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I have no data yet. It is a capital mistake to theorise before
one has data. Insensibly one begins to twist facts to suit

theories, instead of theories to suit facts.
—Sherlock Holmes

Anyone generating random numbers by deterministic means
is, of course, living in a state of sin.

—John von Neumann
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Abstract

Various factors play a part in the energy consumption of a building : its physical
properties, the equipment installed for its functioning (the heating, ventilation and
air-conditioning system, auxiliary production of electricity or hot water), the outdoor
environment and the behaviour of its occupants. While software tool designers have
made great progress in the simulation of the first three factors, for the latter they
have generally relied on fixed profiles of typical occupant presence and associated
implications of their presence. As a result the randomness linked to occupants,
i.e. the differences in behaviour between occupants and the variation in time of
each behaviour, plays an ever more important role in the discrepancy between the
simulated and real performances of buildings. This is most relevant in estimating
the peak demand of energy (for heating, cooling, electrical appliances, etc.) which
in turn influences the choice of technology and the size of the equipment installed
to service the building.

To fill this gap we have developed a family of stochastic models able to simulate
the presence of occupants and their interactions with the building and the equipment
present. A central model of occupant presence, based on an inhomogeneous Markov
chain, produces a time series of the number of occupants within a predefined zone of a
building. Given a weekly profile of the probability of presence, simplified parameters
relating to the periods of long absence and the mobility of the person to be simulated,
it has proven itself capable of reproducing that person’s patterns of occupancy (times
of first arrival, of last departure and periods of intermediate absence and presence)
to a good degree of accuracy. Its output is used as an input for models for the
simulation of the behaviour of occupants regarding the use of appliances in general,
the use of lighting devices, the opening of windows and the production of waste. The
appliance model adopts a detailed bottom-up approach, simulating each appliance
with a black-box algorithm based on the probability of switching it on and the
distribution of the duration and power of its use, whereas the interaction of the
occupant with windows is determined by randomly changing environmental stimuli
and the related thresholds of comfort randomly selected for each occupant. When
integrated within a building simulation tool, these stochastic models will provide
realistic profiles of the electricity and water consumed, the wastewater and solid
waste produced and the heat emitted or rejected, both directly or indirectly by the
occupant.
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Version abbrégée

Divers facteurs jouent un rôle dans la consommation d’énergie d’un bâtiment: ces
propriétés physiques, les équipements installés pour son fonctionnement (systèmes
pour le chauffage, la ventilation et l’air-conditionné, la production auxiliaire d’électri-
cité ou d’eau chaude), le climat extérieur et le comportement de ses occupants. Alors
que de grands progrès on été effectués dans la simulation des trois premiers facteurs,
l’on a jusqu’à aujourd’hui compté sur l’utilisation de profils fixes pour représenter la
présence de l’occupant et les implications de cette présence. Il en résulte que l’aspect
aléatoire lié aux occupants, c’est-à-dire la variété dans les différents comportements
d’occupants ainsi que la variation de ces comportements avec le temps, joue un rôle
de plus en plus prépondérant dans l’écart observé entre les performances simulées
et celles mesurées d’un même bâtiment, notamment dans l’estimation des pointes
de demande en énergie (pour le chauffage et l’air-conditionné, pour les appareils
électriques). Cette dernière propriété joue un rôle essentiel dans le choix d’une tech-
nologie et le dimensionnement des équipements à installer pour répondre à cette
demande.

Afin de répondre à ce manque nous avons développé une famille de modèles
stochastiques capables de simuler la présence d’occupants ainsi que leurs interac-
tions avec le bâtiment. Au centre de cette famille, le modèle de présence, basé
sur une châıne de Markov inhomogène, produit une série temporelle du nombre
d’occupants présents au sein d’une zone prédéfinie du bâtiment. Une fois les inputs
correspondant à l’occupant à simuler donnés (profil hebdomadaire de probabilité de
présence, paramètres simplifiés sur les périodes d’absence prolongée et “paramètre
de mobilité”) le modèle s’est montré capable de reproduire des schémas de présence
dont les divers aspects (temps de première arrivée et de dernier départ ainsi que
les périodes intermédiaires de présence et d’absence) sont en bon accord avec la
réalité. Son output sert d’input aux modèles de comportement de l’occupant vis-
à-vis de l’utilisation générale d’appareils, de l’utilisation du système d’éclairage, de
l’ouverture de fenêtres et de la production de déchets. Le modèle des appareils
adopte une approche détaillée dans laquelle chaque appareil est simulé selon une
méthode de “bôıte noire” qui utilise la probabilité d’enclenchement et les distribu-
tions de la durée et de la puissance de son utilisation. L’interaction de l’occupant
avec les fenêtres est, quant à elle, déterminée par des stimuli (température intérieure
et concentration de polluants) changeant aléatoirement avec le temps ainsi que le
seuil de tolérance de l’occupant face à ces stimuli, fixé aléatoirement.

Une fois intégrés dans un logiciel de simulation du bâtiment ces modèles stochas-
tiques seront capables de générer des profils réalistes de la consommation d’eau et
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d’électricité, de la production de déchets solides et liquides ainsi que de la chaleur
émise ou rejetée, directement ou indirectement par l’occupant.

Mots clés

Simulation, processus stochastiques, châınes de Markov, méthode de la fonction
inverse, présence de l’occupant, comportement de l’occupant, utilisation d’appareils,
ouverture de fenêtres.



Contents

Acknowledgements iii

Abstract v

Version abbrégée vii

1 Introduction 3

2 Context of research 7
2.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Stochastic models . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Simulation of occupant presence and behaviour . . . . . . . . 8
2.1.3 Integration of occupant models . . . . . . . . . . . . . . . . . 19

2.2 Family of stochastic models integrated into SUNtool . . . . . . . . . 20
2.2.1 SUNtool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Stochastic models of occupant presence and behaviour . . . . 24

3 Occupant presence 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Treating data for calibration . . . . . . . . . . . . . . . . . . 40
3.3.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Possibilities of improvement . . . . . . . . . . . . . . . . . . . 56

4 Appliance Use 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1



2 CONTENTS

4.1.2 State of art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Model development . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Data collection and treatment . . . . . . . . . . . . . . . . . . 66

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Validation method . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2 Validation of office buildings . . . . . . . . . . . . . . . . . . 73
4.3.3 Validation of residential buildings . . . . . . . . . . . . . . . . 88

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Window opening and waste production 91
5.1 Stochastic model of window opening . . . . . . . . . . . . . . . . . . 91

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1.2 Driving variables . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.1.3 Indoor pollution . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.1.4 Occupants’ thermal comfort . . . . . . . . . . . . . . . . . . . 94
5.1.5 Sub-hourly thermal solver . . . . . . . . . . . . . . . . . . . . 96
5.1.6 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Model of solid waste . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.2 Description of the model . . . . . . . . . . . . . . . . . . . . . 100
5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Discussion 103

A The inverse function method 109

B Simulating residential appliance use. 113



Chapter 1

Introduction

Nowhere is the implementation of “sustainability” more potent and more
beneficial than in the city. In fact the benefits to be derived from this ap-
proach are potentially so great that environmental sustainability should
become the guiding principle of modern urban design. (Richard Rogers
in “Cities for a small planet” [1])

For the first time in history, one out of two human beings lives in a city. The cur-
rent urban population is equivalent to the world’s total population of the nineteen-
sixties and it is still growing at a rate of a quarter of a million people per day (i.e.
the population of Switzerland per month!). As cities grow their health and sur-
vival depends more and more on their interaction with their immediate and not-so-
immediate environment. Like most organisms, they breathe-in resources necessary
for their maintenance and the activities that take place within them and reject wastes
of different natures (heat, gases, water, solids, organic and non-organic wastes); un-
like most organisms the waste they produce is of little use to other organisms and,
combined with the cities’ growing thirst for resources, is often a threat to their sur-
vival. For a city to reduce its burden on the environment it needs to produce on-site
the resources it requires (in part or in total), make better use of those still needed
to be imported and filter the wastes it exports. Local production of electrical power
(by the use of photovoltaic panels, combined-heat-and-power (CHP) plants, small
hydro-electric plants and wind turbines), of heat and cold (utilising district heating
and cooling, the use of heat-pumps, solar heating and cooling and CHP) and the
recycling of wastes (producing water from wastewater, bio-fuels and heat from solid
wastes) can be achieved using local urban resource management centres. This in
turn reduces the inconveniences and losses due to transport of energy resources and
increases the autonomy of the city. The technological solutions for building cities
along these lines exist; the challenges needed to be met for implementing them are
a matter of financial cost, political will and intelligent design.

Within this context, an urban neighbourhood designed to minimise its needs in
resources, make the best of those locally available, optimise the efficiency of the
plants producing them by predicting demand as closely possible, and recycle part
of its own wastes can be synonymous with lower costs and a reduced impact on
the environment. The master-planning of such sustainable urban neighbourhoods
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4 CHAPTER 1. INTRODUCTION

requires the possibility to simulate and optimise the set of resource flows. To meet
this challenge, building physicists are now applying their know-how to the field of
urban simulation, developing tools to support decision making during the process of
planning and designing urban neighbourhoods. With tools for simulating individual
buildings having already proven their reliability, the current challenge to achieving
this goal is the development of tools for the modelling of the urban environment
(micro-climate, heat island effect, radiation and shading), the networking of plants
for urban resource management and the stochastic nature of demand to be met
by those plants. These aspects have been integrated into “SUNtool” (Sustainable
U rban N eighbourhood modelling tool), a simulation tool recently developed for the
modelling and optimisation of urban resource flows.

At the scale of a neighbourhood, occupant presence and behaviour contribute
fundamentally to the stochastic nature of its demand in resources. This thesis
presents a set of stochastic models developed to account for occupant presence and
behaviour and the resulting impacts on the consumption of resources and production
of waste of an urban neighbourhood. The effect of occupant behaviour is considered
to be the result of different means of interaction, for each of which a specific model
has been developed which takes the predicted presence of occupants as an input.

The reader will discover in chapter 2 a summary of the methods commonly used
today within building simulation tools to account for the impact of occupants on
the buildings’ flows of resources (heat and cold, electricity, water and waste). We
proceed by reviewing the state-of-art in stochastic models which have been developed
to simulate the random nature of occupant behaviour regarding her/his presence,
the use of electrical appliances, the use of lighting appliances and blinds and the
opening of windows. Chapter 2 also includes an overview of SUNtool and of the
set of stochastic models that were needed within SUNtool (and which are presented
within this thesis) and an explanation of how these were integrated within the urban
neighbourhood simulation tool.

Being present is a necessary condition for an occupant to interact with her/his
indoor environment; the presence of each occupant within the zone (s)he occupies
is simulated by the model of “occupant presence” and then parsed as an input to
all models of occupant behaviour. Chapter 3 describes the founding hypotheses,
functioning, results and validation of this core model.

Once an occupant is present within a building her/his impact on resource flows
will mainly arise from the use of appliances and her/his interaction with windows.
Chapter 4 explains the various implications of appliance use for the resource con-
sumption of a building. It justifies our adoption of a bottom-up approach, explains
the different steps in the simulation of a group of appliances, exposes the method
used to validate the model and discusses its results. The behavioural model of win-
dow opening is detailed in chapter 5. We explain the use of indoor temperature and
pollutant concentration as stimuli for occupant interaction with windows and how
the exchange of air and change in temperature is determined depending on their
state. A simple model for the production of solid waste is also briefly described in
chapter 5.

Finally, in the last chapter we present a summary of the research needs for the
stochastic modelling of human behaviour and how the work presented in this thesis
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has contributed to these needs. Owing to the considerable complexity of humans
behaviour, there is still more efforts to be made; we therefore conclude this chapter
by suggesting ways in which the work in this thesis could be further developed and
by identifying research needs that have yet to be tackled.
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Chapter 2

Context of research

Building simulation tools have reached a critical point in their development. On one
hand the precision with which they can now describe the physical behaviour of a
building is such that the effect of occupant behaviour on the building has become,
with urban micro-climate, one of the main sources of discrepancy between simulated
and measured results. On the other hand modern computers now make it possible
to calculate simultaneously the behaviour of several buildings within a reasonably
short time. This opens the door to the dynamic simulation of whole neighbourhoods,
a scale at which it makes sense to produce locally (in whole or part) the resources
consumed on site (typically energy in the forms of heat, cold and electricity, but also
water, fuels and recycled materials). Indeed as the number of buildings constituting
a neighbourhood increases its aggregated demand profiles in resources smoothen out.
It therefore becomes feasible to meet the local demand efficiently by means of local
production.

Both these aspects call for the better modelling of occupant behaviour to deduce
its impact on a building’s HVAC (Heating, Ventilation and Air-Conditioning) system
and to reliably simulate the consumption of resources (and production of waste
for recycling) which are directly dependent on occupants. To strive towards this
objective implies replacing the fixed profiles and generalized averages that have
been used so far to characterize occupants with models capable of embracing the
variety of behaviours occupants adopt as well as the variation of these behaviours
over time. The models needed to meet this challenge should be stochastic.

2.1 State of the art

2.1.1 Stochastic models

Definition of a stochastic process

A variable that evolves with time in such a way that the values it takes on cannot be
determined at each time step but only given a probability of appearing is a stochastic
process. One could say that the variable “evolves randomly with time”. This could
be the time elapsed between successive arrivals of a bus, the population each year of
an animal species, the value of a bond on the stock-market at the end of each day,

7
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or each second. In general one is interested in determining what laws of probability
or statistical properties lie behind the process. These are usually guessed, based on
the analysis of data at the researcher’s disposal (typically measured time series) and
then tested against data (preferably other than the data used to design the model).

Different families of models are available for different types of stochastic process.
The choice of a stochastic model will mainly depend on the characteristics of the
variable to be simulated. In the following chapters we shall describe the models
and methods we have used (mainly Markov chains and the inverse function method)
within our research. For more mathematical background on the subject and a de-
scription of stochastic models not covered within this report we direct the reader to
[2] for an introduction to probability theory, stochastic processes and Markov chains;
to [3] for a general introduction to statistics and a short introduction to time series
analysis; to [4] for further information on time series analysis and ARIMA (Auto-
Regressive Integrated Moving Average) models; to [5] for a detailed discussion of
statistical models and of Markov chains in particular.

“White-box” models vs “black-box” models

When trying to model the evolution in time of a stochastic process one can try
to understand the principals that lie behind this evolution with various degrees of
depth. A “black-box” model will be the result of the analysis of the statistical and
stochastic properties of the time series generated by the object to be modeled. It
will restrict itself to reproducing these properties in the most reliable way without
trying to understand the causes for the time series’ values or their relation with other
variables. Such a model is usually adopted because the information to determine
such dependencies is not available. A “white-box” model will bring to light the
dependence of the process it is modelling on other variables. In particular it will
attempt to describe the causes for an event, the stimuli this reactionary event and
the (possibly deterministic) laws of evolution of this relationship. The process might
remain stochastic but its randomness will be boiled down to its dependence on those
variables that are themselves random variables.

Both approaches may be reliable, but in general the more we know about a
variable the better it can be modeled and the easier it can be adapted to even-
tual changes. Following from this rationale we have elected to use “white-box”
behavioural models whenever possible.

2.1.2 Simulation of occupant presence and behaviour

The influence of occupants on the buildings they occupy can be broken down into
several means of interaction (as discussed by [6] and shown in figure 2.1), each of
which can be represented by a stochastic model. Being present within the building
is clearly a necessary condition for being able to interact with it; occupant presence
will therefore be a fundamental input to all other models of occupant behaviour. As
each human being emits heat and “pollutants” (such as water vapor, carbon dioxide,
odours, etc.), her/his presence alone already modifies the indoor environment. To
this can be added occupants’ interactions related to the tasks they perform: in an
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Figure 2.1: Different means of impact of occupants’ presence and behaviour on a
building’s need in resources for ensuring occupant comfort and the pursuit of their
activities.

office building occupants may use diverse electrical appliances as well as lighting
appliances tending to internal heat gains and the consumption of electricity; in
residential buildings, household appliances can consume water (hot and cold) as well
as electricity. In parallel to consumption, occupants produce waste, both solid and
liquid. All these effects resulting from occupant behaviour play an important part
in determining a single building’s needs for cooling, heating and ventilation, as well
as the electricity and water consumed and solid waste and wastewater produced
within it. If we are interested in covering a part or the whole of the resources
consumed within a neighbourhood we will need to estimate the variation in time and
in scale (number of buildings) of this consumption for the optimal sizing, control
and networking of plants and associated storage capacities. Finally occupants also
interact with a building to enhance their personal comfort; for this they might use
windows to improve their thermal and olfactory comfort or adjust lighting systems
or blinds to optimize their visual comfort; these interactions will in turn affect the
building’s HVAC system and related energy consumption. Simulating occupant
behaviour will help in assessing the efficiency of methods aiming at reducing energy
consumption (such as natural ventilation or daylighting) while ensuring, or even
enhancing, occupant comfort.

Researchers have recently come up with innovative ways of integrating this ran-
domness, often adapted to specific fields of simulation such as models of ventilation,
appliance use and lighting use. In the following paragraphs we give a general picture
of the evolution of these methods and describe in detail the latest of these known
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to us to date. Let us first start with the typical way occupants are considered by
building simulation tools.

