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Abstract— A method to reduce peak electricity demand in
building climate control by using real-time electricity pricing
and applying model predictive control (MPC) is investigated. We
propose to use a newly developed time-varying, hourly-based
electricity tariff for end-consumers, that has been designed to
truly reflect marginal costs of electricity provision, based on
spot market prices as well as on electricity grid load levels,
which is directly incorporated into the MPC cost function.
Since this electricity tariff is only available for a limited time
window into the future we use least-squares support vector
machines for electricity tariff price forecasting and thus provide
the MPC controller with the necessary estimated time-varying
costs for the whole prediction horizon. In the given context, the
hourly pricing provides an economic incentive for a building
controller to react sensitively with respect to high spot market
electricity prices and high grid loading, respectively. Within the
proposed tariff regime, grid-friendly behaviour is rewarded. It
can be shown that peak electricity demand of buildings can be
significantly reduced. The here presented study is an example
for the successful implementation of demand response (DR) in
the field of building climate control.

I. INTRODUCTION

A. Electricity Demand in Buildings

The aim in building climate control for office buildings is
to keep the room’s temperature, illuminance and CO2 levels
within a given comfort range, and to do so with minimum
energy. In this work we assume that all consumed energy is
in the form of electricity, which makes sense especially for
the considered case, Switzerland, where in recent years heat
pumps have become very popular [17]. Intuitively, the goal
to minimize total electricity consumption seems to be well-
chosen. In practice, however, such an optimization strategy
can lead to remarkable peaks in electricity demand that can,
and in light of grid stability, should preferably be avoided.
Furthermore, electricity is consumed at times when, in the
context of liberalized electricity markets, it is most expensi-
ve. The evolution of electricity prices is, however, external
information that is not known to a conventional building
controller. Since the building envelope itself constitutes a
thermal storage, there inherently exists the possibility to shift
electricity demand from high price to low price times or from
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high loading to low loading times, respectively. The control-
ler should therefore be enabled to take advantage of demand
shifting. This is possible, if information on both electricity
spot prices and grid load levels can be incorporated directly
in building climate control. Please note, that time-series for
spot prices and grid loading levels should, fundamentally, be
well correlated over time. Electricity demand for a given hour
is strongly linked to grid load levels. And a high electricity
demand will act as a driver towards high spot market prices,
whereas low electricity demand has the opposite effect.
However, this correlation, based on the fundamental linking
of electricity demand and supply, does not hold if, for
example, speculation is driving the spot market price (see
also 3). Thus, using only the spot market price as tariff can
induce negative effects, i.e. increasing already existing peak
load levels in the electricity grid.

We therefore propose to use model predictive control
(MPC) and a time-varying tariff scheme that is based both
on spot market prices as well as on actual electricity grid
load levels. This proposed tariff truly reflects the marginal
costs of electricity provision for the end-user.

B. Model Predictive Control for Building Climate Control

MPC for building climate control has been investigated
in several works before [9], [10], [14], [15], mainly with
the goal of increasing the energy efficiency. Advantages of
MPC are reported as resulting from readily incorporating
time-varying constraints, e.g. varying the allowed room tem-
perature range depending on occupancy or non-occupancy,
from using weather predictions and occupancy predictions.
In [15] a stochastic MPC controller to deal with uncertainties
in weather predictions is proposed. In this paper we also use
weather and occupancy predictions, but they are assumed
to be perfect, i.e. the realization is equal to the prediction.
Instead, the focus is on the question how the proposed time-
varying tariff can be used for load shifting and the reduction
of peak demand. Clearly, being price-optimal comes at the
cost of not being energy-optimal. Thus, the question arises
how much additional energy is needed to achieve the load
shifting, i.e. how sensitive is the building to electricity prices.

