =
exp(aj + b · θ)

1 + exp(aj + b · θ) , (A.3)

where θ is the selected most relevant available thermal variable, such as θin, θout or some
combination of them.

We �t ordinal logistic models for each of these predictors (Table A.1), and observe
that θout,dm is once again the variable with strongest association (Figure A.3(a)), closely
followed by θout (Figure A.3(c)) and that the model with θin performs relatively poorly
(Figure A.3(d)). In general, averages on θout o�er good performance, except the monthly
mean θout,mm.

We have also attempted to add θin as a second variable, but once again its inclusion
is not signi�cant according to the likelihood ratio test (G = 3.52, p = 0.06); it also o�ers
no clear goodness-of-�t improvement. Furthermore other variables perform no better. We
keep thus as a �nal model for clothing choice Equation (A.3) with θ = θout,dm, where
I = (0.4, 0.5, . . . , 0.9, 0.95), a = (5.40 ± 0.11, 4.68 ± 0.10, 4.04 ± 0.10, 3.14 ± 0.09, 2.07 ±
0.08, 1.69± 0.08, 1.35± 0.08, 1.17± 0.07) and b = −0.1946± 0.0049.

Finally we check the ordinality assumption (see Section 3.2.6) by plotting the means of
θout,dm versus the levels of Icl (Figure A.3(b)), together with the expected value of θout,dm

for each level of Icl (shown as a dotted line) under the proportional odds assumption. The
low observed discrepancy con�rms the validity of this assumption in this situation.

This model formulation is more informative than ordinary linear regression: it explicitly
gives as a result the distribution of predicted clothing levels rather than a mean value and
correctly treats the surveyed discrete clothing levels; this being encompassed in a single
mathematical expression.

Predicting clothing changes
The very small number of observed transitions in clothing level (57 clothing removals and 5
additions) is problematic for the detection of trends in clothing adaptation. We attempted
to �t logistic models to infer action probabilities using a similar approach as in Chapters 4
and 5 and found that there is no signi�cant contribution of any available predictor to
explain the variation of the very small observed probabilities.

The rare changes in clothing may be explained by the general satisfaction of the ther-
mal conditions in the building, or by the large availability of other controls to adapt the
environment. Another possible explanation may lie in errors in judgement (occupants
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may have adapted to a cooler than predicted temperature, so that they have erroneously
under-clothed themselves).

Further measurements with more precise clothing values would thus be helpful to better
understand occupants' adaptation in clothing. We may however hypothesise that determi-
nant predictors should include indoor temperature together with the initial clothing level
and its ability to be changed by removing or adding a layer of clothing. This suggests the
use of transition probabilities between several clothing states, with pij = 0 for levels Icl,j

that cannot be reached with available clothing Icl,i.

A.1.3 Discussion
Determinant predictors

Based on our observations, there is evidence that outdoor climate and season in general
primarily determines e�ective clothing level in o�ce environments. In contrast with actions
on windows (Chapter 4), there is an intrinsic and general in�uence of outdoor climate,
which directly impacts occupants when clothing decisions are taken. The speci�c impact
of daily mean outdoor temperature is coherent, formulating the in�uence of the near past
in the decision, in conjunction with the fact that changes during the day are rare. The
removal or addition of layers of clothing on the other hand have proven to be di�cult to
predict owing to the lack of supportive data. We may at best o�er the seemingly logical
conclusion that occupants perform changes (if available) based on local indoor stimuli.

In conclusion, clothing adaptation tends to be more a predictive strategy � the level
being set at the beginning of the day, based on prior experience of thermal (especially out-
door) conditions, with opportunities for adaptation during the day being rarely exercised.

Dress codes and speci�cities

In certain o�ce environments, particularly those in which formal attire is favoured, oc-
cupants may also be constrained from adjusting their clothing level. Occupants of our
relatively informal case study buildings, however, were able to adjust their clothing level
in a rather unconstrained way.

A strict dress code implies a suppression of adaptive opportunity (implying a narrower
range of acceptable temperatures). This can be modelled using a modi�ed version of
Equation (A.3) where low clothing levels are removed, and thus merged with the lowest
available level. In residential environments on the other hand adaptation may be relatively
unconstrained, allowing for lower clothing levels if necessary, requiring additional levels in
Equation (A.3). Figure A.4 summarises the possible formulation for these environment-
speci�c distributions.

Proposal for a model

Based on these observations, we propose a model formulated as follows:

• The range of possible clothing levels is determined by the type of environment to
simulate.