Use of standard profiles and diversity factors

Currently the most common means used to consider occupant presence and be-
haviour within simulation tools is the so-called “diversity profile”. This is used in
order to estimate the impact of internal heat gains (from people, office equipment
and lighting) on energy and cooling load calculations of a single building. The
profiles depend on the type of building (typical categories being “residential” and
“commercial”) and sometimes on the type of occupants (size and composition of a
household for example). Weekdays and weekends1 are usually handled differently,
especially in the case of commercial buildings. A daily profile (either for a weekday
or a weekend) is composed of 24 hourly values between 0 and 1, each corresponding
to a fraction of the maximum peak value. The weekday and weekend profiles and the
peak are related to a particular type of heat gain (metabolic heat gain, receptacle
load, lighting load); they may be based on data collected from a large amount of
monitored buildings (as in [7]) or simply on common sense or national guidelines (as
in [8]). Alternatively the user of the simulation tool can also enter profiles that (s)he
deems appropriate for the building in question. An annual load profile for each type
of heat gain is constructed by repeating the weekday and weekend daily profiles and
multiplying them by the peak. To add greater variety to these profiles Abushakra
et al. [7] have proposed not only to make available the average diversity profile but
also those of the 10th, 25th, 75th and 90th percentiles: while they suggest the use
of the average profile to determine the internal heat gains, they propose to use the
90th percentile for the sizing of the building’s cooling system.

Models of occupant presence

The use of a lighting appliance, and the corresponding implications for electrical
energy use, is obviously linked to the presence of its user. It is therefore of little
surprise that researchers developing lighting models have been the most eager to ac-
count for the randomness of occupant presence in the most efficient way. Hunt was
the first to emphasize the importance of occupant interaction with lighting appli-
ances [9]. Later on Newsham [10] and Reinhart [11] introduced a simple stochastic
model of occupant presence in their work on the Lightswitch model. They were
interested in reproducing more realistic times of arrival and departure of occupants
to and from their offices and modified standard profiles to this end. Their simulated
occupancy profile corresponds to working hours from 8:00 to 18:00 with a one hour
lunch break at noon and two 15-minute coffee breaks in the morning at 10:00 and
in the afternoon at 15:00 (that the occupant takes with a 50% probability). To this
they added the following:

“All arrivals in the morning, departures in the evening and breaks are
randomly scheduled in a time interval of ± 15 minutes around their
official starting time to add realism to the model.” [11]

1Holidays are often considered as weekends.
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This enables them to replace the unrealistic peaks that would appear if every oc-
cupant arrived at exactly the same time by a more natural spread around a fixed
average.

A truly stochastic model for the simulation of occupant presence was proposed
by Wang et al. in [12]. She examined the statistical properties of occupancy in single
person offices. Based on her observations she made the hypothesis that the duration
of periods of intermediate presence and absence (i.e. taking place between the first
arrival of the occupant to the office and her/his last departure from the office) are
distributed exponentially and that the coefficient of the exponential distribution
for a single office could be treated as a constant over the day. Her hypothesis was
confirmed in the case of absence but not in that of presence. To generate a simulated
pattern of presence in an office she estimated the two supposedly constant coefficients
of the exponential distributions and generated a sequence of alternating periods of
presence and absence. In addition she generated the first arrival to the office, the
last departure from the office and a lunchtime break based on the assumption that
these are distributed normally as Reinhart had done before her. The combination
of the created profiles gave her a simulated time series of presence that would vary
from day to day.

The latest model of occupant presence was proposed by Yamaguchi et al. [13]
in the development of a district energy system simulation model. Their aim was
to simulate the “working states” (that they defined as using 1 PC, using 2 PCs,
not using a PC and being out) of each occupant of a group of commercial buildings
in order to derive the heat and electrical load generated from the use of energy
consuming appliances. These stochastic loads combined with those resulting from
non-occupant related appliances of the buildings2 determine the electricity, heating
and cooling loads to be met by a suitable energy supply system. Their model is
similar to that of Wang in that it supposes that the duration an occupant will spend
in a working state is independent of time (in Wang’s model this corresponds to the
coefficients of the two exponential distributions). However it replaces the sequence of
Poisson processes of periods of absence and presence by a mathematically equivalent
(but computationally better suited) Markov chain of working states. The transition
probabilities of the Markov matrix are determined based on inputs to the model
and the working state of the occupant can then be selected every 5 minutes by using
the inverse function method (IFM)3. Moreover the times of arrival, lunch break
and departure are now selected using empirical distributions rather than a normal
distribution centered around fixed values.

Models of occupant behaviour - appliance use

Our interest in modelling the use of electrical appliances by occupants is twofold.
We want to integrate correctly the resulting heat gains into the thermal solver used
to predict the thermal comfort of the building’s occupants, and the energy needed

2The loads resulting from the use of lighting and appliances used by groups of occupants are
calculated based on fixed schedules.

3 See appendix A for details on the functioning of the inverse function and Monte Carlo methods,
as well as what we understand by “to select”.
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to maintain adequate comfort levels. We are also interested in covering, either
partly or totally, the electricity consumed within the simulated neighbourhood using
decentralised on-site power production plants. The load profile of a single building
presents a strongly fluctuating demand that is hard to be efficiently met by an
integrated power plant (such as photovoltaic panels or small-scale combined heat and
power plants). Aggregating the demand of a number of buildings tends to create an
energy demand profile considerably smoother than its component parts (e.g. from
individual buildings). This is particularly relevant at the neighbourhood scale and
enables one to improve the quality with which energy demand and supply from
on-site production (e.g. using renewable energy technologies - RETs) are matched,
so reducing local storage needs (or energy sold to the grid) and improving their
economic viability. It is therefore important to develop models capable of simulating
the diversity of individual load profiles and their variation over time in order to make
reliable predictions of the aggregated load at each time step and in particular of its
peak values (for sizing purposes).

Models developed to tackle this problem4 either consider the unit load profile as
a whole (this would be a black-box approach) or split it into its constituent load pro-
files, generated by the appliances that populate the unit zone (white-box approach).
To exemplify this we present in the next paragraphs detailed explanations of two
state-of-the-art models of load prediction.

The first is a black-box model developed by McQueen [18] to forecast the max-
imum demand of a low-voltage distribution network (the lowest level of voltage of
the grid before its connection to a building) - this corresponds to a neighbourhood
of approximately 100 houses. The measured consumption of each house is sepa-
rated into a daily total energy consumption component and its hourly variation over
the day. McQueen makes the hypothesis that the values of the total consumption
over a day and over each of its hourly components (once normalised) can each be
fitted by a gamma distribution. A first normalisation is used to remove the depen-
dence in temperature of daily electricity consumption; this is later re-normalised to
produce predictions which are sensitive to the temperature of the day(s) for which
predictions are forecasted. McQueen assumes that all houses exhibit the same linear
temperature dependence f(T ) justified by the data set. A temperature corrected
daily energy use E′

ij (of house i on day j) is proposed:

E′
ij =

f(T0)
f(Tj)

Eij (2.1)

with T0 (the reference temperature) and Tj (the temperature of day j) measured at
3pm. The set of corrected values E′

ij is fitted with a gamma distribution γ1(μ1, σ1)
of mean μ1 and standard deviation σ1. The variability at each time step of the load
profile is then determined by a set of gamma distributions γk(μk, σk) for each time
interval k of a day whose parameters μk and σk are deduced by fitting the normalised
measurements of hourly consumption Lijk

Lijk =
Pijk

Eij
(2.2)

4A sample of different approaches can be found in [13], [14], [15], [16],[17].
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Pijk being the energy consumed over the hourly time step k of house i during day
j (and therefore Eij =

∑
Pijk). To simulate the consumption of a set of Nh houses

during Nt days McQueen uses the Monte Carlo method (see footnote 3) by applying
the following procedure Nh × Nt times:

1. select (with the IFM) a value for E′
ij from the gamma distribution γ1(μ1, σ1)

2. mutliply it by f(Tj)
f(T0) (Tj being the temperature at 3pm of the day being simu-

lated) to obtain the temperature dependent Eij

3. select for each time step k a value for Lijk from the appropriate gamma dis-
tribution γk(μk, σk)

4. mutliply this value by Eij to obtain the demand load Pijk of time step k.

By adopting a black box model McQueen is not interested in understanding what
generates the variety of consumption but simply wants to know what mathematical
models can approximate the observed distributions. This approach is quick and
efficient, requiring low resolution data in meeting its objective, but by bypassing the
sources of consumption this model cannot adapt to changes related to those sources
(changes in occupant behaviour, in installed power or simply the changes in power
at use from one generation of an appliance to the next). It is simply a forecasting
method calibrated to a particular set of buildings of unchanging characteristics. For
a model without such constraints one would have to adopt a white-box approach
that can split the end use of electricity consumption into that of different appliances,
a so-called “bottom-up” approach. This was adopted by Paatero for his model [19].5

Its main characteristic is that it simulates each appliance individually, then adds
the hourly power load of each appliance of a house to form its total load profile
and finally adds the load profiles of all houses to form that of the neighbourhood
considered.

First the amount of appliances of each type installed in each house is fixed by
applying the IFM to national statistics of ownership. The randomness of the model
lies with the switching ON of the appliances. This is given at each time step by the
following probability:

Pstart = Pseason(a,w) × Phour(a, d, h) × Pstep(δt) × Psocial × f(a, d) (2.3)

Phour(a, d, h) and f(a.d) are the truly stochastic parameters linked to the switching
ON of an appliance a at time step h on day d. The latter is the frequency of daily
use of appliance a and will determine whether it is switched ON or not during the
day simulated. The former tells how the probability of switching the appliance ON
is distributed over the time steps of one day. Psocial adds an extra randomness that
is not covered by the other probabilities (for example the effect that the weather on
the day simulated could have on the switching ON by the occupant of the appliance);
its distribution is guessed to be Gaussian based on the observation of data collected
by the authors. Pseason(a,w) serves as a weighting factor related to each appliance

5Paatero’s model is a simplified version of a detailed model proposed previously by Capasso [15],
that is very demanding in terms of input information.
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a and each week w of the year according to how the appliance’s use might vary over
the year. Pstep(δt) adapts the resulting probability to the length of the time step
δt; this correction is essential as we can see when checking with the same probability
whether an appliance is switched ON twelve times every 5 minutes instead of once
every 60 minutes. In the second case, the probability that the appliance is switched
ON is simply p, while in the first case the probability that the appliance is switched
ON at least once over the time step is:

Ptot = p + p · (1 − p) + p · (1 − p)2 + · · · = p +

[
p ·

11∑
n=1

(1 − p)n

]
≥ p (2.4)

Once an appliance is switched ON it follows a deterministic cycle of use (based on
data provided by previous studies); this is converted into a sequence of constant
values of hourly electricity consumption.

Models of occupant behaviour - window opening

The interactions of occupants within a building that we have discussed so far are
often accompanied by internal heat gains. These can be used to reduce heating
needs (during the heating season) or might cause uncomfortable rises in temperature
(during the cooling season); in either case they are the side effects of occupants’
presence and behaviour. In the case of windows however, their opening and closing
is an efficient and commonly used means for an occupant to quickly (and “naturally”)
enhance her/his comfort, be it thermal or olfactory. Indeed studies have shown that
(in mild climates) occupants usually open their windows to refresh or cool indoor
air and usually close them when they find the indoor air to be too cold for their
liking [20]. The resulting air exchanges have obvious repercussions for the thermal
behaviour of a building and therefore need to be included within corresponding
simulation tools so that informed performance feedback can be given to building
designers. More important than the consideration of heat gains and losses linked
to the use of windows is the possibility that their use can alone ensure occupants’
comfort, thereby making obsolete the need for energy consuming air-conditioning
units. The common procedure for integrating the opening and closing of windows
is by using fixed schedules of airflow based on assumed occupancy patterns. Yet
efforts have been made to study the true behaviour of occupants and to integrate
this into building simulation tools.

Fritsch et al. [21] developed a model to simulate the changes of state, during
winter, of an office window. These are characterised by the angle of their opening,
split into 5 classes ranging from 0 ◦ (corresponding to a closed window) to 90 ◦. The
state of the windows of the LESO building’s offices were measured every 30 minutes
as well as the outdoor and indoor temperatures. The application of the simple
and differentiated functions of autocorrelation on the measured time series led the
authors to deduce that the state of a window at a given time step only depends on
its state at the preceding time step and postulate that the state of the window could
be modeled by a Markov chain. They decided, after observing the relationships
between the state of the window and indoor and outdoor temperatures, to correlate
the state of a window with the outdoor temperature which they separated into 4
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categories.6 They then used the associated time series data to deduce the transitions
of state and the temperature at which these took place. The relative frequency of
transitions was adopted as the probabilities of transition from one state to another
giving them a Markov (state transition probability) matrix for each category of
outdoor temperature. The IFM was then used to generate simulated time series of
states of window opening angle depending on outdoor temperature.

A quite different approach was suggested by Nicol in [22]. He proposes a model
for the use of windows (but also lights, blinds, heaters and fans) based on the logit
function. The variable modeled is the state of the window at each time step rather
than the change of the state of the window (windows are either “open” or “closed”).
Nicol argues, like Fritsch, in favour of expressing the probability p of finding a
window open as a function of outdoor temperature, based on the fact that “in most
cases the correlation [of the use of controls] with indoor temperature is similar to
that with outdoor temperature”, and that “the outdoor temperature is a part of the
input of any simulation, whereas the indoor temperature is an output”. The above
probability can then be written:

p(Te) =
exp(a + b · Te)

1 + exp(a + b · Te)
(2.5)

Te is the outdoor temperature; parameters a and b are estimated from measured
data.

This model, presented in 2001, was later extended by Rijal et al. in [23]. The
main amendments made to the previous model were the inclusion of indoor temper-
ature as a stimulus for opening or closing the window and the development of an
algorithm capable of generating a time series of states of windows. This has now
been integrated into the ESP-r building simulation tool. The new logit function is:

log
(

p

1 − p

)
= 0.171 · Ti + 0.166 · Te (2.6)

where multiple logistic regression analysis is used on collected data to estimate the
coefficients of Te and Ti. This determines the probability p(Ti, Te) of finding a
window open at indoor temperature Ti and outdoor temperature Te. The method
proposed to simulate changes in the state of a window works as follows:

- first the temperature of comfort is determined based on the running mean
outdoor temperature,

- if the simulated indoor temperature is 2K above the temperature of comfort
the occupant feels “hot”, if it is 2K below (s)he feels “cold”,

- if the occupant feels “comfortable” (neither “hot” nor “cold”), then no action
is taken and the window remains in its state,

- when the occupant does not feel comfortable, then the probability of the win-
dow being open is calculated by entering into equation 2.6 the simulated indoor
temperature and the measured outdoor temperature (an input to the model),

6The arguments they use to back this decision in [21] are debatable. We shall come back to this
in chapter 5.
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- the IFM is used to decide whether a window opening or closing action will
take place

- if the occupant feels “hot” and the window is closed then the window will
be opened if the random number selected by the IFM is smaller than the
probability of the window being open,

- if the occupant feels “cold” and the window is open then the window will be
closed if the random number selected by the IFM is greater than the probability
of the window being open,

- if the occupant feels “hot” and the window is open then no action is taken

- if the occupant feels “cold” and the window is closed then no action is taken
either.

Models of occupant behaviour - lighting and blinds

Approximately 30% of the electricity [24] consumed within office buildings is used
by lighting systems. This electrical energy emitted as light is transformed into heat
that will favourably contribute to the heat needed during the heating season but
may otherwise contribute towards unwanted heat gains and therefore need to be
evacuated (by ventilation or air-conditioning). Different methods can be used to
reduce the energy consumed by lighting appliances and the resulting peak loads
(such as installing more efficient light sources and better control systems, replacing
global by individual lighting systems). It was in order to assess the efficiency of
such methods as well as their impact on the thermal behaviour of a building that
Lightswitch [10] and later Lightswitch-2002 [11] (see also [25]) were developed.

The first model, developed by Newsham, splits the floor to be simulated into a
“core” zone (non-occupied), an “open-plan” zone (central zone of offices typically
equipped with a lighting system common to all occupants) and a “perimeter” zone
(zone of individual offices situated at the perimeter of the building). A stochastic
model of occupant presence7 is used to simulate the occupancy of each office with
a time step of 5 minutes. Different lighting installations are simulated and the
resulting consumptions of electricity are compared. The consequences in terms of
heating and cooling are estimated by integrating the average over 10 runs into the
DOE2.1E building energy model.

The main advantage of Lightswitch-2002 over its predecessor is that it is dy-
namic. It has been integrated into the dynamic building energy simulation program
ESP-r. So far it aims at simulating the behaviour of occupants regarding lighting
appliances and blinds in one-person and two-person offices. These are split into 4
types of behaviour (DdBd, DiBd, DdBs, DiBs) resulting from the combination of
the following two behaviours towards the lighting system:

- daylight dependent (Dd) - the user controls the lighting system with sensitivity
to ambient daylight conditions,

7An improved version of this model, developed by Reinhart for Lightswitch-2002, has been
presented earlier in this chapter.
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- daylight independent (Di) - the user controls the lighting system independently
of ambient daylight conditions,

and two towards blinds:

- blinds dynamic (Bd) - the user uses the blinds on a daily basis,

- blinds static (Bs) - the user keeps the blinds permanently lowered with a slat
angle of 75 ◦.