C. Support Vector Regressor for Spot Price Forecasting

The knowledge of electricity price patterns based on what
happened on the electricity spot market and with electricity
grid load levels during previous days allows to improve the
performance of demand response (DR) initiatives. In essence
this means to help the customer in his decisions when and
how to change their energy demand in light of varying



electricity prices. Since the electricity tariff is only available
for a limited time window into the future we need to forecast
the hourly prices in order to provide the MPC controller with
the necessary estimated time-varying electricity costs for the
whole prediction horizon. The tariff time series is generally
non-stationary with an hourly sampling time; it exhibits high-
frequency fluctuations and peak shifting, also influenced by
calendar effects, i.e. weekends and holidays. Therefore it
is a relatively hard task to capture the dynamics of the
tariff time series and fit a model out of the given data set.
Several methodologies have been adopted for electricity price
forecasting: broadly exploited approaches are time series
models, such as Autoregressive Integrated Moving Average
(ARIMA) [2], Artificial Neural Network (ANN) [21] and
Support Vector Machine (SVM) [16]. In this paper we use the
Least-Square Support Vector Machines (LS-SVM) method to
forecast day-ahead electricity tariff prices based on past spot
market prices and grid load levels.

D. Notation

The real number set is denoted by R, the set of non-
negative integers by N (N+ := N\{0}), the set of consecutive
non-negative integers {j, . . . , k} by Nk

j .

II. PROBLEM SETUP

A. Building Model and Automation System

For our predictions we use a building model from [12],
[15], given as

xk+1 = Axk +Buk + ...

...+Bvvk +

m∑
i=1

[(Bvu,ivk +Bxu,ixk)uk,i]

yk = Cxk +Duk +Dvvk +

m∑
i=1

[(Dvu,ivk)ui],

(1)

where xk ∈ Rn is the state representing the room tempera-
ture and temperatures in the walls, floor and ceiling, uk ∈
Rm is the input, and vk ∈ Rp is the weather and internal
gains (people, equipment) at time step k, and the matrices
A,B,Bv, Bvu,i, and Bxu,i are of appropriate sizes, yk ∈ Rq

is the output and the matrices C,D,Dv , and Dvu,i are of
appropriate sizes. The numerical values for the considered
building example can be found in [12]. We consider a Swiss
average building, with heavy construction, a low window
area fraction facing south and high internal gains, which is a
common building type in Switzerland. The sampling time is
1 hour. The automation system has the following actuators
uk :=

[
uk,1 uk,2 uk,3 uk,4 uk,5

]T
:

uk,1 = blind positioning [−]
uk,2 = electrical lighting

[
W/m2

]
uk,3 = chiller

[
W/m2

]
uk,4 = cooling tower [−]
uk,5 = radiators

[
W/m2

]
.

(2)

The output yk :=
[
yk,1 yk,2 uk,3

]T
is given as

yk,1 = room temperature [◦C]

yk,2 = room illuminance [lux]

yk,3 = ceiling surface temperature [◦C].

(3)

We take into account the following disturbances vk :=[
vk,1 vk,2 vk,3 vk,4 vk,5

]T
:

vk,1 = solar radiation
[
W/m2

]
vk,2 = outside air temperature [◦C]

vk,3 = wetbulb temperature [◦C]

vk,4 = internal gains persons
[
W/m2

]
vk,5 = internal gains equipment

[
W/m2

]
.

(4)

The weather data are real weather measurements of Zurich
from 2007. The internal gains are average values taken from
Swiss building standards [20]. Since the actuators have a
different efficiency, we need to multiply the input vector u
with an appropriate scaling factor, which is given as:

ξ :=
[
0 3.32 0.976 7.47 1.107

]T
. (5)

The constraints on the control inputs are given as follows:

0 ≤ uk,1 ≤ 1

0 ≤ uk,2 ≤ 1000000

0 ≤ uk,3 ≤ 40.653

0 ≤ uk,4 ≤ 1

0 ≤ uk,5 ≤ 22.075.

(6)

The constraints on the output are defined as:

if occupied 21 ≤ yk,1 ≤ 26 else 5 ≤ yk,1 ≤ 40

if occupied 500 ≤ yk,2 else 0 ≤ yk,2
18 ≤ yk,3.