• At the start of each day, based on the mean outdoor temperature of the preceding 24
hours, a clothing level is randomly drawn from the distribution of Equation (A.3).
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Figure A.4: Hypothetical distributions for clothing in di�erent environments

• For each time step where the occupant is present, additions and removals of cloth-
ing are predicted using transition probabilities whose explicit form is to be de�ned.
However, in the absence of data to support this third step the relative rarety of this
observed form of adaptation would support an intermediate model based on only the
�rst two steps, which models day-to-day transitions, the most important adaptation
mechanism.

A.2 Metabolic activity
Like clothing, metabolic activity is a determinant variable for thermal comfort and there-
fore of interest in our research. As with clothing metabolic activity was self-reported
by respondents of our electronic questionnaire, in which a choice from a limited set of
metabolic activities (seating, standing, etc) was made, see Table 2.2.

A.2.1 State of the art

Research on variations of metabolic activity observed on building occupants is very la-
cunar. A precise measure of this value is also di�cult, so that most thermal comfort
surveys provide an approximate self-reported value. The question is however of interest, as
Humphreys and Nicol [175] have suggested that adaptations in activity rate is one of the
numerous behavioural adaptive actions that building occupants can take to restore their
comfort in non-optimal conditions.

In his �eld survey, Rowe [174] observed twice a day six levels of o�ce activities, using
weighting factors for the ongoing duration of this activity and for the consumption of
snacks, meals, beverages or cigarettes. Based on collected values ranging between 1.0 and
1.9 met, from 20◦C to 27◦C, it was observed that 78% of respondents reported di�erent
activities between morning and afternoon observations. A weak relationship was found
between activity rate and indoor operative temperature, but no relationship was found
with outdoor temperature.

Using data from a �eld survey in Tunisia, Bouden and Ghrab [176] found that metabolic
rate remained nearly constant between 1.2 and 1.3 met, independent of temperature. They
were not able to survey occupants after 2pm, when they leave for their afternoon nap.
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ture

Figure A.5: Observed distribution of activity levels

A.2.2 Results and discussion

As with clothing we attempted to �t an ordinal logistic model for reported categories of
metabolic activity levels. But none of the measured variables could explain the very tiny
observed variations in activity levels (82.7% of answers indicated �Sedentary activity�, cor-
responding to M = 1.2 met). To illustrate the problem, Figure A.5 shows the distribution
of activity with respect to θout,rm and θin.

Occupants may, in principle, adapt activity levels in response to environmental stimuli,
likewise their clothing. In contrast with residences, in workplaces our activities tend to be
dictated by the tasks in hand. Metabolic activity in o�ces may be particularly constrained,
being essentially sedentary (desk-based) in nature. It is, we suggest, due to this constrained
potential that we observe no discernible statistical correlation between the adaptation of
activity and any kind of stimuli.

It is however possible that, under extreme thermal conditions, occupants vary the
intensity of their desk-based activity, but our electronic questionnaire was not designed to
address this question.

Outside of the working environment, occupants have in principle the freedom to adapt
their activities according to their personal preferences (which may or may not be decided
in response to environmental stimuli). An obvious and well-known example is the siesta
which is common to several Mediterranean countries, where activities are slowed down
during the peak temperatures of the day. However, this kind of adaptation can probably
be considered as a last solution in the range of adaptations to restore thermal comfort. It
seems then that there is only marginal interest in modelling variations in metabolic activity
as an adaptation response to restore thermal comfort.

A further confounding factor is that the exact metabolic rate is also a function of other
adaptive actions, like consuming hot or cold drinks or a meal. This we model separately
in the next section.
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A.2.3 Use of drinks
Taking a cold drink was reported for 18.9% of hours preceding the questionnaire (13.5%
for hot drinks); it is then a relatively prevalent activity. We have performed logistic
regressions for the probability of these events and found that θin is the best predictor for
the consumption of cold drinks, while this is θout,rm in the case of hot drinks. We obtain
then:

phd(θout,rm) =
exp(ahd + bhdθout,rm)

1 + exp(ahd + bhdθout,rm)
, ahd = −6.7± 0.6, bhd = 0.21± 0.02,

pcd(θin) =
exp(acd + bcdθin)

1 + exp(acd + bcdθin)
, acd = −1.32± 0.09, bcd = −0.037± 0.006.