The electric lighting system and blind status are set (according to the algorithm
shown in figure 2.2) at each 5 minute time step depending on the irradiance on
the workplace (DAYSIM, a daylight simulation method developed by Reinhart and
Walkenhorst [26], provides irradiance data every 5 minutes based on hourly aver-
ages entered as inputs), the presence of the simulated occupant (either measured
or simulated with the model presented earlier) and on which of the 4 above be-
haviours (s)he adopts (it is supposed that each occupant will adopt one of the above
behaviours and behave consistently over the whole simulation period). Control of
blind position can be automated, in which case they are lowered if the irradiance on
the workplace reaches the arbitrary threshold of 50W/m2, then slanted to an angle
of either 0 ◦, 45 ◦ or 75 ◦ to block the direct sunlight from causing risks of glare; they
are lifted or kept open otherwise. An occupant with behaviour Bd will close blinds
in the same way under the same conditions but only open the blinds on arrival into
the office. Finally occupants with behaviour Bs will leave the blinds in the closed
position all year round. Lighting systems are switched ON either at arrival (by
occupants of behaviour Di) or when the indoor illuminance level is too low. The
probability that an occupant with behaviour Dd considers the indoor illuminance
level to be too low is given either by a distribution proposed by Hunt [27] in the
case of arrival into the office or after the status of the blind has been changed, or by
another distribution proposed by Reinhart and Voss [28] in the case of intermediate
switch ON (i.e. while the occupant is in the office). The lighting system is switched
OFF only at departure; the probability of this event happening depends on whether
the system is equipped with occupancy sensors or not (based on observations made
in [29] and [28] that the latter systems are more often left ON by the occupant).
Systems equipped with sensors and left ON will switch OFF after a specific number
of time steps; systems not equipped with occupancy sensors will be switched OFF
at the occupant’s departure with a probability Pclosing based on their likely duration
of absence.

Lightswitch-2002 is the most comprehensive model to date for the integration of
occupant behaviour towards lighting appliances and blinds into dynamic building
simulation tools. Yet it does suffer from clear limitations discussed by its author in
[11]:

- so far it is restricted to one- and two-person offices;

- the author does not know how well the four types of behaviour proposed repre-
sent the true behaviour of people and, if they do, what proportion of occupants
corresponds to each type of behaviour;
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- the consideration that lighting systems are only turned OFF once a day and
that blinds will only be opened once a day is restrictive and needs to be further
investigated.

Nevertheless, when applied to a case study the model predicted a 20% saving in
energy for offices equipped with occupancy sensors, which agrees with field mea-
surements.

2.1.3 Integration of occupant models

We have discussed within this chapter different ways of considering the effect of
occupants on the energy consumed by buildings (for heating, cooling and ventilation)
and within buildings (electricity consumption of appliances and lighting systems).
These can be grouped into three categories:

- those that consider occupant presence and behaviour in a statistical way,

- those that combine occupant presence with occupant activity,

- and finally those that consider occupant presence to be a necessary condition
for occupant interaction with the building and simulate the two separately,
considering the former to be an input to the latter.

Diversity profiles are an example of the first method: a profile of hourly values
ranging between 0 and 1 is chosen for a type of interaction (metabolic heat gains
resulting from occupant presence, internal heat gains resulting from the use of office
appliances, of lighting appliances, etc.) and then multiplied by the measured or
estimated peak value of the variable of interest. The resulting profiles are then used
as the input of internal heat gains to either a steady state or dynamic building
energy simulation program.

Yamaguchi et al. ([13] and [30]) are interested in choosing the optimal set-up of
plant systems (mix of technologies, sizing and network design) that can cover the
thermal and electrical needs of a city district. Its electrical load profile is composed
of fixed schedules, for lighting systems and appliances used collectively, and the
consumption profiles generated by the stochastic model of the occupant’s activity at
her/his office desk. We believe that the amalgamation of occupant’s presence and
activity actually weakens the model, therefore we are in favour of separating the
two because occupant presence can be used as an input to any model of occupant
behaviour (so that the results are directly reusable), but not all of these models
require the different activities of the occupant in order to function correctly. The
added information of activity can be useful but it comes with a cost: the more
activities we wish to consider the more information we will need on the probability
of the occupant exercising these activities and, in the case of Markov chains (the
method proposed by Yamaguchi) on the probabilities of transition from one activity
to another. The task of generating a model of occupant presence that is easy to
calibrate and can be used as an input for any model of occupant behaviour of any
type of building is already a great challenge. Once this challenge has been met, one
could devote more effort to developing separate models of occupant behaviour using
presence as an input.
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This method was adopted by Bourgeois [31] in the development of his sub-hourly
occupancy control (SHOCC) model, described by himself as being a “self-contained,
whole-building energy simulation module that is concerned with all building occu-
pant related events” [32]. SHOCC works as an independent module that handles all
information related to the presence and behaviour of the occupants that are used
as inputs to simulation tools such as ESP-r (the tool used for its development).
SHOCC updates ESP-r only when necessary and with the needed information at
the right time step of the tool’s algorithm, making it unnecessary for ESP-r itself to
consider the occupants of the building. To do so it needs:

- a database, with all the information related to the occupants and the objects
they use,

- a model of occupant presence (the model discussed in [31] is the one present
in Lightswitch-2002),

- and models of occupant behaviour (those discussed in [31] are Lightswitch-2002
and a simplified model simulating the use of a laptop).

Bourgeois claims that any model of occupant presence and behaviour can in prin-
ciple be used within SHOCC, and that SHOCC can communicate with almost any
building simulation tool; its main asset is to provide a platform linking the former
to the latter. Of course the crucial issue is to develop models that prove themselves
capable of simulating occupant presence and the aspects of occupant behaviour that
have an impact on the resource flows (e.g. energy demand) within a building.

2.2 Family of stochastic models integrated into SUN-
tool

We present here our own efforts in developing a set of stochastic models capable of
integrating the impact of occupants on the building they occupy and with which
they interact. This work was conducted as a part of the “project SUNtool”; the
models were integrated within the modelling tool developed during the project.

2.2.1 SUNtool

Funded under the European Community’s 5th Framework Programme, Project
SUNtool8 (for Sustainable U rban N eighbourhood modelling tool) was a three year
research project (from 2003 to 2005) that united 6 teams of collaborators from 6 dif-
ferent European countries (BDSP Partnership from London, England, the Czech
Technical University of Prague, Electricité de France, IDEC S.A. from Athens,
Greece, the Technical Research Centre of Finland and the LESO-PB of the EPFL -
this last team was composed of my colleague Nicolas Morel and myself) to develop a
tool that can help designers to optimise the sustainability of urban neighbourhoods
(see [33] and figure 2.3). The aim of project SUNtool was “to develop an integrated

8Detailed information on SUNtool as well as a downloadable version of the software can be found
at the website www.suntool.net.
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Figure 2.4: Structure of the SUNtool modelling tool and detail of the exchange of
information between the models of the solver (see [34]).

resource flow Modelling tool and associated Educational Tool to support sustainable
urban planning - so that urban planners are equipped both with sustainable master-
planning guidance as well as a comprehensive software tool for quickly optimising
the performance of the master-plan.”[35]

The educational tool contains a set of guidelines and case studies to acquaint
the user with the concept and technicalities of sustainable urban planning, as well
as a tutorial for the use of the modelling tool. The latter is composed of (see figure
2.4):

- a transient heat flow solver. This is the core of the modelling tool. It calculates
the heat flowing in and out of each zone9 of each building with a time step of
one hour.

- an advanced radiation model that is run before the main simulation is carried
out by the core solver and provides it with inputs of short- and long-wave
radiation as well as daylight entering the building.

9The thermal solver first splits the building vertically into zones of identical use (i.e. residential
zones and offices zones). Each floor is then split into a “passive zone”, on its periphery, and a
“non-passive” core zone. Within the stochastic models, we consider a zone to be a flat containing
one household in the case of a residential building (or the residential zone of a mixed building), or
an office (singly or multiply occupied) in the case of an office building.
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- plant and equipment models for the local production of resources (heat and
cold, electricity, recycled water and possibly bio-fuels).

- and the stochastic occupant-related models we discuss in this thesis.

A user-friendly graphical user interface (GUI - shown in figure 2.5) accompanies
the user through the different steps of the simulation of the neighbourhood. The
first step is to define its geographical location (loading the solver with the appropri-
ate climate files and national data sets of default properties with which to attribute
individual buildings). The buildings can be entered using a 3D sketching tool; the
user can then attribute properties to each of these by adopting the proposed “iDe-
faults” (simply by defining their use and age - which themselves have default values)
as shown in figure 2.6. These intelligent Default values are data sets corresponding
to national statistics (e.g. of occupant-related parameters, construction guidelines,
regulations) that were collected by the partners during the project and integrated
within the tool’s database. By using these default attributes, or updates of them,
for given buildings or parts of buildings, the SUNtool solver can simulate the whole
or a fraction of the given neighbourhood for any period of time up to a year. The
micro-climate models run independently of the solver in a pre-processing stage; so do
the stochastic models of occupant presence and behaviour aside from the model of
the window opening; the latter communicates with the solver during the processing
stage, providing it with inputs as well as receiving inputs from it at each of its time
steps (see figure 2.4). At the end of the simulation the GUI displays a table sum-
marising key environmental performance indicators for the modelled master-plan as
well as a series of standard graphs (see figure 2.7), enabling the user to assess the
value of the scenario simulated (lay-out and choice of properties of buildings and
plants). Hourly results of key variables may also be exported for further analysis
using proprietary data analysis tools

2.2.2 Stochastic models of occupant presence and behaviour

This chapter has exposed the reasons why the integration of occupants’ interac-
tions with buildings has become a necessity and how this has been done by fellow
researchers. In addition, we have argued that:

- White-box models are more flexible than black-box models and will therefore
be easier to adapt to changes in occupants’ behaviour and in the objects they
use. Their use should therefore be preferred as long as this is possible.

- The presence of an occupant is a necessary condition for her/his interaction
with a building. Occupant presence should be simulated separately and serve
as an input to models of occupant behaviour. Developing an excellent model
of occupant presence should be our first priority as the quality of its output
will limit the quality of the outputs of occupant behaviour models.

Based on the literature review and the above hypotheses we have identified the
need for a set of 5 stochastic models (see figure 2.8) to simulate:

- the presence of occupants within a zone,
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Figure 2.6: SUNtool’s 3D sketching tool and attribution of the building’s properties.
Design of a neighbourhood of buildings with the sketching tool and attribution of
the use of each building.
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Figure 2.8: Set of the stochastic models integrated into SUNtool. Fine arrows
describe information delivered by one model to another, thick arrows represent in-
formation used directly as an output of the modelling tool.

- their use of the appliances of that zone,

- their use of windows of that zone’s facade,

- their production of solid waste,

- their use of the lighting system and blinds of the zone.

The spatial resolution of these models, i.e. the “zone”, is an office room (occupied
by one or more occupants) in the case of office buildings, or a flat inhabited by one
household in the case of residential buildings (so far SUNtool only considers these
two types of buildings). The temporal resolution varies from one stochastic model
to the other.

Presence

The model of occupant presence simulates the state of presence (“absent” or “present”)
of each occupant of the zone at each time step. Its output serves simultaneously as
an input to the thermal solver by providing it with the total metabolic heat gains
accumulated over the hourly time step and as an input to all the models of occupant
behaviour. This implies that the model has to reproduce different characteristics of
occupant presence; for example, the cumulated presence over a day or a week might
be a level of detail sufficient for the thermal solver or the model of solid waste pro-
duction, whereas the models of appliance and window use will need to have reliable
information on the time of arrival and departure of the occupant into and out of
the zone or the periods of intermediate absence. The temporal resolution of this
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model should therefore be dictated by the finest resolution required by related mod-
els. Although any divisor of an hour could be used, we have opted for 15 minutes;
our choice has also been conditioned by the resolution of the data used to calibrate
the model. We have chosen to use the profile of probability of presence as its main
input, as this is a standard input to building simulation tools and should be easily
accessible to the user. Other inputs are parameters related to long periods of absence
and a parameter we have chosen to represent the typical mobility of occupants. The
model is discussed in great detail in chapter 3.

Use of appliances

The model of appliances is discussed in chapter 4. Appliances considered are house-
hold and offices appliances that consume electricity or water (hot and cold) or both.
The output of the model will provide the thermal solver with the internal heat gains
accumulated over the hourly time step due to appliance use and export to plant and
equipment models profiles of electricity, water and hot water demand as well as the
production of wastewater. This is useful for designing plant and storage capacities
as well as the distribution network as these will have to cover all or a fraction of the
neighbourhood’s needs in resources. We have opted for a behavioural model. Appli-
ances are split into categories related to their dependence on occupant presence for
their use; each category is then simulated differently. A temporal resolution of 15
minutes was chosen in the case of offices and 2 minutes in the case of residential zones
due to the resolution of the data collected; although any time step could be used.
The input to the model is data related to the appliances (e.g. type, number, peak
and stand-by power demands), either entered by the user or given by the iDefaults,
as well as the profile of presence generated by the model of occupant presence. As
the model of appliance is considered to be independent of the thermal conditions in
the building it can run before the thermal solver as a pre-process.

Use of windows

The model of window use is the only model that communicates bi-directionally with
the thermal solver and therefore needs to run simultaneously with it. It simulates the
exchange of air of the zone with the outside. Occupants choose to open and close
windows based on the thermal and olfactory comfort they experience within the
zone. Randomness results from changing climatic conditions, the changing number
of people present within the zone and the level of tolerance each occupant has
towards the coolness, the heat and the concentration of pollutants of the air within
the zone. The model calculates the amount of air exchanged through the window
over an hour and provides this to the thermal solver. From the solver, it receives the
indoor air temperature for each hour. Since this can change drastically if a window is
left open for one whole hour, we have integrated into the model a simplified thermal
solver that calculates the indoor air temperature every 5 minutes thereby allowing
for the simulation of window openings of such short lengths of time. Other inputs
are the profiles of presence for the zone and data related to its glazing (and openable
proportion) area. The model is discussed in greater detail in chapter 5.
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Production of solid waste

This model, described in chapter 5, is a simple attempt to estimate the amount of
solid waste produced per building and the fraction of it that could be reused within
the neighbourhood (mainly as a bio-fuel). It is basically an empirical model and
therefore strongly depends on the data available. The temporal resolution chosen is
1 week which more or less corresponds to the frequency of collection of household
waste. The output gives the amount of solid waste produced per zone in a week
and its separation into recyclable wastes (including organic waste, metal, paper and
glass).

Use of blinds and lighting systems

The model for the use of blinds and lighting system by the occupant integrated
within SUNtool does not figure within this thesis report. It is an adaptation, by
Nicolas Morel, of the Lightswitch-2002 model proposed by Reinhart [25] discussed
previously within this chapter. It provides the thermal solver with the internal heat
gains due to the use of electrical lighting appliances as well as the position of blinds
(which could be used in the future to calculate the solar heat gains let into the zone).
Combined with the output of the appliance model, it also provides SUNtool with
the electrical load profile of each zone of each building.
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Chapter 3

Occupant presence

3.1 Introduction

Being present within the building is clearly a necessary condition for being able to
interact with it. Occupant presence is therefore an input to all other models and
the model for occupant presence will be central to the family of other stochastic
models [36]. Furthermore, since humans emit heat and “pollutants” (such as water
vapour, carbon dioxide, odours, etc.), their presence directly modifies the indoor
environment. A model capable of reproducing patterns of presence of occupants
in a building is therefore of paramount importance in simulating the behaviour of
occupants within a building and their effects on the buildings’ demands for resources
such as energy (in the form of heat, cold and electricity) or water as well as the
production of waste (which may be later used to derive energy).

We discussed in chapter 2 the use of diversity profiles for integrating metabolic
heat gains resulting from occupant presence into simulation tools. The weakness
of this method lies in the repetition of one, sometimes two, rarely three profiles
(usually a “weekday” and a “weekend” profile, the latter sometimes being split into a
“Saturday” and a “Sunday” profile) and the fact that the resulting profile represents
the combined behaviour of all the occupants of a building. The latter simplification
reduces the variety of patterns of occupancy particular to each person by replacing
it with an averaged behaviour. The former simplification neglects the temporal
variations, such as seasonal habits, differences in behaviour between weekdays (that
appear in monitored data) and atypical behaviours (early departures from the zone,
weeks of intense presence and of total absence, unpredicted presence on weekends in
the case of office buildings - events that all appear in monitored data).

An improvement on this approach is a simple stochastic model which is present
within [11]. This introduces some randomness in the arrivals and departures of oc-
cupants into offices as we have seen earlier. While this represents a certain progress
towards a realistic simulation of occupant presence the fact that the major portion
of the profile is fixed (presence of 100% during most of the working hours, pres-
ence of 0% from 18:15 to 7:45, repetition of the same profile for all weekdays and
the assumption that the zone is unoccupied during weekends) prevents the model
from reproducing the variety both in behaviours and over time of occupant pres-

31
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ence. One important aspect of this restriction is the lack of periods of long absence
(corresponding to business trips, leaves due to sickness, holidays, etc.) leading to an
overestimation of the total yearly presence and associated energy consumption, as
recognized by the authors. The appearance of occupants on weekends, their arrival
before 7:45 and departure after 18:15 are phenomena that are common to the real
world but are omitted by the model. Finally the absence of occupants outside of
breaks is also an event that it fails to simulate.