(7)

Remark 1: Please note that the upper limit for electrical
lightning uk,2 has been chosen only for numerical reasons.

With the above inequalities, all constraints and dynamics
of the MPC problem are defined. Next we describe the
proposed electricity tariff scheme, which will be needed
when formulating the MPC objective.

B. Real Time Pricing

A time-varying, hourly electricity tariff is proposed that
truly reflects marginal costs of electricity provision, based on
spot market prices, and electricity transmission and distribu-
tion grid loading, based on actual grid measurements. This is
a general benchmark for evaluating demand response effects
of price-responsive loads on the end-consumer side [22]. Our
example case is the city of Zurich, Switzerland, using time-
series of Swiss spot market prices from the European Energy
Exchange (EEX), a generic yet realistic electricity load curve
for Zurich and the existing tariff structure of Zurich’s public
electricity utility (ewz) for the year 2007 [3], [4]. All public
holidays have been neglected in the constructed time-series.



The construction of the proposed time-varying, hourly
end-consumer tariff is as follows:

1) Time-series of spot market prices and load curves are
used to calculate the average spot price and average
grid load level for the given time-period.

2) The relative weights of the individual cost components
of electricity consumption, e.g. α, β and γ, are cal-
culated using tariff data from ewz [4]. The avera-
ge electricity price for the constructed time-series is
ctariff

avg =CHF 0.1465 /kWh.
3) The construction of the spot/load-based tariff is then

accomplished using Eq. (8). (Index k corresponds to
any hour of a given time period for which a tariff price
vector is to be calculated). More details on the tariff
construction can be found in [22].

Definition 1: Let the hourly electricity tariff ctariff
k for time

step k be defined as

ctariff
k :=

 α · Spot price(k)
Spot priceavg

+ β · Load level(k)
Load levelavg

+ γ

 · ctariff
avg

with

∥∥∥∥∥∥
α := %Electricityavg

β := %Grid utilisationavg

γ := %City concessionavg

∥∥∥∥∥∥
, (8)

where ctariff
avg is the average tariff price. For the considered

case, α, β, and γ are 41.0%, 53.7%, and 5.4%, respectively.

Remark 2: By construction, Eq. (8) involves a normaliza-
tion, i.e. an electrical load which is constant throughout the
whole time period will incur the same costs with the time-
varying tariff scheme as if the constant average electricity
price would be applied.

The tariff construction is implemented here in a day-ahead
fashion: Next day’s EEX spot market prices are announced
shortly after noon on weekdays. An exact day-ahead variable
tariff price vector can then be constructed in line with the
announcements of day-ahead EEX spot prices. This leads to a
varying prediction horizon for the variable tariff’s day-ahead
prices of a 12 h minimum, just before the announcement of
the next day’s EEX spot prices, to a 36 h maximum, just after
the announcement. Since our MPC optimization approach
uses a 24h prediction horizon, the missing tariff prices of the
first 12 hours of the next day have to be estimated, which
we do via SVM, see Section III-B.

The proposed spot/load-based tariff scheme exhibits a
good correlation, measured via the coefficient of determinati-
on (R2), with both spot price and grid load time-series for the
whole year 2007 (R2 = 0.91 and R2 = 0.54, respectively).
In contrast, the direct correlation between spot price and
grid load is remarkably low (R2 = 0.25). An illustration
of the correlation is shown in Fig. 1. The spot/load-based
tariff is compared to the currently existing ewz day/night
tariff scheme, in which electricity prices during night time

(Mon.-Sat. 22h–6h, Sun. 0h–24h) are only about half that of
prices during day time (Mon.-Sat. 6h–22h) [4], see Table I.

Remark 3: When considering only the first three quarters of
2007, the correlation with the load time-series are actually
significantly higher: tariff–load R2 = 0.86 and spot–load
R2 = 0.54. This remarkable difference is due to significant
spot price peaks towards the end of 2007, shown in the inlay
of Fig. 1, which distort the otherwise very good correlation.