Cold drink consumption is also reliably modelled by outdoor temperature, perhaps suggest-
ing the presence of some form of seasonal adaptation, rather than being in�uenced solely
by internal conditions. The observed and �tted probabilities are shown in Figure A.6.
From this it seems that building occupants consume cold drinks with a greater frequency,
relative to a basic minimum (temperature invariant) consumption, when the indoor ther-
mal conditions are warmer; hot drinks are more clearly related with a variable expressing
seasonal variations, implying no signi�cant variations during the day.

In conclusion, o�ce occupants seem to adapt their metabolic rate in response to thermal
stimuli, but this adaptation takes place through the use of drinks; their sole unconstrained
means of adaptation in a working environment. However we do not attempt to quantify
the impact of the use of drinks on occupants' metabolic activity, as their e�ect on thermal
regulation is complex.
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Appendix B

Comfort and its interactions

In this chapter we check for the existence of mutual interactions between thermal, visual
and olfactory sensations; more precisely whether the states of comfort and discomfort in
one of these aspects has implications for other aspects of comfort probability (as derived
in Sections 6.3 and 6.5). From these analyses we show that thermal and visual comfort
probabilities generally reach slightly lower values when their counterparts are rated un-
comfortable, while olfactory sensation does not display any noticeable e�ect.

B.1 Previous research
The interaction between thermal, visual and olfactory comfort has thus far been little
explored.

Leaman and Bordass [117] hypothesise that interactions between these di�erent aspects
of environmental comfort do exist. Labelled as �revenge e�ects� they cite the frustration
of occupants with interacting problems in buildings, which negatively impacts their assess-
ment of overall indoor environment quality. More speci�cally that under-performance in
one aspect of environmental comfort may negatively impact on others.

Among the rare examples of the use of experimental data to investigate this issue,
Roulet et al. [3, 4] observed either global acceptance or global rejection of indoor envi-
ronment quality based on thermal and visual satisfaction, with an impact on perceived
wellbeing. Unfortunately no concomitant measurements of key environmental variables
was rigorously performed to support these conclusions.

On the other hand, using a designed experiment where twenty subjects evaluated their
thermal and visual comfort at two di�erent temperatures (20.5◦C and 27◦C) for three light
source types at a constant 300 lux illuminance, Laurentin et al. [140] failed to observe any
in�uence of thermal conditions on visual comfort appraisal.

B.2 Observations
In the �rst instance we observe that the correlation between θin and Ein (the driving
variables for thermal and visual comfort) is low both in the overall dataset (ρ = 0.150,
Figure 2.6(b)) and in the questionnaire dataset (ρ = 0.043). There is thus no problematic
correlation between these driving variables that would undermine our study of the impacts
of environmental comfort in one domain over that of another.
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Figure B.1: Interactions between thermal, visual and olfactory sensations: �tted comfort
probabilities with standard errors (dashed lines) and observed proportions of comfortable
votes
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Impact on thermal comfort. Using the same method as in Section 6.3.2, we derive the
probabilities of thermal comfort with respect to visual (P (Sth = 0|θin, Svis)) and olfactory
sensation (P (Sth = 0|θin, Solf)). The obtained distributions are displayed in Figures B.1(a)-
B.1(b).

The �tted curves P (Sth = 0|θin, Svis) di�er slightly between di�erent visual comfort
conditions. It can be noticed that thermal comfort probability decreases more sharply
at low temperatures when occupants are visually uncomfortable, and that the maximum
reached by P (Sth = 0|θin, Svis) is lower when occupants are visually uncomfortable. In
other words, when we are visually comfortable, we are also more thermally comfortable,
but when it is too dark we prefer a higher temperature. On the other hand, there is no
sign that olfactory sensation in�uences thermal comfort.

To test the hypothesis of a signi�cant impact of Svis on thermal comfort, we attempted
to �t models for pcold and phot that include Svis as a multiple-level factor, but this latter
is not signi�cant according to the Wald test, likewise Solf .

Impact on visual comfort. Similarly, we infer visual comfort probabilities with respect
to thermal (P (Svis = 0|Ein, Sth)) and olfactory sensation (P (Svis = 0|Ein, Solf)), shown in
Figures B.1(c)-B.1(d). We again notice a small deviation in the case of uncomfortable
visual conditions with lower maximum comfort probability, so that visual comfort would
improve when occupants are thermally comfortable, while visual comfort probability re-
mains practically unchanged in the case of olfactory sensation. A formal �t of models for
pdark and pbright including Sth and Solf leads to the same conclusions as above.