Wang et al. [12] attempted a clear move away from fixed profiles of presence.
The daily presence of an occupant in a singly occupied office is modeled with a
random arrival followed by alternating periods of intermediate absence and presence
whose length is distributed exponentially. They propose a truly stochastic model for
occupant presence. This is simple and elegant but it still fails to reproduce the com-
plexity of real occupant presence. As the authors acknowledge themselves, periods of
presence cannot be reproduced by an exponential distribution with a homogeneous
coefficient, and times of arrival, of departure as well as absences during lunch breaks
are not normally distributed. Like all its predecessors the model supposes that all
weekdays are alike and that offices are always unoccupied during weekends. Periods
of long absence are also neglected so that total presence is once again overestimated.

The motivations behind the model proposed by Yamaguchi et al. [13] are very
similar to ours. They want a model that can predict the heating, cooling and
electricity loads of a commercial building. Part of this will result from occupant
presence and activity and these are amalgamated into the four states an occupant
can be in: absent, present but not using a computer, present and using one or
two computers (for more details see chapter 2). In our work however we prefer to
decouple occupant presence from any activity thereby ensuring that the output of
the occupant model can be used by any model requiring occupant presence as an
input. Furthermore it is not clear in their explanation of the model in [13] whether
it is being used to simulate only one repeated day of occupant activity or each and
every day of the year. In the latter case it is also unclear whether weekends are
treated differently or whether periods of long absence are considered; we suppose
that this is not the case. The calculation of an occupant schedule for only one day,
if this is the case, would be restrictive as we have argued above and the lack of long
periods of absence when simulating a whole year would likewise be erroneous as we
shall explain below. The hypothesis that the duration of time an occupant spends
in a given working state does not depend on time (i.e. the time of day) is one that
Wang proved to be wrong in at least the case of presence. Dividing the state of
presence into different states of working activity during presence will most probably
not change that. Although their model could prove useful when only considering
the use of PC’s, the hypothesis of time-independence shall cause difficulties when
wanting to simulate less invariable activities such as the use of lighting appliances
or activities performed in residential buildings for example.

We propose in the following pages an alternative model for the simulation of occu-
pant presence. By using a profile of probability of presence, rather than an adjusted
fixed profile, as an input to a Markov chain we are able to produce intermediate
periods of presence and absence distributed exponentially with a time-dependent co-
efficient as well as the fluctuations of arrivals, departures and typical breaks. A
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failed attempt to validate an earlier version of the model highlighted the importance
of periods of long absence and led to important amendments to the model. Twenty
zones of an office building were monitored providing us with two years of data that
was used for the calibration and validation of the model. The latter was based on the
analysis of statistics of importance for the stochastic models of occupant behaviour
that will use the results of the model of presence as their input. Although it was
tested with data from an office building, this model, when given the corresponding
inputs, is applicable to any type of building and any pattern of occupant presence.

3.2 Model development

3.2.1 Aims

It is important to know what properties need to be reproduced by the model as
they shall serve as a guideline for its development and as statistics to be checked
during its validation. The model of occupancy is destined to deliver the metabolic
heat gains and pollutants released by the occupants within the zone and to serve as
an input for the use of windows, lighting appliances and other electrical and water
appliances (see figure 3.1). To serve this purpose it needs to reproduce, in the most
reliable way, properties of patterns of occupancy such as the first arrival and last
departure of the occupant, the duration of the periods of intermediate presence and
absence, as well as of long absence and the time of intermediate arrival for each and
every occupant. Patterns of occupancy are so diverse and complex that we decided
that the simplest way to develop a model capable of doing this was to build it from
a priori hypotheses and check later whether the above properties are reproduced
within reason.

3.2.2 Hypotheses

We are interested in simulating the presence of occupants within a specific “zone”
of a building. This corresponds to the area occupied by a household in the case
of residential buildings (typically a flat) and to a (single or multiple person) office
in that of office buildings. We are not interested in simulating the movement of
occupants from one zone to the other (a model for this has been proposed by [37]),
but simply whether each occupant is present within the zone or not.

The hypothesis of independence allows us to model in a simple way the patterns
of presence of each occupant individually. The presence of occupants sharing the
same zone can then be simulated by:

1. multiplying the obtained pattern by the total number of occupants (this case
of collective behaviour would correspond to the occupancy of a meeting-room),

2. or by simulating each occupant separately and then adding the produced pat-
terns of presence.

We make the hypothesis that the probability of presence at a time step only
depends on the state of presence at the previous time step. In other words the
probability that an occupant is present now only depends on whether (s)he was
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Figure 3.1: Outputs of the occupancy model and their direct and indirect impact
on a building’s consumption of resources.

present one time step ago and not on whether (s)he has been present over the past
N time steps. Mathematically this statement corresponds to asserting the following
property on the conditional probability:

P (Xt+1 = i|Xt = j, Xt−1 = k, ...,Xt−N = l)
= P (Xt+1 = i|Xt = j) =: Tij(t) (3.1)

with Xt being the random variable “state of presence at time step t” and i, j, k
and l taking on values 0 (absent) or 1 (present). This corresponds to considering
the state of occupancy as a Markov chain with probabilities of transition Tij(t) (for
more details on Markov Chains we direct the reader to [2]). The probability that
an occupant should arrive at the office at 8:00 or at 22:00 are clearly not the same,
therefore the values of Tij(t) need to be time dependent and we have the general case
of an inhomogeneous Markov chain (with discrete states and discrete time steps).1

In order to determine the time dependence of these probabilities of transition we will
need the following inputs to the model: the profile of probability of presence over
a typical week and a parameter of mobility that gives an idea of how much people
move in and out of the zone.

1We will determine the initial state (at t0=00:00 on January the 1st) of the time series as
“present” for residential buildings and “absent” for office buildings.
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3.2.3 Development

Based on our hypotheses we are looking for a model capable of generating a time
series of zeros (absence) and ones (presence) that renders arrivals into and departures
from the zone (typically going to work and coming from work for residential zones,
arriving at work and leaving work for office zones) as well as alternating short periods
of presence and absence in between. It should not simply reproduce the pattern given
as an input (the profile of probability of presence and the parameter of mobility)
but create a pattern that never repeats itself while reproducing the statistics of the
real world it is simulating.

To do this we have based the model on the inverse function method (IFM)2

that generates a time series of events from a given probability distribution function
(PDF). Earlier we made the hypothesis that the value of occupancy at the next time
step should only depend on the state we are in now and the probability of transition
from this present state to either the same state (0 to 0; 1 to 1) or its opposite state
(0 to 1; 1 to 0). These probabilities of transition T00, T01, T10, T11 are therefore
the PDF’s we need (in this case the values that the random variable can take are
discrete). Only two of the four variables need to be known, let us say T01 and T11,
as T00 and T10 can be deduced from T00 + T01 = 1 and T10 + T11 = 1. As we have
seen in previous models, the profile of probability of presence is a rather standard
input for a simulation tool including occupancy and should be available to the user.3

Having this as an input provides us with a relationship for the probability P (t + 1)
that the occupant is present at the time step t + 1:

P (t + 1) = P (t) · T11(t) + (1 − P (t)) · T01(t) (3.2)

From this we can deduce that :

T11(t) =
P (t) − 1

P (t)
· T01(t) +

P (t + 1)
P (t)

(3.3)

However, we still lack one piece of information to be able to determine uniquely
the value of T01 and T11 at all times. This further input to the model should make
sense to the user who will be entering it. Keeping this in mind we defined the
“parameter of mobility” as the ratio between the probability of change of the state
of presence over that of no change:

μ(t) :=
T01(t) + T10(t)
T00(t) + T11(t)

(3.4)

To simplify the inputs to the model we consider μ(t) to be constant and to assist
the user of the model we will define numerical values to levels of “low”, “medium”
and “high” mobility. It is important that these values be well adapted to the length

2An explanation of the inverse function method and what we understand by “selecting” a number,
or a value, given a probability density function are provided in Appendix A.

3In the case of users unfamiliar with such inputs, default profiles corresponding to types of
occupants will have to be made available.
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of the time step used for the simulations.4 Given relationships (3.3) and (3.4) and
the inputs P (t) and μ we should now have a complete profile of T01(t) and T11(t):

T01(t) =
μ − 1
μ + 1

· P (t) + P (t + 1) (3.5)

T11(t) =
P (t) − 1

P (t)
·
[
μ − 1
μ + 1

· P (t) + P (t + 1)
]

+
P (t + 1)

P (t)
(3.6)

Unfortunately not quite. For certain values of P (t), P (t + 1) and constant μ, the
condition 0 ≤ Tij(t) ≤ 1 can be violated. This typically happens when P (t) is far
greater or smaller than P (t + 1). This situation corresponds to an almost deter-
ministic change in behaviour, such as a regular time of first arrival into the zone, a
regular lunch break or a regular time of last departure from the zone, rather than
the random movement into and out of the zone expressed by a constant value of
μ. In each of these cases the model would fail to reproduce such clear changes in
occupancy when using the initial value of μ; to counter this the model temporarily
replaces the value of μ, for that particular time step, by one that fulfills the above
condition and is closest to the initial constant. For an initial fixed value of the state
of presence at t0 we are now able to generate a time series of the presence of an
occupant within a given zone.

This first version of the model was calibrated with data of occupancy recorded
in the offices of the LESO building (for more details on the building see [38]) and a
preliminary validation was made by comparing the cumulated presence over a week
resulting from the original data and the simulations done with the model (this can be
seen in figure 3.2). The data contained a great variety of results ranging from weeks
of total absence, corresponding to periods of leave due to sickness, work outside
of the office or vacations, to weeks of high cumulated presence, corresponding to
periods of overtime work and unusual presence over weekends. The model was only
capable of producing a Gaussian-like distribution centered around the average of the
empirical data. This showed that, although the Markov chain model works well at
reproducing periods of short absence and presence during one day, it needs to be
complemented in order for the model to generate long periods of absence. These
have been included by adding to the algorithm the possibility to start, at random,
a period of long absence at each time step.5 To generate them we need to know the
probability of them happening and the parameters that determine the distribution
of their duration; these shall be new inputs to the model. For the validation of
this improved version of the model of occupant presence the periods of long absence
(lasting more than one day but not corresponding to a weekend) were extracted
from the empirical data and treated to give the necessary inputs to the model. The
remaining data was used to calibrate the Markov chain.

4We have already encountered a similar case of this in chapter 2 (see equation 2.4). In this
particular situation, the probability of transiting from state i to state j in one hourly time step is
Tij , while that of visiting state j starting from state i at least once within twelve 5 minute time
steps is Tij · 1 + 11

n=1(1 − Tij)
n .

5This means that periods of vacation will be distributed randomly over the year rather than
attributed to fixed days of the year.
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Figure 3.3: Preprocessing stage: extraction from the inputs of the probability distri-
butions needed for the inverse function method to be used in the processing stage.

3.2.4 Algorithm

The model was implemented as a MatLab script. The presence of each occupant in
each zone was simulated independently based on the inputs related to that occupant.
The profile of probability of presence and the parameter of mobility are used to
determine the profile of T01 and T10 (see figure 3.3). The occupant is considered to
be absent in the case of office buildings and present in that of residential buildings
at t0, i.e. 00:00 of the 1st of January. From then on the time series of presence is
generated by using the IFM at each time step.

Figure 3.4 shows how the algorithm works: given the probability of starting a
period of long absence (derived from the number of long absences happening in a
year, entered as an input) we first check whether the occupant starts a period of
long absence or not by using the IFM, if so we determine the length of that absence
given the distribution of the duration of periods of long absences (entered as an
input) with the same method, during which period the occupant is considered to
be absent. At her/his return, or if (s)he did not start a long period of absence, we
find ourselves in the case of the Markov chain of “usual daily” changes in state of
occupancy. The present state of occupancy will tell us which profile of probability
of transition to choose between T01 and T10; the next state of presence is determined
by the use of the IFM. By doing so we are capable of generating a time series of
the state of presence of a particular occupant in a particular zone. The state of
presence of each occupant of one zone and the states of occupancy of different zones
being considered independent it is enough to repeat this algorithm as many times as
the number of total occupants, respecting, of course, the inputs particular to each
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Figure 3.4: Algorithm of the model (processing stage).
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occupant simulated.

3.3 Results

3.3.1 Data collection

The data needed for the calibration and validation of the model was collected from
mid December 2001 to the beginning of January 2006 in 20 “zones” of the LESO-PB
building at the EPFL each equipped with a movement sensor. Of these, ten zones
were offices having seen their number of occupants vary over the period of monitoring
and five zones had not been constantly used as offices (printer room, conference room,
classroom and workshop). The remaining five zones which had been singly occupied
offices over the whole period of data acquisition, were used for model calibration and
validation. The people at the LESO work mainly on research, sometimes taking or
giving courses. Occupants are very mobile often leaving their office to visit other
zones of the same building, such as the workshop, the library or computer-room or
offices of colleagues, or to leave the building. This may make the patterns of presence
not particularly representative of an office building (and even less so of a residential
building!). Nevertheless, this shall not weaken the validation of the model as it
has been conceived to be independent of the characteristics of the occupants to be
simulated. Indeed only the inputs to the model (profile of probability of presence,
parameter of mobility, distribution of periods of long absence) are related to the
simulated occupants; the model itself, given the right inputs, should be applicable
to any type of building and any pattern of occupant presence.

3.3.2 Treating data for calibration

The acquired data needed to be processed before information for the calibration
and validation of the model could be extracted. Problems either with the sensor,
the bus used for the transfer of monitored data or with the server used to store the
data caused gaps within the acquired data, reducing the amount of usable data to
approximately 2 years and the longest period of uninterrupted data acquisition to
approximately 6 months. Also the acquisition system only records changes of the
variable to be acquired; in the case of occupancy this means that the time and date
are recorded:

1. the first time the sensor notices motion in the office when it previously con-
sidered it to be empty - this corresponds to a switch to the state “occupied”,

2. when the sensor has not noticed any movement for 30 seconds in an office
considered to be occupied - this corresponds to a switch to “vacant”.

The sensor only recognizes two states of presence: occupied or vacant, and can
therefore not distinguish whether the zone is multiply occupied or not. This how-
ever is not a problem, since the presence of guests in an office is dependent upon
whether the owner of that office is present so that the owner-occupant presence is
continuously accounted for. The first step in processing the raw data was to check
which days of acquisition had suffered from the technical problems stated above and
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only conserving those that are completely intact. This data was then cleaned of all
periods of absence lasting less than 2 minutes (this usually corresponds to a sensor
that stops recording the presence of an occupant because (s)he is too still for her/his
movement to be noticed). We then constructed a time series of the data with a 15
minute time step by summing over each 15 minute interval the duration of periods
of presence and of absence and allocating to that interval the state with the longest
total duration.

The treated data could then be used for the extraction of information first of
all to deduce the inputs necessary to calibrate the model, then to have reference
data for its validation. The first step was to check the length of both periods of
presence and of absence. The periods of absence were then divided into periods of
“short” absence (less than 24 hours), of absence that could be related to weekends
and periods of “long” absence (greater than 24 hours but not taking place over
a weekend).6 Periods of long absence were studied to deduce the distribution of
their duration and the average number of their occurrences in one year, which will
both serve as inputs to the model. The long absences were removed from the time
series and the remaining data was used to provide information on the day-to-day
occupancy such as the profile of probability of presence and the profiles of probability
of transition T01 and T10. A profile of the parameter of mobility was deduced from
the profile of T01 and T10 by using equation (3.4). The average of the positive values
of the profile is used as input to the model.

3.3.3 Validation

The occupancy model has been developed to simulate the time an occupant spends
in a particular zone but above all to produce a time series of presence that will serve
as an input for models capable of simulating the occupant’s behaviour. Each of these
models may have different expectations of the occupancy model’s output; while a
model for the opening of windows needs reliable information on the time of arrival
of the occupant, a model for the use of household appliances will need to know how
long the occupant’s periods of presence will last. In order to estimate the success of
the model we listed the statistics that should cover each of these expectations:

- the effective total amount of presence will be given by the “cumulated presence
per day” and “cumulated presence per week”,

- the “first arrival” into the zone and the “last departure” from the zone of each
day of presence; the difference between these two corresponds to the duration
of “daily presence” (in contrast to the duration of effective presence mentioned
above),

- the duration of “periods of intermediate presence” and of “periods of interme-
diate absence”,

6Most intervals of acquired data are relatively short due to interruptions during data acquisition
(intervals range from 2 days to 6 months with the average duration being 2-3 weeks). This of course
limits the sample of periods of long absence available. It may also shorten periods of absence that
could have lasted longer.



42 CHAPTER 3. OCCUPANT PRESENCE

0
96

192
288

384
480

576
672

700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P

rofile of probability of presence

Probability

0
96

192
288

384
480

576
672

700
0

0.1

0.2

0.3

0.4

0.5
P

rofile of param
eter of m

obility

Q
uarters of an hour (96 per day)

F
igure

3.5:
C

om
parison,betw

een
the

m
onitored

data
(solid

blue
line)

and
the

sim
ulated

tim
e

series
(dotted

red
line),ofthe

profiles
of

probability
of

presence
(above)

and
of

the
param

eter
of

m
obility

(below
)

for
offi

ce
no

3.



3.3. RESULTS 43

- the “number of changes” of the state of presence during the same day.

We then compared the distributions of those statistics deduced from the measured
data and from simulated data produced by the model.

For each of the offices of the LESO building we produced a 5 year time series
based on its calibrated inputs. From these time series we calculated the profile of
probability of presence, the profiles of probabilities of transition T01 and T10 and
the profile of the corresponding parameter of mobility as well as the distribution
of the duration of long absences, in order to make sure that the model’s output is
still consistent with its inputs. While the profiles of probability of presence compare
very well, the simulated values of the parameter of mobility are clearly below those
entered (see figure 3.5). This might be due to its relatively frequent recalculation
(discussed in section 3.2.3) that could limit its impact. The time series used to
calibrate the model and those resulting from the simulations were then processed to
produce the distributions of the statistics of interest for comparison.