The results from the correlation analysis are a strong
indication that the spot/load-based tariff price signal acts as
a communication signal for price-responsive end-consumers,
truly relaying information on spot market price and grid
load levels. It provides the necessary price information and
economic incentive for end-consumers to react accordingly.
This creates an important feedback in the system, acting
against both peak grid loading and peak electricity demand,
as grid-friendly consumer behaviour is rewarded.

The spot/load-based tariff scheme allows to find a con-
sensus between the end-consumer’s individual goal of mini-
mising the cost for electricity and the superordinate goal of
reducing peak electricity demand and peak grid load levels.

Fig. 1. Evolution of spot prices, grid load and spot/load-based tariff.

Tariff scheme Spot time-series Load time-series
R2 = R2 =

Day/Night 0.13 (0.30) 0.63 (0.63)
Spot-based 1.00 (1.00) 0.25 (0.54)
Spot/Load-based 0.91 (0.88) 0.54 (0.86)

TABLE I
CORRELATION OF VARIABLE TARIFF SCHEMES WITH SPOT PRICE AND

GRID LOAD TIME-SERIES FOR THE YEAR 2007 (Q1-Q3 2007).

III. CONTROL DESIGN

A. MPC Formulation

For the initial state x0 the control objective is to minimize
a linear cost function

V (x0) :=

∞∑
k=0

ck · ξT · uk, (9)

where ck is the electricity price at time k.
The electricity tariff is in the focus of our investigation. We

will investigate four cases, the case when it is constant over



time (constant tariff), when we have two different prices for
day and night (day/night tariff), when it is time-varying but
perfectly predicted (variable-perfect) - which is an artificial
assumption, since we do not always have the 24h of the
control prediction available from this tariff - and when it
is time-varying and predicted via SVM methods (variable-
regression).

The building model in (1) is nonlinear; in this case
bilinear between inputs, states and weather parameters. Non-
linearities in the dynamic equations of an MPC problem
will generally result in a non-convex optimization problem.
The approach that we take here is a form of Sequential
Linear Programming (SLP) for solving nonlinear problems
in which we iteratively linearize the non-convex constraints
around the current solution, solve the optimization problem
and repeat until a convergence condition is met [7]. To keep
formulations simple, we will assume for the remainder of
the paper that we do the linearization at each hourly time
step k, which results in the new matrices Bu,k and Du,k and
formulate the problem for the linear system of the form

xk+1 = Axk +Bu,kuk +Bvvk

yk = Cxk +Du,kuk +Dvvk .
(10)

The polytopic constraints on the inputs and states as
defined in (6) and (7) can be written as

uk ∈ U , U := {uk ∈ Rm|Su ≤ s}
∧ yk ∈ Y, Y := {yk ∈ Rq|Gy ≤ g}.

(11)

Consider the prediction horizon N ∈ N+ and define

u :=
[
uT0 , . . . , u

T
N−1

]T ∈ RNm.

The optimal control input u over the prediction horizon N
is determined by solving MPC Problem 1.

Problem 1:

u∗(x0) := arg min
u

N∑
k=0

ck
T · ξT · uk

s.t. uk ∈ U
yk ∈ Y
xk+1 = Axk +Bu,kuk +Bvvk

yk = Cxk +Du,kuk +Dvvk

∀k ∈ NN−1
0

(12)

B. Support Vector Regression

Hourly pricing forecasting is a challenging task and a
crucial aspect in a competitive electricity market. SVM is a
powerful statistical method used for statistical classification
and regression analysis. Recently the SVM technique is
being successfully applied to find price patterns in the
energy market [6], [13], [19]. The training algorithm of
a SVM involves a quadratic optimization program, which
provides an unique solution and does not require the random
initialization of weights, as in ANN training. We apply Least-
Square Support Vector Machines (LS-SVM) for regression