Olfactory comfort. We do not display any probability of olfactory comfort and do not
study the impact of other comfort variables on this latter, as no associated environmental
variable could be measured during our survey. However, an approach similar as above
could be used in this case if some simultaneous measure of indoor air quality (eg. CO2

concentration) was available.

B.3 Discussion
Based on the analysis of our data, no clear evidence of interaction between thermal, visual
and olfactory sensation could be identi�ed. The only noticeable trend lies in the observation
that both visual and thermal comfort probabilities reach a smaller maximum when their
counterpart is estimated uncomfortable, although our data cannot provide strong statistical
evidence to rigorously support this observation. Nevertheless, further data � particularly
from less comfortable buildings � could con�rm such a trend, which may be considered as
an expression of the �revenge e�ect� observed by Leaman and Bordass [117].

Another interesting approach would be to also survey global indoor environment accep-
tance as performed by Wong et al. [177] and precisely assess the impact of each sensation
variable and ultimately examine the statistical signi�cance of their interactions on the
global outcome.
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Appendix C

Productivity of occupants

We made that cut by applying the rule that everything
and everybody must produce or get out.
Henry Ford (1863-1947), My Life and Work (1922) [178]

With the decline of agriculture and industry coupled with a rise in the services sector
in developed economies, a large part of the population performs their work indoors � a
trend reinforced by the development of computer-based work. The link between the indoor
environment and productivity at work is thus of increasing economical importance. We
investigate such relationships in this �nal annex.

In this we begin with a short review of previously published research on the link between
the indoor environment and productivity at work (Section C.1). Based on our measure-
ments and questionnaire, we present the associations found between perceived productivity
and surveyed environmental variables (Section C.2) and discuss the scope and the limita-
tions of these results (Section C.3).

C.1 Introduction
Motivation

Ensuring the conditions leading to highest productivity at work has longsince attracted
attention, not only in o�ce environments. The ideas of Henry Ford in the context of
industrial environments [178] are amongst the most famous historical examples.

In the o�ce environment, a relationship between indoor environment quality and pro-
ductivity has longsince been hypothesised. As pointed out by Kosonen and Tan [179, 180],
this is an issue of increasing interest since �the salaries of o�ce workers are many times
greater than the cost of operating a building in developed countries� and that �there is a
potential monetary gain due to improved workers' productivity�.

Previous research

Leaman and Bordass [117] performed a questionnaire similar1 to ours and observed the
positive impact on perceived productivity induced by a good degree of perceived personal

1The formulation was slightly di�erent: �Please estimate how you productivity at work is increased or
decreased by the environmental conditions in the building�.
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control (on heating, cooling, ventilation and noise) and a rapid environmental response
following from control actions.

Several studies concluded that excess temperatures decrease perceived [3, 4] and ob-
served productivity in the context of o�ce [181, 182, 183] and manual work [184]. Based on
these observations, Seppanen and Fisk [6] proposed a simple model formulated as a linear
productivity decrease of 2% per degree above 25◦C. There is less research available on the
e�ects of low temperatures; however Meese et al. [185] found that these cause a reduction
of the performance of manual tasks. Jensen et al. [186] also observed that providing good
thermal comfort in o�ce environments increases productivity.

Nicol et al. [187] surveyed perceived productivity in o�ces, in conjunction with a rel-
evant set of physical variables and thermal and visual sensation. In general, observed
associations between physical variables were not found to be signi�cant, except with illu-
minance (negative association). Some weak correlation between productivity and the use
of controls was found to be statistically signi�cant: the use of arti�cial light would have
a negative e�ect while open blinds would have a positive impact. On the other hand, the
�ndings of the �eld survey conducted in a factory by Juslén et al. [188] found the opposite
result that productivity increases with horizontal illuminance on the workplane.

The application of these �ndings in building design is straightforward with potentially
important implications. For instance, in their theoretical study Kosonen and Tan [179, 180]
use the previously observed link between environmental comfort and productivity to assess
its improvement for di�erent scenarios of building operation (eg. ventilation rate), based on
Fanger's predicted percentage of dissatis�ed with respect to thermal [106] and olfactory [73]
environment.

C.2 Results
Method

In order to detect the set of predictors impacting on productivity, we observe the variation
of this latter with respect to all measured variables. This includes all surveyed environmen-
tal variables (Table 2.1) but it is also of interest to examine the impact of daily aggregated
values of these latter, as occupants were asked to estimate their productivity at the scale
of the present day. For this purpose we will also check for the in�uence of mean, minimal
and maximal indoor temperatures during the day and the degree-hours over a threshold
value of 25◦C during the occupied period. Occupancy-related patterns are potentially of
interest, such as �rst arrival time, total presence duration, day of the week and month. We
also study the impact of mean and extreme reported thermal and visual sensation votes,
likewise occupants' clothing level.