3.3.4 Discussion of results

We discuss here the results from 4 of the 5 “singly occupied” offices.7 The simulation
of “multiply-occupied” offices shall nevertheless not be a problem for the future use
of the model as the user will enter inputs for each occupant and each occupant will
be simulated independently (unless a dependent behaviour is required, such as for a
meeting room, in which case a single profile may be used).

The green solid lines correspond to data from the monitored offices, the red dot-
ted lines are the results from the simulations. We have shown both the PDF and the
CDF of the statistics. For comparison we have added to the CDF’s the histogram(s)
equivalent to a standard deterministic representation of occupant presence used in
dynamic thermal simulation programs of buildings: 100% presence on weekdays
from 8:00 to 12:00 and from 14:00 to 18:00. The results from the monitored data
provide us with a valuable insight into what the statistics really look like and in
understanding the influence of occupants on the building. We will now discuss the
different categories of statistics and observe how well the model reproduces what
happens in reality.

Arrivals into and departures from the zone

The first category of interest is that of the first arrival of the occupant into the
zone and her/his last departure from the zone (shown in figures 3.6 and 3.7). The
difference between the two, the “daily presence” (shown in figure 3.8), gives us
an idea of how long the occupant could have interacted with the zone, although
(s)he might not have always been present during that interval. The behaviour of
occupants is usually very different at their first arrival and last departure than
during any intermediate arrivals and departures. The first arrival of the occupant
usually corresponds to the setting by the occupant of her/his environment to her/his
favourite configuration, for example the setting of the state of the blinds, the state of

7Although all five offices produced similar results, we show only four of them for aesthetical
reasons.
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the lights and appliances, the set-point of the heating system or the opening status of
windows. These might often stay unchanged until the last departure, during which
the occupant returns the zone to its unoccupied state (with, for example, lights and
appliances being switched off, windows closed, etc), knowing (s)he will not be back
until the next day or beyond.

Although most values of arrival and departure correspond approximately to val-
ues one would expect (arrival around 8:00 ± 1 hour - corresponding to 32±4 quarters
of an hour, departure around 18:00 ± 1 hour - corresponding to 72±4 quarters of an
hour) and that are adopted by other models of occupancy, the figures show that the
times of arrival and of departure are particular to the occupant and that these times
can depend on the day of the week simulated, explaining the lesser peaks. Values
might be off by a time step or two (15 to 30 minutes) and the peaks from the origi-
nal data might be spread out a little but the model captures quite well the different
characteristics, recognising the main peak while also reproducing the later arrivals,
earlier and later departures as well as the days of longer or shorter daily presence.
It should be pointed out that the occasional very early arrivals that appear in the
simulations are the result of the model reproducing the non-zero probability of the
occupant being present overnight that can be seen in the profile of probability of
presence entered as input (figure 3.5). One can also notice in figure 3.8 the stochastic
nature of the model: while some occupants will depart exactly ten hours after a first
arrival that might fluctuate around an average (offices 1, 2 and 4), the simulated
occupant might arrive and leave a bit earlier or later without the two being strongly
correlated (just like the behaviour of the occupant of office no.3).

Periods of intermediate presence and absence

Figures 3.9 and 3.10 show the distribution of periods of presence and of short absence
(less than 24 hours). So far the models that have tried to reproduce periods of
intermediate presence and absence 8 have done so by assuming their duration is
distributed exponentially and is independent of time. Standard profiles of occupancy
propose the histograms shown with the CDFs; they correspond to 2 periods of 4
hours of presence separated by a two hour lunch break and the fourteen hours of
absence between the last departure (at 18:00) of one day and the first arrival (at
8:00) of the next. The periods of short absence simulated by the model can be
split into periods of such absence between workdays (the lower peak at the right
of the figure) and periods of intermediate absence (to the left and smaller than, let
us say, 48 quarters of an hour). Periods of very short presence and absence (15-
30 minutes) are clearly underestimated in the case of absence and only slightly in
that of presence. Nevertheless the model confirms that presence does not follow an
exponential distribution and that each occupant has her/his own behaviour, which
the model picks up rather well. The lack of very short periods favours the occurrence
of longer periods; a confirmation of this can be seen in the distributions of the number
of changes per day of figure 3.11. These appear in pairs as none of the occupants
ever stayed present overnight; each arrival is therefore followed by a departure.

8Wang had some success in the case of periods of absence, while Yamaguchi has, to our know-
ledge, not published any validation of their model.
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One can so far recognise that the model suffers from two flaws:

1. it underestimates the number of days of total absence,

2. it underestimates the number of changes by approximately one pair, suggesting
less intermediate periods of absence and presence than seem to take place.

This last discrepancy is probably linked to the drop in value of the parameter of
mobility mentioned earlier; and, as occupants move less than in reality but their
daily presence is realistically reproduced, longer periods of intermediate presence
and absence will be slightly favoured as we have observed.

Effective time spent in the zone

So far we have discussed :

1. the times of arrival and departure of the occupant, stressing that these are
the instants of a day when the occupant is most likely to interact with her/his
environment (as observed for example by [9]), as well as the daily presence
that gives an idea of how long the occupant will actively (when present) or
passively (when temporarily absent) interact with the zone,

2. the number of changes of the state of occupancy and the durations of periods
of presence and short absence that take place during one day, that give an
idea of how often the occupant might interact with her/his surroundings at
intermediate arrivals and departures.

What we need to know now is how much time the occupant effectively spends in
the zone during a day, a week or the whole year. This will govern what heat gains
and pollutants each occupant will emit as well as how much total time the occupant
has to affect her/his zone of occupancy. This can be deduced from the presence
cumulated (i.e. total number of 15 minute time steps) over one day or over a whole
week.

Figure 3.12 shows the total number of quarter hours of presence during a whole
week. As we can see from the monitored data, although the occupants’ duration
of daily presence is typically greater than 12 hours (48 quarters of an hour per
week), her/his effective cumulated presence over one week averages to around 24
hours. This is explained by the great movement of occupants and the work time
they spend outside of their office. It can also be explained by days of total absence
from the zone that called for the revision of the model we mentioned earlier. By
adding periods of prolonged absence we have been able to adapt our model to weeks
of total absence and weeks of overtime giving us a similar spread distribution as with
the collected data. A chi-squared test with α = 0.95 confirms that both histograms
could be the result of the same distribution for these four offices.

Even though the addition of periods of long absence to the model has drastically
improved its performance we still seem to underestimate the number of days of
complete absence. This can be seen from the value of the CDF at 0 quarters of an
hour in figure 3.13, that teaches us that approximately 35 to 40% of days include no
period of presence (2 days of absence per week, such as a weekend, would correspond
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to 28.5%) while the model only predicts an absence of 23 to 28%. The top part of
figure 3.13 shows the whole PDF of this distribution. By subtracting the bin of zero
presence we get an idea of what the distribution of cumulated presence looks like for
days when the occupant appears for at least 15 minutes (see bottom line of plots in
figure 3.13). This shows us how well the model reproduces the statistic and how it
covers very closely the whole span of the distribution.

3.4 Discussion

To fully grasp the contribution of the model of presence it is important to com-
pare it with models already available. Those recently developed by Wang [12] and
Yamaguchi [13] are the first capable of simulating, in a reasonably realistic way,
the periods of presence and absence between an occupant’s arrival and departure
from an office. However they are based on the fact that the duration of periods
of presence is time-independent and periods of long absence are neglected. Both
Wang’s analysis and the validation of our model (see figure 3.10) have shown that
the former hypothesis is wrong whereas the validation of the first version of the
model highlighted how important it is to consider periods of long absence when
generating a time series of occupant presence. All other methods used to model oc-
cupant presence can be summarised by the repetition of a standard or averaged fixed
profile, with, in the best of cases, the spreading of times of arrival and departure
using a Gaussian distribution in order to avoid strong peaks [11]. The results above
have shown that our model, while having simple inputs, is capable of producing a
non-repeating time series of any length, including essential periods of long absence
and otherwise reasonable movements to and from the zone resulting in an excellent
estimate of the total time an occupant really spends within the zone simulated. It
is true that the model underestimates the amount of days of total absence as well
as the amplitude of real movement into and out of the offices. The former could be
due to an underestimation of the number or duration of periods of long absence9

and/or to the overestimation of presence during weekends.10 The latter is probably
due to the recalculation of the parameter of mobility. These two aspects need to be
better understood and improved. Nevertheless the model has proven itself capable
of simultaneously:

- reproducing periods of absence,

- picking up the trends of periods of presence that cannot be simply modeled
by an exponential distribution,

- smoothing the peaks of times of arrival and departure,

9The probability that the Markov chain alone might produce a work day of complete absence is
extremely small as it will try at each time step to direct the simulated profile of occupant presence
towards the profile of probability of presence it is given as an input.

10The profile of probability of presence given for Saturday and Sunday (see top plot of figure 3.5)
typically corresponds to rare periods of continuous presence that, if the parameter of mobility is
kept the same for weekdays and weekends, the Markov Chain will simulate as occasional ultra-short
periods of presence.



3.5. CONCLUSION 55

- while also considering days of atypical presence or of total absence.

Although the benefits of the model will become apparent in terms of numbers
only once it is coupled to models of occupant behaviour, one can already assert from
the distributions shown in figures 3.5 to 3.13 that:

- (figure 3.5) people working during weekends will need power and maybe heat-
ing or cooling that will be predicted neither by the standard model nor by
Wang’s model, but will be by our model.

- (figure 3.6) Likewise, arrival earlier than that predicted by other models will
correspond to extra-lighting time during the darkest days of the year, just as
later arrival can correspond to saved lighting,

- (figure 3.7) early departure could correspond to saved hours of lighting,

- (fig. 3.9 and 3.10) there is potential for saving electricity by implementing a
smart switch-off option for appliances and lights left on when occupants are
not present during periods of intermediate absence.

- The clear difference between figures 3.8 and 3.13 shows that, although occu-
pants might be “at work” approximately ten hours a day, they only spend
about half that time in their office. This corresponds to a ¨decrease of 50%
of the predicted metabolic heat gains (within that zone) as well as a poten-
tial decrease in electricity consumption linked to the non-use of lights and
appliances.

3.5 Conclusion

While there is still room for its improvement the model already produces a realistic
picture of occupant presence within zones of a building, the basis for related models
of occupant interactions with their environment. It has been conceived to be capable
of simulating any pattern of occupancy of any type of building when given the
corresponding inputs. This general nature of the model has allowed us to validate
it with data from an office building and to still claim that it will be useful for the
simulation of any other type of building, in particular residential buildings.

The outcome of the validation shown here emphasizes the progress this model
represents compared to the standard procedures used today and even the latest
model recently proposed. Indeed, the model, although relatively simple, has proven
itself capable of reproducing important characteristics of occupant presence such as
the times of first arrival and of last departure, typical long absences and the effective
time of presence of the occupant within the zone of simulation while using only a
small set of simple inputs. It produces a time series of the state of presence that
includes the typical randomness of human behaviour: each person arrives into and
departs from the zone they occupy at different times; people tend to enter and leave
the zone several times during periods of occupancy, reducing the amount of total
time spent in the zone and increasing the number of departures from and arrivals
into the zone; people may be absent from the zone during long periods of time.
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This gives a more realistic picture of the time the occupant spends in the zone and
how often (s)he might interact with her/his indoor environment; it also avoids the
unnatural peaks that arise from repeating the same pattern for each occupant.

3.5.1 Possibilities of improvement

The data available for the calibration of the model was very detailed. As future (non-
expert) users of model will not have the possibility to enter such detailed inputs an
effort should be made in simplifying the inputs, replacing quarter-hourly profiles
of presence by hourly profiles and empirical distributions of the duration of long
absence by theoretical ones whose parameters would be entered by the user. This
simplification of the inputs to the model will have an impact on its results and the
extent of that impact needs to be studied.

The appearance of long periods of absence and the parameter responsible for
the amount of movement in and out of the zone are both represented simply by a
constant. These two inputs have a deep impact on the model; the dependence of its
results on the value they take should be analyzed in order to assess the robustness of
the model and to offer the user with reasonable inputs. While values of the average
number of long absences are easily interpretable, the parameter of mobility μ is new
and deserves some further study. As we have seen μ has to adapt to the length
of the time series used for the simulations and some research should be devoted to
creating tables of values that correspond to what one would expect from the labels
“low”, “medium” and “high”.



Chapter 4

Appliance Use

4.1 Introduction

4.1.1 Motivation

The aim of almost every building is to serve as a sheltered locus for human activities.
Its consumption of resources can be split into those used by the HVAC and lighting
systems to ensure a comfortable indoor environment to its occupants, and those used
by the occupants themselves while tending to their activities. As we have discussed
in chapter 2, the use of appliances to execute these activities has a double effect:

- it is an important source of consumption of electricity and of hot and cold
water by the building,

- it is an indirect source of casual heat gains to the zones of the building that
will need to be taken account of by the thermal solver used to simulate demand
in heating and cooling of the building.

Just as the “waste” heat given off by appliances can be at times beneficial in reducing
energy consumption, so the re-usable wastewater (so-called “grey water”) can be
recovered for various needs and thereby reduce the building’s consumption of potable
water.

The use of appliances within a zone (residential or office zone as treated here)
can vary greatly from one example to the other. Baker [39] observed this in the case
of electricity consumption per square meter of a sample of offices, while Eggimann
[40] did the same for electricity and hot water consumption among the flats of a
same residential building. The consumption resulting from appliance use indeed
depends on the occupants using them, but in different ways. The types and number
of appliances installed within the zone are an important factor often depending on
the use of the zone, the number of people sharing the zone, and sometimes (but not
necessarily) the “status” of the occupants (within society or within the hierarchy of
their company). For appliances to be used by occupants these need to be present;
people often present at home (e.g. housewives or househusbands and elderly people)
will be more active consumers than those mainly absent. Finally the behaviour of
occupants towards the appliances they use (switching them OFF or not at departure,

57
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using various appliances at once, their behaviour towards stand-by) will play an
essential part in determining both annual consumptions and load profiles.

Two main fields of research are interested in reproducing realistic time series
of appliance use: building physics, to reliably model internal heat gains for HVAC
and passive system design, and energy supply technologies (in particular low-voltage
electricity networks), to assess the size and timing of peaks and related risks. As
decentralised energy production is integrated into buildings and coupled to exist-
ing networks (in the form of grid-connected PV panels or small networks of CHP)
researchers of both fields now need to model load profiles (i.e. power consumption
profiles) with ever finer granularity and precision. Questions will arise such as: What
is the optimum sizing of a local power plant and the network of clients it can reach?
How many local power plants can a low-voltage grid bear before technical problems
appear or demand and supply are no longer possible to coordinate? How efficient
can demand side management be in shaving peaks and ensuring supply? How can
we reliably calculate the cost of energy as a function of time? The answers to these
questions will have a considerable impact on future urban energy scenarios.

4.1.2 State of art

Both fields of research (building physics and energy supply technologies) have their
own tools for modeling the use of electrical appliances. Building physicists have
mainly been interested in knowing how much heat given off by appliances will serve
as casual heat gains to the zone during the heating season and what heat will need
to be evacuated by cooling systems in the cooling season. Predictions of annual
electricity consumption will also figure in building performance simulation tools as
national norms (such as the Swiss norm SIA 380/4 proposed by the SIA, i.e. Swiss
Society of Engineers and Architects [41]) fix upper limits for the consumption of
electricity per square meter of building to be built or refurbished. The methods used
for the consideration of appliances depend on whether the tool used to estimate the
performance of the building of interest is dynamic or not. Non-dynamic (steady-
state) tools will make predictions of monthly or yearly energy needs. As inputs they
will typically use:

- space-related parameters, such as the number of occupants per square meter,
installed power per square meter of lighting appliances or of electrical appli-
ances in general;

- these may be combined with time-related parameters, such as the daily use of
hot water per person per day, the number of hours spent within the zone per
person and per day.

The latest guide proposed by the SIA [8]) provides specialists with the values to be
used for 44 different types of uses of the spaces simulated.

The diversity profiles, discussed in chapter 2, are a more advanced and com-
monly used method for both dynamic or steady-state simulation tools to represent
the heat gains induced by occupants’ presence and behaviour. They provide a value
between 0 and 1 for each time step of a typical day for different source of heat gains.