(LS-SVR, Support Vector Regression) [16] to compute short-
term tariff forecasts. Given Ns samples of system input
patterns, Ei and the associated output values Si, where i
represents the sample, LS-SVR approximates the relationship
between the outputs and inputs using the following equation:

Definition 2:

Si =

Ns∑
i=1

wiφ(Ei) + bi , (13)

where φ(Ei) is a nonlinear mapping of the input data to a
higher-dimensional feature space, bi is the scalar threshold
and wi is the weight coefficient. Then the parameters wi

and bi are estimated solving a linear regression problem
in this feature space, which requires the assignment of the
kernel function K(Ei, Ej) = φ(Ei)

Tφ(Ej) and the tuning
of a predefined set of parameters. Then the SVR can avoid
under- and over- fitting by tuning the parameter set. We apply
formulas for parameter selection based on statistics research
which are provided in [1]. More information regarding SVMs
can be also obtained from the kernel machines web site [11].

C. Numerical Results for Short-Term Tariff Forecasting

We apply the LS-SVR method described above to compute
tariff forecasts. The hourly spot market prices and grid
loading levels for Zurich 2007 are considered for the training
of the LS-SVR. Then the training data set is defined as
follows: at each hour, the input patterns are based on the
spot market prices, the load level data and the electricity
tariffs 4 months back into the past, and the corresponding
outputs are the electricity tariff one hour ahead. To improve
the training accuracy and prevent over-fitting and under-
fitting, we applied statistical analysis of studentized residuals
to remove the outliers [5]. Then the nonlinear regressor is
trained and used to predict the hourly electricity prices for
the next day. Figure 2 shows forecasted and actual hourly
electricity prices of the first three weeks of July 2007.
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Fig. 2. Hourly electricity tariff forecasts for Zurich, 1-22 July 2007.

The value of the coefficient of determination R2 for the
three weeks presented is 0.94, proving the goodness of fit.

All the numerical results presented in this subsection
are obtained by Matlab’s SVM (Support Vector Machine)



toolbox, a LS-SVM training and simulation environment
written in C-code [18].

IV. ANALYSIS
A. Qualitative Differences

A qualitative graphical depiction of the electricity con-
sumption for the considered office room is given in Fig. 3.
The time frame is the third week of December 2007. The
evolution of room temperature for three different cases is
presented: MPC optimization using a constant electricity ta-
riff and MPC optimization using the variable tariff assuming
either perfect information or using the regression estimation.
In all cases, the a priori defined room temperature constraints
are respected. However, significantly differing temperature
patterns appear during night time: the variable tariff regime
leads to a pre-heating of the office room during the early
morning hours, when electricity prices are lowest. There exist
slight differences between the cases of perfect information
and estimation of tariff prices. When the MPC setup uses
tariff estimations, the pre-heating during nighttime occurs 1-
2 hours earlier and is on some mornings sub-optimal.
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Fig. 3. Reducing peak electricity demand by shifting radiator usage in
winter time.

The shift of electricity demand is accomplished mostly
by a partial shift of radiator usage from day time to night
time. This shift can only be partial as the temperature
constraints need to be respected. The MPC optimizer clearly
takes advantage of the office room’s thermal inertia for
its optimization. The demand of other appliances, such as
lighting can mostly not be shifted in time. Some variations
and an overall slight reduction in the office lighting’s peak
usage are noticeable nevertheless. This is accomplished by
the control of the window blinds that adds an additional albeit
small degree of freedom for the lighting.