To do this, we �t a linear model of self-reported productivity to all considered variables,
and analyse the association between them using the obtained R2 and the signi�cance of
this e�ect with the F test. The assessment of the scale of the e�ect and necessary graphical
checks complete the procedure.

In�uential variables

Table C.1 shows values of R2, F and the associated p-values for the �tted linear models
using the 545 entries for productivity in our database. We observe signi�cant variations
amongst months, and that several environmental variables are signi�cantly associated with
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Figure C.1: Perceived productivity versus a selection of signi�cant variables (the points of
the bottom charts have been jittered to break ties)
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Variable R2 F p-value Variable R2 F p-value
θout 0.024 9.241 0.003 Svis,mean 0.003 1.507 0.220
θout,dm 0.033 17.871 0.000 Svis,min 0.002 0.980 0.323
θout,rm 0.035 19.211 0.000 Svis,max 0.000 0.042 0.838
θout,wm 0.036 19.712 0.000 Sth,mean 0.005 2.292 0.131
θout,mm 0.027 14.536 0.000 Sth,min 0.000 0.038 0.845
θin 0.020 7.766 0.006 Sth,max 0.022 11.022 0.001
θin,mean 0.036 11.884 0.001 Icl,min 0.036 18.119 0.000
θin,max 0.016 5.283 0.022 Icl,max 0.024 12.079 0.001
θin,min 0.048 15.789 0.000 Icl,mean 0.032 16.393 0.000
DH > 25◦C 0.029 2.371 0.128 Tpres 0.005 1.523 0.218
Ein,mean 0.000 0.032 0.858 Weekday 0.004 0.467 0.760
First arr. 0.000 0.142 0.706 Month 0.078 3.940 0.000

Table C.1: Values for R2, F and p-value based on F test obtained from linear models for
productivity with each listed variable

a decrease in perceived productivity (θout and its averages, θin and its mean, minimum and
maximum and the daily maximum thermal sensation Sth,max) while Icl,mean, Icl,min and
Icl,max grow together with productivity; which suggests that we are more productive during
colder outside conditions as Icl and θout are inversely correlated (Section A.1). These trends
are visible in Figure C.1.

Variables linked with indoor temperature (θin,mean and θin,min) produce the highest
values of R2. These results indicate that the thermal history of the current day has the
heaviest impact on productivity: a daily mean indoor temperature of 20◦C would increase
productivity by 6% compared to 26◦C. The use of the daily minimum indoor temperature
θin,min results in a slightly higher quality of adjustment than θin,mean.

The addition of any individually signi�cant variable to θin,min or θin,mean in a model
with two parameters is not statistically signi�cant. We can conclude that the observed
association between productivity and variables such as θout, Icl,mean and Sth,max is due to
their own correlation with indoor thermal stimuli and that they do not display an intrinsic
e�ect. We did not �nd any signi�cant association with visual stimuli and sensation.

C.3 Discussion
We have isolated the clear adverse in�uence of a hot indoor environment on occupants'
perceived productivity as observed in previous studies. However, the surveyed indoor
conditions do not include uncomfortably cold indoor conditions, where a decrease in pro-
ductivity may be expected. It can thus be hypothesised that curvilinear relations, including
for instance polynomial terms (although these appear not to be signi�cant according to
our data), would better describe the association between productivity and temperature or
daily extreme comfort votes; but this would need con�rmation from further observations.

We point out that surveyed variations of perceived productivity might not fully re�ect
increases or decreases to actual performance. However, assuming coherent answers from
the surveyed subjects, we may assume that these latter are proportional.

A large number of other factors are likely to impact productivity, such as access to
environmental controls, but our survey did not address these issues. Non-environmental
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factors, such as management, motivation, o�ce size and occupancy density are possibly
more important, so that a large database including a wide range of building types would
be necessary to understand all the key mechanisms in�uencing o�ce productivity. We also
underline that the obtained e�ect is valid in the context of usual o�ce tasks and it is not
necessarily valid for other work activities.

Finally, we point out that we have merely found evidence for a signi�cant association,
but not attempted to provide a predictive model or any form of validation; the spread
being too large and the explained variance too small for such purposes.
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