4.1. INTRODUCTION 59

Typically one profile will represent occupant presence; it is multiplied by the total
number of people occupying the building when integrated into the simulation tool.
Other profiles correspond to the use of different types of appliances (lighting, office
appliances, etc.); the values of the profile are then multiplied by the installed power
of the type of appliances. Diversity profiles represent typical behaviours usually
linked to the use of the building (residential, office work, other types of work) and
the types of occupant (elderly people, families, single occupants, etc). An extensive
report on the compilation of such profiles (used by the American simulation tools
DOE-2, BLAST and EnergyPlus) has been produced by Abushakra [7]. Instead of
the typical average profiles (occasionally supplemented by their standard deviation)
the authors provide for each time step the 10th, 25th, 50th, 75th and 90th percentiles
of the parameter of interest. They suggest the use of the 50th percentile for the calcu-
lation of the needs in heating and that of the 90th percentile for the sizing of cooling
units. The 10th percentile gives a good idea of the base load of a building; this can
be of value for assessing constant casual heat gains as well as valuable information
for the sizing of renewable energy systems (as these will at least want to cover the
base load). These profiles are compiled by collecting hourly total and appliance-
related consumption data of a maximum amount from buildings of different types
(building use and types of occupants), treating the data to make it independent of
variations over the year, normalising the values by dividing them by the peak power
value of the building over the whole year of measured consumption, separating the
days into “weekday” and “weekend” categories and then deducing, for each of the
categories, the distributions for each hour of the day. The percentile diversity pro-
files are produced with the percentiles of the distributions of each hour. When using
a dynamic simulation tool, the users can choose the weekday and weekend profiles
corresponding to the building and occupants of interest, choose the parameters (oc-
cupant presence, lighting, office appliances, etc.) and percentiles they are interested
in, multiply them by the peak values (total number of people, installed power) and
enter them as inputs to the solver.1

As usual the limitations of such methods are the averaging of the variety of
behaviours and of their variation with time. They provide a coarse estimation of
internal heat gains, but the percentiles proposed by Abushakra do give valuable
indications of how values cumulated over all the occupants of a building and over
all the days of a whole year might vary. But if one is interested in a resolution finer
than that of the building and the two day types provided, or in the elements that
compose each type of diversity profile then these methods become less helpful.

This is typically the case when trying to assess the demand in electricity of a
building or a set of buildings, in what is called Demand Side Management (DSM).
Traditionally the priority in the field of energy management has been to understand
(and sometimes influence) the use of electricity in order to maximise benefits. In
liberalised electricity markets distributors will buy from different energy producers
at the lowest possible cost while securing a provision of electricity to their clients
at fixed rates. The price of electricity will essentially depend on the type of plant

1In the case of the simulation tool ESP-r convective, radiative as well as latent heat gains are
considered separately and all heat gains of a type are cumulated to form one sensible casual heat
gain profile.
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producing it and how far in advance it is bought: for example nuclear power plants,
that have no flexibility in their production, generating an almost constant amount of
power all year round, will be a source of cheap electricity to cover the base load within
demand. Hydro-power plants can provide electricity almost instantaneously and will
be used as a last minute resort to cover unexpected peaks. The electricity market
operates on a 30 minute basis and last minute buys are the most costly; an accurate
prediction of demand is therefore essential in securing profits.2 This is so far the
main motivation for research in DSM.3 It is accomplished by collecting data on the
various electricity consumers (typically in national load profile studies), developing
methods to model load profiles at different levels of cumulated consumption and
developing strategies to reduce peaks or procedures to minimise the effects of black-
outs.

In chapter 2 we have discussed in detail two state-of-the-art models from this field
developed by McQueen [18] and Paatero [19]. While McQueen’s model has proven
itself useful for the immediate estimation of the maximum demand of a low-voltage
network, as a “black-box model” it is intimately linked to the data used to develop
it. Changes in the behaviour of occupants and in the ownership and consumption of
appliances (new energy-efficient appliances replacing older ones, leaps in generations
of appliances such as the switch from PC’s to laptops, cathode ray tube (CRT)
monitors to liquid crystal display (LCD) monitors, the disappearance of radios in
favour of radio on the internet) cannot be implemented within his model because
they are not considered to start with. New measurements would have to be made
regularly to adapt to these changes. Because McQueen’s model does not distinguish
the different appliances that play a role in the total consumption it is not able to
simulate the casual heat gains of appliances whose energy consumption is not totally
given off to the zone (such as dishwashers or washing-machines). Nor does it allow
us to identify the electricity consumption linked to lighting appliances and therefore
predict the energy that can be saved by adopting better control strategies or lighting
systems.

In addition to predicting the maximum load of a network, DSM may also help
intervene in the electricity consumption of clients to shave the expensive peaks: this
can be done by introducing time dependent tariffs or by prioritising the end-use of
electricity and implementing strategies switching off appliances of lesser importance
at specific times with the accord of clients. This requires a method that can split
the end use of electricity consumption into that of different appliances, the so-called
“bottom-up” approach that was adopted by Paatero. The strength of his model
lies in the statistical method used to populate the building with appliances, and in
the definition of the probability of switch ON which was used to start the cycle of
use of appliances. However these are the only aspects of randomness included in the
model, as appliances switched ON always function with the same constant power for

2Nationalised electricity markets face similar issues as the producer-distributor monopoly wants
to be sure he can cover demand while minimising an over-production that will not be paid for nor
be useful.

3As half the world’s population is not connected to a grid and extending existing networks will
prove to be extremely expensive providing these people with electricity will involve the development
of islanded scenarios of limited supply and also require the application of DSM.



4.2. METHODOLOGY 61

the same duration. Furthermore occupant presence is not considered explicitly and
while one could argue that it is implicitly integrated into the probability of switching
ON an appliance, its switching OFF is considered to be completely independent of
occupant presence or behaviour. It is unclear to us how the validation of the model
discussed in [19] satisfies the needs of the authors let alone our own. They have
calibrated their model with data provided by previous studies as well as parameters
deduced from data collected by themselves, then validated it by comparing the
results of the cumulated electricity consumption of 10000 simulated flats to those of
the 1000 flats measured. This method of validation does not tell us much about the
part played by types of appliances in the total load profile, an essential aspect of
the model. Such validation should in fact test the ability of the model to indicate
to the user the effect of switching OFF certain appliances at certain times of the
day; an issue which is also important for our needs as we want to work at levels of
granularity as low as one flat and cannot be satisfied by a validation based on such
an aggregation of load profiles.

This chapter exposes the method we have developed to simulate the use of sep-
arate appliances.4 Based on a bottom-up approach, it distinguishes categories of
appliances according to their dependence on occupants for being switched ON and
OFF. At the beginning of the simulation the zone is randomly populated with a
number of appliances by using national statistics of appliance ownership. This, the
stochastic input of occupant presence provided by the synonymous model, the prob-
ability of switching ON an appliance and the random values of their duration and
power aim to address the key sources of randomness influencing the use of appli-
ances. This general model is designed to cover any type of appliance which may
consume any type of resource (water - hot and cold, electricity but possibly other
resources such as gas) which is directly used by occupants. Its validation has been
limited to that of electricity consuming appliances due to a lack of precise data re-
lated to water consumption. However there is no reason to believe that appliances
consuming other resources cannot be simulated in the same way.

4.2 Methodology

We understand “appliance” to mean a group of appliances fulfilling the same function
or participating in that function. For example a computer, a printer, a modem and a
set of loud-speakers will be considered as a “computer appliance”, with parameters
covering the aspects of these individual appliances; a sink, a shower and a bath can
be the various incarnations of a “body cleansing appliance”.

The model distinguishes four categories of appliances:

- cat.1 those that have a constant consumption (such as a fridge) or a fixed profile of
use (hot water boiler) and are independent of occupant presence,

- cat.2 those switched ON by a user and therefore depend on her/his presence but
switch OFF independently of occupant presence (e.g. washing-machine),

4Although some aspects of our model are similar to those proposed by Paatero, both models
were developed independently and quasi-simultaneously
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- cat.3 those switched ON and OFF by an occupant (e.g. shower, television),

- cat.4 called “stuff”, this category regroups appliances which are too small to be
modeled individually but can be collectively significant.

Before simulating the use of appliances it is necessary to determine:

- which appliances are to be found within each zone (what types of appliances
and how many of each type),

- at what rate(s) of electricity consumption (i.e. distribution of power) and
water consumption (hot and cold) they will be used,

- for how long they will be used (i.e. distribution of duration of use),

- what their stand-by power is and whether or not the occupant leaves the
appliance in this state when not using it,

- and finally what the probability is that an occupant might switch an appliance
ON for each time step of the time unit of our choice (a day or a week).

The values of these parameters are fixed in a pre-process phase, given the technical
characteristics of the appliances installed and the more social characteristics such
as the type of occupancy (commercial or residential - with family size given in this
latter case), the ownership of appliances and behaviour regarding appliance use.
The inverse function method (IFM, see Appendix A for more details) is used to
select the appliances (types and amount) to be found within the zone. It can also
be used to select what kind of appliances (whether “energy efficient” or not) as well
as what kind of occupant (does the occupant leave appliances on stand-by or switch
them completely OFF?5 does (s)he switch appliances ON very often - corresponding
to a high probability of switch ON - or not? does (s)he use appliances for a long
time - corresponding to a distribution of duration of use shifted towards higher
values - or not?). In a more simplified version of the model the choice of occupant
behaviour towards appliances can be left to the user of the program or replaced
by one universal behaviour. This preliminary part of the model determines the
installed power within the zone; it is therefore the first step in reproducing the
random resource consumption related to the occupant. Interactions of occupants
with appliances depend on them being present. The time series for each occupant
of the zone produced beforehand by the presence model will therefore serve as an
input to this model. This covers the next cause of randomness within resource
consumption, namely occupant presence.

Appliances of category 1, as well as of category 4 are considered in the pre-process
phase. The former consume pre-determined amounts of resources (e.g. water, elec-
trical and/or thermal energy) given either by their constant rate of consumption or
by their fixed schedules of consumption. In the case of “stuff” we generate consec-
utive sequences whose duration of use and rate of energy consumption are selected

5When appliances are not ON they are considered to be on stand-by. The power demand of
stand-by can be equal to or greater than 0 depending on whether the occupant(s) choose to switch
appliances completely off or not.
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stochastically (i.e. generated with the IFM). The sum of the consumption of these
appliances serves as an occupant-independent base load.

Appliances that rely on occupants’ presence to be switched ON (categories 2 and
3) are simulated in the processing phase. At each time step the model checks for
each occupant whether (s)he wants to switch ON a type of appliance unused at the
moment (one occupant only uses one appliance of a type, for example one TV when
two are available). It does this by applying the IFM to the probability of switch
ON given by the probability profile for this time step of the week or day. When
an appliance is switched ON the duration of its use is deduced thanks to the IFM
from the corresponding distribution entered as an input. The power at which the
appliance is used is simultaneously selected thanks to the IFM and the distribution
of power values related to the appliance; the level of power is kept constant for the
whole duration of the appliance’s use. A counter allocated to the use of the appliance
is decremented by one unit at each time step. An appliance is switched OFF when
the counter is equal to 0, or when the occupant using the appliance leaves, in the
case of appliances whose switching OFF necessitates the interaction of an occupant
(appliances of category 3). Once OFF the appliance stays OFF for at least one time
step. Certain appliances may be used collectively (a cooker for example) in which
case the power will be related to the number of occupants using them: these types
of appliances will constitute the sub-category 3$.

At each time step the model calculates the total water consumption and waste-
water produced, the total electrical and thermal energy (from hot water) consumed
and the resulting heat given off to the zone by all the appliances (electrical appli-
ances ON or on stand-by, fraction of heat from appliances using hot water), the
temperature of hot water and fraction of (grey) water recoverable from the waste-
water. From this we can also determine the load profile and rate of consumption of
hot and cold water of the zone and therefore the distribution of its peaks.

4.2.1 Model development

The model of appliance use was developed based on the hypotheses exposed above
and translated into a MatLab function in order to be easily tested before being
integrated within the SUNtool solver. The simulation is performed (see figure 4.1)
one zone after the other for the total number of zones, at each time step (of 1
minute); then one time step after the other for the whole period to be simulated.
Ownership of types of appliances is input to the model as an average number of
appliances per household, per surface of the zone or per person. This average is (so
far) considered to be the lambda parameter of a Poisson distribution. The IFM is
used in a preprocessing stage to determine how many appliances of each type will
populate the zone, thereby fixing the installed power of the zone. It is during this
stage that appliances of category 1 (functioning at constant power or following a
programmed schedule) as well as “stuff” are simulated; this provides the base time
series of amounts of resource consumed and of by-products produced (heat given
off to the zone, grey and black wastewaters produced) to which those of appliances
directly used by occupants will be added. The state of presence of each occupant of
the zone is imported from the occupant presence model, the latter being processed
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before any other stochastic model.

Algorithm

Once the pre-processing stage has defined the appliances within the zone, the main
process simulates the use of each of these for each time step (see figure 4.1). The
“using matrix” stores the use of each type of appliance of category 3 by each occupant
(an “appliance type” would be a TV for example; this “type” can have one or more
units). Its row n corresponds to an occupant of the zone, its column m corresponds
to the type of appliance, so that the component (n, m) of the matrix is the unit
number of the appliance of type m used by occupant n. At each time step the
program first checks whether any of the occupants present during the previous time
step have left, in which case it switches OFF any appliances that the occupant
might have been using by replacing the corresponding line of the “using” matrix by
zeros. Appliances are then chosen one appliance type after the other. The program
recognises the category of the appliance type and then considers all appliances of
this type.

Appliances of categories 2 and 3 are switched ON in similar ways. The model
first checks whether the appliance is ON. If this is the case it decrements the counter
by one time step. If the appliance is not in use the model first checks whether an
occupant is present and not already using an appliance of this type and then whether
(s)he is “interested” in switching this appliance ON. This is done by applying the
IFM to the probability of switching ON this appliance at this hour of the day. If
the outcome is to switch ON the appliance then the IFM is used again, with the
distributions of duration and power of use for the relevant type of appliance, to
determine for how many time steps (recorded by the counter) and at which power
the appliance will function. For appliances consuming hot water the IFM will also
be used to determine the supply temperature. Appliances of category 2 will stay ON
until the counter reaches zero. For those of category 3 the corresponding component
of the “using” matrix will be updated. The appliance will be switched OFF when
the counter reaches zero or when the occupant using the appliance leaves. Finally, in
the case of appliances used collectively (sub-category 3$), the distribution of power
will be shifted accordingly to the number of occupants present, thereby favouring
higher powers of use in the presence of more users.

At the end of each time step the model calculates the total power load, the total
flow of (cold) water, the amount of heat needed for the flow of hot water, the total
amount of grey water produced, the total amount of heat given off to the zone (all
electrical energy is considered to be converted to thermal energy, in the case of hot
water the fraction of energy given off to the zone by each type of appliance is entered
as an input) and the maximum temperature of hot water supply for all corresponding
appliances. This done by cumulating the contribution of all appliances (switched
ON or on stand-by). The algorithm then moves on to the next time step.

Inputs to model

The models presented within this thesis have been developed to be as general as
possible and therefore applicable to any type of building and type of occupant. This
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Figure 4.1: Successive steps of the appliance model’s algorithm and example of the
“using matrix”. The outputs of the model are highlighted in green.
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generality implies that the models rely on the data that has been given to them as
inputs; the simulations resulting from the models will reflect the quality of the data
entered. In addition to generality this approach allows the models to be flexible. A
change in technology, the appearance of a novel appliance or a radical change in oc-
cupants behaviour can be entered by a simple change of inputs. The data needed by
the model can be split into that related to the populating of a zone with appliances
(ownership data) and that related to the performance and use of those appliances.
Of the former the model needs information on the parameters that will allow it to
select a number of appliances of a given appliance type. The model distinguishes 3
types of ownership: ownership per household, per person and per square meter of
surface of the zone. The type of zone will define the function of ownership to be
used. We have supposed that all three types of ownership are related to a Poisson
distribution whose parameter λ corresponds to the average number of appliances per
household, per person or per square meter respectively. This average has to be given
as an input for each appliance as well as the type of ownership to be considered and
the floor area or total number of occupants in the zone. The inputs related to the
presence of each occupant are entered as a matrix with as many lines as occupants
and as many columns as time steps considered by the simulation.

The process itself requires technical data on the appliances being used as well
as data related to the use of appliances by occupants. In the case of electrical
appliances this involves the distributions of its duration of use and of the power at
which the appliance is set when used, its power in stand-by mode and the hourly
probability of it being switched ON by a user present. In the case of appliances
consuming water power is replaced by the flow of water (water consuming appliances
are considered either in use or not; there is no “stand-by” mode); we will also need
to know the distribution of the temperature of hot water and whether its wastewater
can be re-used (grey water) or not (black water). Some appliances can consume both
electricity and water and will have inputs for both resources. Electrical appliances
are considered to give off all of the energy consumed to the zone in the form of
heat; in the case of water consuming appliances the fraction of heat given off to the
zone will need to be given as an input. The cases of electrical and water “stuff” are
considered as one appliance and their inputs are entered accordingly. Each of these
inputs are available as default values (provided by the iDefaults determined for the
SUNtool solver) but users are naturally given the possibility to override these values
and enter those of their choice. They are also able to enter new appliances, in which
case these are added to the list of appliances (see figure 4.2), their category is given
and the inputs mentioned above are entered. These two aspects are essential for the
modularity of the model and to allow for its constant adaptation.