B. Quantitative Differences

A quantitative analysis of the electricity consumption
over the whole year 2007 for altogether 16 different room
configurations [8] (Building insulation level: Swiss average
/ passive house, construction type: heavy / light, window
area fraction: high / low, internal gains level: high / low)
indeed shows interesting results, Fig. 4. First of all, a
noticeable reduction in overall peak electricity demand as
compared to the constant tariff: The daily maximum peak

electricity demand, i.e the highest load event per day, is
on average reduced by 7.9% (day/night tariff), by 5.2%
(variable tariff – perfect information) and by 6.1% (variable
tariff – regression). These aggregated consumption figures,
however, are obscured by two facts: First, only a fraction of
total electricity consumption can be shifted in time. Demand
such as lighting is only barely shiftable, whereas thermal
loads (chillers, cooling tower, radiator) are well shiftable
in time. Second, the peak demand of the rooms should
be compared with the given load curve for Zurich since
only peak consumption occurring when grid load levels are
already high is critical. When comparing directly the peak
demand of the different rooms’ thermal appliances with the
given load curve, the peak shifting is remarkable: The ther-
mal appliances daily maximum peak demand is on average
reduced by 31.5% (day/night tariff), by 38.9% (variable
tariff – perfect information) and by 39.0% (variable tariff
– regression). Total electricity consumption stays the same
for all Swiss average buildings and is marginally reduced
for all passive houses, by −1%, when using an MPC setup
with any of the given variable electricity tariffs. A rather
unexpected result occurred when looking at electricity costs:
Total costs for the whole year were significantly lower when
using a constant tariff that simply charges the average cost of
the variable tariff (CHF 0.1465/kWh). When using and op-
timizing over the variable tariffs, costs are 11.6% (day/night
tariff) and 26.3% (variable tariff – perfect/regression) higher.
At first this result comes as a surprise. However, only a
part of the office room’s electric consumption can be shifted
in time. Lighting can almost not be shifted and occurs
when the office is by definition occupied, i.e. during the
expensive day time. By construction (see Remark 2) the
prices during the day are much higher than with the constant
tariff. So if a significant amount of the load cannot be
shifted to less expensive times, then the electricity costs
will increase. When looking at the costs incurred by the
given thermal appliances, significant cost reductions can
be seen: On average 15% (day/night tariff) and 7 − 9%
(variable tariff – perfect/regression) lower. Depending on
building type, differing trends can be seen: Swiss average
buildings see increasing costs: by 0.3% (day/night tariff)
and by 12.2 − 14.1% (variable tariff – perfect/regression).
This is due to the specifically high cooling/heating demand
of such buildings and comparatively low thermal inertia. In
contrast, the costs for passive houses decline steeply: by
29.5% (day/night tariff) and by 28.4−31.2% (variable tariff
– perfect/regression). This economic disadvantage for Swiss
average houses could however be addressed by a scaling
of the proposed tariff structure, such that e.g. an average
household would under a variable tariff scheme pay the same
as before, but would have the opportunity to pay considerably
less if he behaves price-responsive. This way, an economic
incentive would be created to use building-control schemes
and behave grid-friendly. Additionally, it is expected that
the positive effect on the peak demand reduction that was
observed can be further exploited by considering buildings
with more storage devices (e.g. a hot water boiler which can



be heated during night) as well as systems with thermally
activated building systems (the concrete is heated/cooled by
a liquid in the slabs, which has long time constants. This
is expected to enable further load shifting and consequently
also result in lower electricity consumption costs.
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Fig. 4. Relative Peak Demand Reduction for different Room Setups.

V. CONCLUSIONS

This study shows that peak electricity demand in building
climate control relative to a given reference load curve can
effectively be reduced by incorporating an appropriately de-
signed variable electricity tariff directly into the cost function
of an MPC setup. This load shifting effort for thermal loads
comes at the cost of higher electricity consumption. Overall
electricity costs are however clearly increased for the given
16 test cases, as thermal loads here do not represent the
majority of electricity consumption. Electricity costs only for
the thermal loads, fall steeply for passive houses and increase
slightly for Swiss average houses.

The proposed scheme is well suited to reach the goal of
load shifting and decreasing of peak electricity demand with
respect to a given load profile. The scaling of the tariff needs
however to be tuned, such that an average household is not
paying more than before; plus an economic incentive is given
for adhering to such demand response (DR) schemes.
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