4.2.2 Data collection and treatment

Data collection

In order to check the validity of the model and the different hypotheses at its core
it was necessary to acquire the correct data. The calibration and validation of our
model of appliance use requires the simultaneous measurement of occupant presence
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category of 
appliances

Appliance category of 
buildings

ownership
specification 

appliance
type

fridge 1 
freezer 2 
combined 
fridge/freezer

residential per household 

3

file server 4 
telephone server 5 

1

fax

offices per unit 

6
washing machine 7 
dryer 8 

2

dishwasher

residential per household 

9
cooker residential per household 10 
coffee machine 11 
laser printer 12 

3$

photocopier

offices per unit 

13
microwave 14 
TV set 15 
hifi 16 
computer + monitor 17 
laser printer 18 
inkjet printer 

residential per household 

19
desktop computer 20 
CRT monitor 21 
LCD monitor 22 
laptop computer 

offices per person 

23
kitchen sink 24 
shower 25 
bath

residential per household 

26

3

toilet residential/office per household/unit 27 
household electrical 
appliances 

28

household water 
appliances 

residential per household 

29

office electrical 
appliances 

30

4

office water 
appliances 

offices per unit 

31

Figure 4.2: List of appliances considered so far by the model of appliance use. New
appliances can be added to the list by the user.
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Figure 4.3: Acquisition of the total electricity consumption of a household. Fake
fuse sockets (bottom left) were used to divert the current to the EMU32.x1M device
(top right). Counts of 2 or 5Wh were recorded by the TinyTag (yellow box in the
middle of the image).

and the consumption of each appliance to be simulated. The rarity of such detailed
data has motivated us to collect the data ourselves. For the validation of office build-
ings we have collected data on the 5 singly occupied offices of the LESO building;
also used for the model of occupant presence. The consumption of each office was
monitored: the sockets of an office are split into “Lumière” and “Force” categories
based on measurements being constantly made at the EPFL. “Lumière” sockets
should be used for office appliances (such as lighting devices and computers) while
“Force” sockets are kept for appliances un-related to office use (such as workshop
appliances, appliances used for experimental set-ups and for electrical heating in the
case of the LESO building)6; we used the data coming from the ”Lumière” sockets.
Consumption is measured by recording the rotations of the electricity meter’s disc,
each revolution corresponding to 2Wh.

For the case of residential buildings we collected data in 8 different households.
Each occupant was asked to manually record her/his departures and arrivals. The
total consumption of the household was read by diverting the current entering the
household before the electricity meter and recorded every 2 or 5Wh depending on

6Unfortunately the correct use of “Lumière” and “Force” sockets was not always respected.
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Figure 4.4: Use of the EMU10.MEMO to acquire the power load of a single appliance.
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the expected peak of the load profile of the household. The set-up needed for these
measurements, including a measuring device (EMU 32.x1M provided by EMU Elek-
tronik) and a data-logger (TinyTag Plus Re-ed Count TGPR-1201 from Gemini
Dataloggers), can be seen in figure 4.3. A similar technique could sometimes be
used to measure the consumption of appliances functioning with 3-phase current,
such as cookers or washing-machines. For mono-phase appliances we acquired mea-
suring devices capable of recording instantaneous real power and energy consump-
tion (EMU10.MEMO). They measure the current diverted from a female-male plug
placed between the plug of the appliance(s) and the socket in the wall (see figure
4.4). Six of these appliances were available per household. We therefore regrouped
appliances into sets of interest that we will simulate as a “global appliance”; other
appliances were measured alone. Examples of such sets are:

- “leisure appliance”, corresponding to TV sets, videos, DVD players, play-
stations, stereos, radios

- “computer appliance”, typically regroups a PC (or laptop), a monitor, loud-
speakers, maybe a printer, a modem, etc.

- “kitchen appliances”, corresponding to the set of typical small electrical appli-
ances found in a kitchen (kettle, coffee-machine, mixer, etc)

Having recognized which appliances (single and global) we wanted to measure we
plugged them to the EMU10.x MEMO devices and programmed them to record the
instantaneous real power and total energy consumed every 2 minutes.7

Data treatment

Data acquisition in the 8 households lasted at least 2 weeks (in some cases longer).
The 2 minute load profiles of the appliance and total consumptions and the profiles
of presence of each occupant (typically 15 minute profiles) are imported into MatLab
and transformed to create time series with a 1 minute time step. Clearly aberrant
data are removed, as well as incomplete days of measured data. The load profiles
of appliances of category 3 were also modified when an appliance was left ON while
all the occupants were absent; in this case the values of the profile were replaced by
those considered to be typical when the appliance is in stand-by and the measured
values were recorded and set aside. This artificial switching OFF of appliances of
category 3 at the departure of the last occupant was done to be able to correctly
calibrate the model.

Of the 52 weeks of acquired data on the LESO offices we were able to keep at
least 38 weeks of useful data per office. The presence data was treated in the same
way as for the model of occupant presence, in order to build a 15-minute profile of
the occupants’ presence. Obvious outliers were removed. The 2Wh steps in total
consumption were used to create a 15-minute time series of average power demand

7Though normally less reliable, instantaneous power (in Watts) was preferred over the difference
of total energy consumption (in kWh), whose resolution did not turn out to be fine enough. The
discrepancy between the measured total energy and that deduced from the instantaneous power
over the whole period of data acquisition is almost always smaller than 5 %.
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over each time-step. Aberrant data was removed. All offices typically contain a set
of appliances belonging to the “computer appliance” group and a lighting appliance
(either a desk lamp or a floor lamp). The profile of total consumption was treated
to be split into the load profiles of two such appliances (a computer and a lighting
appliance).8 The occupants whose behaviour was monitored would typically not
switch an appliance OFF when leaving the zone for an intermediate period of absence
but usually switched all appliances OFF at their departure from the office at the
end of the day (the floor lamps installed in the LESO offices switch OFF after 15
minutes of monitored absence). The detailed presence of the occupants was reduced
to their arrival and departure and the load profile of appliances left ON outside of
periods of presence was replaced by that of the appliance in stand-by mode.

4.3 Results

4.3.1 Validation method

The data collected was needed to both calibrate and validate the model. As rela-
tively little data was available (especially related to residential buildings) we applied
the “Leave-One-Out” validation method (explained shortly in “Method of valida-
tion”); this being well adapted to such situations. We were also limited by the
nature of the data so that we needed to restrict ourselves to testing only the parts
of the model that were covered by it.

Aim and choice of statistics

It is first of all important to understand what is expected from the model as well as
what it claims to do better than standard methods commonly used and state-of-art
models proposed by others. Standard methods are usually well adapted at predicting
values of energy consumption cumulated over a period of time (typically monthly
or yearly values) and over a number of zones (total consumption of a building). We
will want to check how realistically the model can predict values of total energy
consumption over a unit of time9. This can be done for a single zone or for a cluster
of zones (5 offices, 8 households). However more is expected of the model: it should
be capable of predicting the base load of the zone (and cluster of zones) that could
be covered by renewable energy technologies (RETs) as well as the peak loads that
play an important part in sizing whatever means is used to cover resource demand.
Four statistics are used to compare the model’s results with measured data as well
as with predictions from other methods:

- the total energy consumed over a unit of time

8This was done by observing the profiles, measuring the minimum and maximum power con-
sumption of each appliance, deducing intervals of consumption corresponding to the use of one or
the other appliance alone or the two together, splitting the total profile along these lines and then
double-checking whether the resulting profiles made sense or not.

9A unit of time corresponds to one day in the case of residential data and to one week in the
case of office data.
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- the base load will be defined as the 10th percentile of the values of power over
the time unit

- the 90th percentile as a threshold for the peak load

- the 100th percentile as the maximum peak load.

Simplifications made

Unfortunately it has not been possible to validate all features of this relatively rich
model. Most of the data at our disposal relating to the consumption of water was
collected for whole buildings. A few samples of data for the total hot and cold water
consumed in single households were available but could not be correlated with occu-
pant presence nor with the use of specific appliances. The lack of data useful for the
calibration of water-consuming appliances convinced us to concentrate on electrical
appliances whose data was much more detailed. The limited number of power mea-
suring devices prompted us to focus our efforts on appliances whose use is directly
linked to occupant presence and behaviour, i.e. electrical appliances of categories 2
and 3. Although the total electricity consumption of households was measured, as it
included the consumption of lighting appliances, it was difficult to deduce load pro-
files for “stuff” by subtracting the sum of the load profiles of individual appliances
measured from the total; its validation was therefore not considered.

Method of validation

With the “Leave-One-Out” method we simulate the use of one appliance for one
unit of time, by leaving out the measured data of that unit of time and using the
measured data of all other units of time to calibrate the model (with the profile of
probability of switch ON, the duration of use, the power of use and stand-by power).
Each appliance is simulated this way for each unit of time; providing us with the
individual load profile of all appliances over the whole period of time measured. In
this way we make the best possible use of a small amount of data without significantly
biasing the calibration of the model. The measured profile of presence of the unit
of time simulated is an input to the model and is therefore common to both the
simulated load profile and that of reference, used for validation. 100 simulated load
profiles of the appliance are generated for each time unit based on the measured
profile of presence and on the calibrated parameters. We then repeat the process
for all time units of measured data. When validating the cumulated load of a set of
appliances we apply this method to simulate each appliance separately and compare
the sum of the measured load profiles with the sum of the simulated load profiles.

The validation itself is based on comparing the values of each of the four statistics
(total energy, base load, peak load and maximum load):

1 first by observing the distribution (boxplots) of the 100 values of the statistic
Xsimul resulting from the 100 simulations of each time unit,

2 then by comparing this distribution with the value of the statistic Xmeasured

resulting from the reference (measured) time unit,
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3 by deducing the average value Xsimul,ave of the distribution of the statistic for
each time unit,

4 estimating, for each time unit, the discrepancy between these averages and the
measured values Xmeasured by using the statistic we devised named
P-Indicator:= abs(Xave,simul−Xmeasured)

Xmeasured

5 and observing what values the P-Indicator takes on for all simulated time
units.

4.3.2 Validation of office buildings

Method

All 5 of the LESO offices were equipped with appliances that can be grouped into
one “computer appliance” and one “personal lighting appliance”10 which are typ-
ical of office zones. The total electricity consumption was treated as explained in
footnote 8 to calibrate these two appliances whose use was then simulated indepen-
dently according to the “Leave-One-Out” method. The simulated total consumption
was compared to that measured for the same week thanks to the boxplots and P-
Indicators of our 4 statistics. The base load and peak load were deduced by sorting
in ascending order the 672 values of power of the 15-minute time steps and picking
out the 10th and 90th percentiles. The results of 3 offices are shown in the boxplots
and blue-star plots of the P-Indicators of figures 4.5 to 4.16. The other 2 offices
showed similar results for certain weeks and completely aberrant results for others.
These were weeks where the occupant was present and clearly using office appli-
ances but whose consumption was not measured. On subsequent inspection it was
clear that some appliances of the zone in question had been plugged into the wrong
(“Force”) socket. Data from these two offices was therefore rejected.

The results at a first glance seem positive: the P-Indicator (almost) never exceeds
1, suggesting that the orders of magnitude are correct. The measured values are
usually within the whiskers (1.5 times the interquartile range) of the boxplots and
occasionally within the interquartile range, a sign that the model would (even though
rarely) simulate the value actually measured. On the whole the model equally over-
estimates and under-estimates the measured results, indicating that it might be
missing out on an underlying fluctuation but captures the general behaviour. In
addition to this empirical validation it is helpful to further compare predictions
with those of the best available alternative model, in order to judge the value added
from this work. Diversity profiles are an excellent candidate for comparison as they
are well adapted to predicting the load profiles of office buildings. We adopted the
same method used in [7] to create these by:

1 summing the profiles of 38 weeks of each office to deduce the load profile of a
hypothetical building composed of our 3 offices,

10We would normally rely on the model of lighting and blind use for the simulation of lighting
appliances. Due to the limited number of appliances in each office we had to consider desk-lamps and
floor-lamps as electrical appliances in order to have more than one electrical appliance to simulate
for each zone.
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2 noting the top peak load of this building and using it to normalise its weekly
load profiles,

3 noting the top peak of the load profile of each individual office

4 splitting the normalised weeks into 5 “weekdays” and 2 “weekend” days; this
gives us 38 · 5 (38 · 2) values between 0 and 1 for each 15-minute time-step of
a “weekday” (“weekend”) diversity profile of our building,

5 deducing the 10th , 50th , 90th and 100th profiles of “weekday” and “weekend”

6 multiplying these profiles by the top peak of each office to obtain the office’s
own diversity profiles

7 creating diversity profiles over a whole week composed of 5 “weekdays” and 2
“weekends”.

The value of the top load statistic will be the top peak of each office. That of total
energy is the sum of values of the 50th percentile. For the statistic of peak load
we have opted for the maximum value over the 90th percentile profile, and for the
base load the minimum value of the 10th percentile profile. The values of theses
statistics and the corresponding P-Indicators have been integrated into the results
of our model to show how it compares with Abushakra’s method.

Discussion of results : total energy

The P-Indicators of offices 1 and 2 show that the appliance model and the (mean)
diversity profile do comparatively well in predicting total energy consumption. How-
ever, while the measured values fluctuate both below and above the fixed value given
by Abushakra’s method, it is also clear that the values predicted by the appliance
model vary from those measured, sometimes overestimating and sometimes under-
estimating in the case of office 1; regularly underestimating them in two thirds of
the weeks of office 2 while doing very well with the other third. In each office a frac-
tion of the weeks corresponds to periods of quasi null consumption (and typically
complete absence of the occupant); this is something only a model using presence as
an input can simulate, a core feature of the appliance model and a clear advantage
over models that cannot do this. Obviously it will need reliable inputs of occupant
presence. The model of occupant presence presented in the previous chapter has
proven itself to be the best so far at doing so. Abushakra’s method seems to be
badly adapted in the case of office 3; this may be due to the office’s outlying peak
which was used as a scaling factor for the diversity profiles.

The boxplots of office 3 (figures 4.7, 4.13 and 4.16) show a clear variation of its
statistics with time, with a sudden change after week 26. The model, in its present
state, cannot match any time-dependent variation other than that resulting from
variation in occupant presence. The inputs to the model stay constant for the whole
period of validation. In this particular case the appliance whose use varies with
the time of year is the lighting appliance11; the use of most electrical appliances the

11See footnote 10.
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Figure 4.5: Total energy office 1.
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Figure 4.6: Total energy office 2.
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Figure 4.7: Total energy office 3.



78 CHAPTER 4. APPLIANCE USE

model is meant to simulate will fluctuate less over the year and often not at all. Office
3 changed owners during the period of measurement, an event we overlooked. This
probably contributed more to the variation in 3 of its statistics over the 38 weeks
than any seasonal variation itself. The appliance model is designed to simulate
behaviours that are random but stay consistent over the period of simulation. The
boxplots show this as the values of the model correspond (well) to the behaviour
averaged over the two successive occupants.

Here too one notices the marked change in measured values, probably due to
the change in occupant, and the fact that the model adopts an averaged behaviour;
considering this the model does well with values of the P-Indicator below 50% and
an average of about 25%.

Discussion of results : base load

As approximately 60-70% of the time steps of the load profiles lie outside of hours
of use they correspond to periods of stand-by of all the appliances of the zone.
Our model does well with the second office but overestimates the base load by
50% otherwise. This is probably because the stand-by power we entered for each
appliance is constant while the measured values fluctuate around this average and
the 10th percentile represents their lower boundary. This statistic is not of great use
to us here and would be more useful when more appliances are present.

Discussion of results : peak loads

We defined the peak threshold (the 90th percentile) as a statistic to delimit the
occasional high power demand from the more usual load in order to get an idea
of their distribution in a later analysis. The appliance model overestimates the
threshold (by 40% for office 1 and 100% for office 2) while underestimating the
top peak (by 30% and 15% respectively).12 The distribution of the power of use
of each appliance is calibrated by the actual values measured. When an appliance
is switched ON one of these values is selected, the probability of it being selected
depending on how often it appeared in all the measured periods of use of that
appliance. The appliance then keeps this value as its constant power for the duration
of its use. Therefore appliances whose load strongly fluctuates during their use will
be simulated by the model as appliances with a great variety of levels of constant
power of use. This restricts the variety of values that appear in one week to the
number of times the appliance is used.13 Despite this handicap the model generally
does better at predicting the top peak over a week than the method proposed by
Abushakra.

12Again, the results of office 3 clearly vary over the 38 weeks. The model sometimes overestimates,
other times underestimates the statistics but still does surprisingly well as can be seen with the
P-Indicator.

13A remedy to this would be to add some sort of intermittency to the power profile of appliances
in use.
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Figure 4.8: Base load office 2.
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Figure 4.9: Base load office 2.
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Figure 4.10: Base load office 3.
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4.3.3 Validation of residential buildings

The same method used to validate office buildings was applied to residential build-
ings: the “Leave-One-Out” (“one” this time being one day) method was used on
the data collected on the 8 households in order to calibrate and validate the model.
The validation was first limited to single appliances and to the observation of the
statistic of total energy consumption. The largely unsatisfactory results convinced
us to suspend the validation at this point in order to analyse in detail the function-
ing of the model and to understand what it was doing wrong. The results of this
analysis can be found in Appendix B.

4.4 Conclusion

Although the sample used to validate the proposed new appliance model was very
limited, the results it has produced enable us to make important observations of
the model’s capacity to reproduce the behaviour of occupants regarding their appli-
ances. It has also shown that the model compares very well with the most up-to-date
method in practice today, namely the diversity profiles proposed by Abushakra. In
almost every case it has made better predictions than the latter and, more impor-
tantly, it has proved its capacity to adapt to variations in the statistics used to assess
the model. A clear advantage of the model over any other is its direct dependence
on occupant presence. This can be seen when analysing all statistics (apart from the
“base load”), as the worse predictions made by diversity profiles appear on weeks of
total absence of the occupant. However this shifts part of the model’s success on the
strength of its inputs and emphasizes the need to have a reliable model of occupant
presence.

The model does reasonably well in predicting the “total energy” consumed per
week. The results over all three offices demonstrate its capacity of adapting itself to
any occupant, while the diversity profiles seem handicapped either by an unusually
high scaling factor (maximum measured peak) in the case of office 3 or because of
weeks of reduced presence (as can be seen in all 3 offices). The appliance model
does struggle though at following the behaviour of office 3 over the whole 38 weeks.
Any change in occupant behaviour or appliances installed cannot and should not
be matched by the model. This highlights the hypothesis of consistency behind the
model: it is designed to simulate an occupant whose behaviour is consistent over
the whole simulation period and that uses a fixed set of appliances. The difficulty in
predicting the behaviour of office 3 is therefore a weakness inherent to the method
of validation and not the model itself.

While the model generally does a better job at predicting the “peak load” and
“top load”, it barely ever simulates the maximum measured peak over the whole
period. Indeed the absolute top peak cannot be overestimated, as the measured val-
ues serve as inputs to the model, nevertheless the recurrent underestimation points
out a limitation of the model: the lack of intermittency for the periods of use of
an appliance and the fact that the constant powers of use are selected from the
range of values measured will be a disadvantage when simulating appliances whose
power fluctuates during use (e.g. a computer or adaptive lighting system); on the
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other hand the model will be well adapted for simulating appliances functioning at
constant and clearly distinct levels of power, such as cookers.14

Although a complete validation of the model in the case of residential build-
ings has not yet been terminated, the detailed analysis of the model discussed in
Appendix B has provided us with valuable suggestions for its improvement (in par-
ticular for the simulation of peak loads) and the indication that the unsatisfactory
result of its validation depended on an ill-adapted calibration of inputs rather than
a weakness of the model itself. Once the distribution of peak loads is validated for
residential data, it will be possible to estimate the model’s capacity to predict the
time at which these take place and also how this varies when cumulating the load
of an increasing amount of households.

We have made assumptions on how occupants share the use of appliances and
allow occupants to use an unlimited amount of appliances (of different types). Al-
though the data collected does not indicate who is using what appliance, it should
be possible to relate the amount of appliances in use and their power of use to the
number of occupants present; this might help us to confirm our hypotheses or amend
them. The profiles of presence used as the model’s input were those measured. A
further step in the validation of the models as a whole would be to use as inputs the
simulated patterns of presence provided by the model of occupant presence. The
data we have at our disposal can help us in testing the model on the aspects men-
tioned so far. Further data collection, over longer periods of time and of the detailed
use of water (hot and cold) would help to assess the seasonal variation of appliance
use and whether the assumptions made on the use of water-consuming appliances
by occupants (basically considering these to be used in the same way as electrical
appliances) are valid or not.

Although the validation of the model is only partly completed, we have neverthe-
less been able to show that it is capable of reproducing random aspects of occupant
behaviour towards appliances without compromising on parameters well simulated
by current methods, such as total energy consumption. This is an encouraging ob-
servation that supports our assumption that an adequate appliance model needs to
depend on occupant presence and be based on a “bottom-up” approach capable of
simulating the actual use of appliances by occupants present. The positive results
encountered at this point of the validation argue in favour of a deeper testing of
the model and its further development based on the analysis of a greater amount of
data.

14The inclusion of intermittency within the model discussed in Appendix B responds to this
weakness and shows a clear improvement of its predictions.
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Chapter 5

Window opening and waste
production

5.1 Stochastic model of window opening

5.1.1 Introduction

The use of windows is a quick and efficient means commonly used by occupants to
either cool or refresh the air within a building. It therefore has a deep impact on
the thermal behaviour of the building and plays an important part in ensuring the
comfort of its inhabitants. As discussed, in chapter 2, a variety of approaches are
used to simulate their opening and closing.

Fritsch suggests that the changes in the angles of windows can be modelled with
Markov chains [21]. He acknowledges that the angle of a window should be related
to the indoor temperature in summer, spring and autumn, and admits that, during
winter (his model is meant to simulate the use of windows in winter), the indoor
temperature will be affected by the state of the window. Nevertheless he argues in
favour of outdoor temperature as the sole stimulus for interaction by the occupant as
it is easily available (through meteorological data) and does not need to be calculated
by a dynamic building simulation tool to be known. Roulet [20] observed that
occupants open a window to refresh or cool the indoor air. In winter, the state of
the window, or more likely the duration of it staying open, will depend on the outdoor
temperature simply because it is reducing the indoor air temperature. In addition, the
outdoor temperature is common to all buildings; this implies that, because different
buildings (or simply different facades of a same building) are subjected to the same
outdoor temperature, the occupants, even though they do not experience the same
sensation of heat due to different indoor temperatures and solar radiation, shall
behave in the same way in a model using only outdoor temperature as a stimulus.

Rijal [23] considers a combination of indoor and outdoor temperature as a stim-
ulus for the logit model developed previously by Nicol [22]. With the help of
Humphreys he has developed an algorithm capable of generating an hourly time
series of the state of windows and integrated this into ESP-r. An open window
correlates indoor with outdoor temperature; it is not clear to us that, by applying
a multiple regression on these two stimuli, one really captures the part both play

91
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in motivating occupants to interact with their windows. Of the two we have pre-
ferred to consider the one that the occupant is constantly subjected to, i.e. indoor
temperature. To this stimulus, we have added the “freshness” of the indoor air, a
parameter curiously dismissed by the other models.

5.1.2 Driving variables

We believe that our model for the use of windows by the occupant should be a
behavioural one. Its randomness should depend on the presence of the occupant,
the physical stimuli causing her/him to open or close the window and the variability
of occupants’ tolerance towards these stimuli. Based on the study conducted by [20]
we consider the principle reasons why occupants interact with windows to be to:

- open a window to ventilate the zone when discomforted by the concentration
of pollutants,

- open a window to cool the zone when the indoor temperature is considered to
be uncomfortably high and the outdoor temperature is lower,

- open a window to create a draught within the zone when the indoor temper-
ature is considered to be uncomfortably high and the outdoor temperature is
similarly high,

- close a window when the indoor temperature is uncomfortably low,

- close a window when the outdoor temperature is uncomfortably high,

- close a window at departure during “cold days” (i.e. when the average tem-
perature over the last 24 hours falls below a given threshold).

Other possible factors that might influence the occupant behaviour (outdoor noise
level, rain and wind, issues of security, outdoor temperature) are considered less
influential and therefore not considered within this model. The occupants’ levels of
tolerance towards the concentration of pollutants and their level of discomfort when
exposed to cold and hot indoor temperatures behold the randomness of the model
related to occupant behaviour as we shall select a value for each of these discomforts
for each occupant with the inverse function method (IFM, see Appendix A for more
details).

5.1.3 Indoor pollution

As we consider olfactory discomfort to be a stimulus for the opening of the window
by an occupant, it is necessary to be able to model the concentration of pollutants
within the zone as well as to attribute thresholds to this discomfort above which
the occupant will decide to take measures against it. For this we have adopted
the method proposed by Fanger who attempted to quantify the perception of air
pollution by occupants [42].
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Dynamics of indoor pollution

If we suppose that a source of pollution 1 emits at a constant rate Sp [m3/s] in a
room of volume V [m3] with an exchange of air with outdoors of ˙Vex[m3/s], then the
level of indoor pollution p (in fractions of the total volume) can be written:

V · dp

dt
= Sp − ˙Vex · (p − pe) (5.1)

with pe, the level of outdoor pollution (also in fractions of volume). In order to
handle all sources of pollution together in the form of a cumulative index, new units
were defined by Fanger: the “olf” and the “pol”. The olf is a measure of the source
of pollution, 1 olf being the quantity of pollution emitted by an average person (in
[l/s]). The pol is a measure of the steady-state concentration of pollution in a room
resulting from a constant source of pollution of one olf in a flow of 1 liter per second
of unpolluted air. Typical values of sources of pollutant are 1 olf for an average
person, 6 olfs for a smoker not smoking and 25 olfs when smoking. A room can
be considered as a source of pollution (due to construction materials, paints and
varnishes, furniture, paper, etc.) equal to approximately 0.5 olfs per square meter
of floor area. Typical outdoor pollution concentration is 0.1 pol. With this in mind
(5.1) can be re-written:

V · dCi

dt
=

Sp

1000
− ˙Vex · (Ci − Ce) (5.2)

where Sp is now expressed in olfs and Ci and Ce are the indoor and outdoor con-
centrations of pollution in pols. If we can consider Sp, Ce and ˙Vex to be constant
(which is almost the case as we are working with time steps shorter than or equal
to the 1 hours time step of the thermal solver), we can use (5.2) to calculate the
indoor concentration of pollutant as:

Ci = A · e− t
τ + Ce +

Sp

1000 · ˙Vex

(5.3)

with τ = V
˙Vex

[s] and A = Ci0 −Ce − Sp

1000· ˙Vex
(Ci0 being the value of Ci at time t = 0,

the beginning of the hourly simulation).

Tolerance of occupants towards indoor pollution

In [42] Fanger also conducted a study on a sample of 168 “judges” in order to relate
a percentage of people dissatisfied (PPD) to values of pollutant concentration. This
results in the distribution, that can be seen in figure 5.1, given by:

PPD = 395 · e−1.828·C−0.25
i for Ci ≤ 3.13[pol] (5.4)

PPD = 100 for Ci > 3.13[pol] (5.5)

1We shall consider our pollutant to be CO2 as it is typically used as a reference for a mix of
different pollutants present in buildings, and is well documented.
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Figure 5.1: Relationship proposed by Fanger between the concentration of pollutants
in [pols] and the PPD (percentage of people dissatisfied).

We make the hypothesis that we can associate the PPD to the cumulated density
function of the probability that one person is dissatisfied. In this case we can apply
the IFM on the above relationship to attribute a threshold value of pols above which
the person we want to simulate will be dissatisfied and want to open the window in
order to ventilate the zone and reduce the value of Ci, but below which the person
will not be dissatisfied and therefore not act upon the window. We suppose that
occupants are only sensitive to the concentration of pollutants at their arrival into
the zone and then get used to it. An occupant will therefore interact with the
window for reasons of olfactory comfort only when arriving into the zone. In this
particular situation thermal comfort is checked at the next time step, or if the state
of the window has not been changed.

5.1.4 Occupants’ thermal comfort

The next stimulus for opening the window (and only stimulus for closing it) is the
thermal comfort felt by the occupants within the zone. Again we want to assign to
each occupant a threshold value based on the application of the IFM on a cumulated
distribution function. We would like to do this for a temperature of thermal comfort
Tcold, under which the occupant will want to close the window if it is open, and a
temperature of thermal comfort Thot, above which the occupant will want to open
the window to either cool the zone (if the outdoor temperature is low enough to do
so) or create a draught (otherwise) and the resulting sensation of comfort.2

2The upper limit to outdoor temperature that would motivate occupants to close the window
because leaving it open would heat the zone without providing a relief to thermal discomfort has
been arbitrarily fixed at 35 degrees Celsius for all occupants.
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Figure 5.2: Left: Relationship between the PMV and the PPD proposed by Fanger.
Centre: “Individual profile of dissatisfaction” of each occupant (the random vari-
able is the indoor temperature at which each occupant feels comfortable, i.e. with
PMV=0). Right: Comparison of Fanger’s profile (in blue) with the one proposed
for σ = 3 ◦C.

We start with the formalism proposed by Fanger [43] that relates the thermal
comfort of an “average person”, given by her/his predicted mean vote (PMV), to
the predicted percentage of dissatisfied persons (PPD), as shown in the left plot of
figure 5.2) and given by:

PPD = 1 − 0.95 · e−αPMV 4−βPMV 6
(5.6)

The scale of the PMV ranges from values of uncomfortable cold: −3 (cold) and −2
(cool), through an interval of values of relative comfort: −1 (slightly cool), 0 (neu-
tral) and +1 (slightly warm), back to values of uncomfortable heat: +2 (warm), +3
(hot). An ISO standard [44] relates the values of the PMV to the indoor and radi-
ant temperatures, the activity and clothing of people as well as the air velocity and
relative humidity they experience. By considering radiant and indoor temperatures
to be equal and fixing the other parameters we can relate the PPD to the indoor
temperature (Ti) rather than to the PMV. The PPD now represent for each value
of Ti the percentage of a large sample of people dissatisfied with the conditions of
indoor temperature alone. Yet our final objective is to select values of individual
comfort. A individual profile of dissatisfaction related to indoor temperature would
resemble that to the left of figure 5.2 but would be centered around a temperature
of comfort proper to the person considered; it might also be broader or narrower
than the “averaged” profile and could be asymmetrical depending on whether the
person has a higher tolerance to (or personal preference for) either hot or cold. If
we allow ourselves to neglect the skewness and width of these profiles and keep as
unique parameter the temperature of comfort we can represent the individual profile
of dissatisfaction of all people by step functions (like the one shown in the centre of
figure 5.2) with a central interval of total satisfaction for indoor temperatures higher
and lower than the personal temperature of comfort Tcomf of the person by 2 ◦C;3

3This corresponds approximately to a PMV of ±1.5 with the values entered for activity, clothing,
air velocity and relative humidity (and possibly radiant temperature).
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all other indoor temperatures resulting in the complete dissatisfaction of the person.
We choose the lower threshold of thermal comfort to be Tcold,i = Tcomf,i − 2 ◦C and
the higher to be Thot,i = Tcomf,i + 2 ◦C for all occupants i; we now need to have a
distribution for Tcomf,i on which we can apply the IFM. We suppose this distribution
to be a Gaussian centered on the temperature of comfort Tcomf,ave corresponding to
PMV = 0 and whose standard deviation σ is determined by considering the relation
between PMV and PPD (on the left of figure 5.2) to be the result of the superpo-
sition of individual profiles of dissatisfaction (as given in the centre of figure 5.2)
centered around temperatures of comfort generated by the Gaussian distribution.
The best fit (shown in the right of figure 5.2) gives us a value for σ of 3 ◦C.4

We now have a procedure to attribute the critical hot and cold temperatures
Thot,i and Tcold,i for a given occupant of the zone:

- First calculate the optimal comfort temperature Tcomf,ave for an “average per-
son” by using the ISO standard with PMV = 0 and the values for activ-
ity, clothing, air velocity and relative humidity (and possibly radiant tem-
perature) given as inputs to the algorithm. Tcold,ave = Tcomf,ave − 2 ◦C and
Thot,ave = Tcomf,ave + 2 ◦C.

- Select, with the IFM, for each occupant a random shift ΔTi from a Gaussian
distribution with an average of 0 degrees Celsius and a 3 ◦C standard deviation.

- Finally calculate the critical hot and critical cold temperatures for that occu-
pant with:

Thot,i = Tcomf,ave + ΔTi + 2 ◦C (5.7)
Tcold,i = Tcomf,ave + ΔTi − 2 ◦C (5.8)

5.1.5 Sub-hourly thermal solver

Air exchange

Ventilation through openings is driven by two sources of pressure difference between
inside and outside: buoyancy and wind. In this model, we have only considered the
buoyancy pressure difference (or “stack effect”). Moreover we have supposed that
no ventilation occurs between zones (all doors are therefore supposed to be closed);
only air flowing in and out from a zone’s window(s) are considered. All openable
glazed surfaces of the zone are summed to represent one single window to which we
apply the calculation of the exchange of air. Buoyancy-driven ventilation depends
on the relationship between the height of the considered opening and the neutral
level (the height at which the inside air pressure is equal to outside air pressure). In
our case the neutral level is situated at mid-level of the window opening: cold air
penetrates the room at the bottom of the window, and warm air leaves the room
through the top of the window (if the inside air is warmer than the outside air; for

4The estimation of σ was produced by Nicolas Morel; more information on this can found in
[35].
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the opposite situation, the reverse is of course true). The exchange of air ˙Vex[m3/s]
between indoors and outdoors is then given by [45]:

˙Vex =
1
3
· A · Cd ·

√
g · H · ΔT

T̄
(5.9)

were H is the height of the window (in [m]), A is the total window surface area
(in [m2]), Cd is the discharge coefficient (typically fixed at the empirical value 0.6),
g is the acceleration due to gravity, ΔT and T̄ are respectively the difference and
average (in [K]) between the indoor and outdoor temperatures.

Two-node Solver

The rate of communication of the model with the thermal solver (in our case the
SUNtool solver) is determined by the time step of the latter, typical values being
one hour. The indoor temperature will vary quickly when the difference between
indoor and outdoor temperatures is significant, due to the low Cp of air, and in
such cases the threshold will be met before the end of that (hourly) time step. It is
therefore necessary for the model to have its own thermal solver for such scenarios
(typically during the winter season) to avoid overestimating the heat gains/losses
due to windows being left closed/open for too long. As the period considered is no
longer than one hour we consider that only the air (and materials of small thermal
inertia such as the furniture) will see their temperature vary while the large thermal
masses (walls, slabs, etc) will not. This micro-solver will be updated by the hourly
values of indoor temperature and outdoor temperature (considered to stay constant
over the time step) given by the main thermal solver. We have chosen to use a
two-node conductance-capacitance equivalent network to calculate the indoor air
temperature T1 (first node) as a function of both the outdoor temperature Te and
indoor temperature of the mass of the zone T2 (second node), which are held constant
during the period of simulation:

T1(t) = Te + (T2 − Te) · exp
(
− t − t0

τ

)
(5.10)

The parameter τ is the time constant of the network equal to (ρCp) · V
g1e+g12

with V
the volume of the zone, ρ · Cp the density of air times its specific heat capacity, g12

the heat conductance between nodes 1 and 2 and g1e the heat conductance between
node 1 and the outside. While the former is directly entered as an input, the latter
includes the conductance of heat by the wall and the glazing (an input), as well as
the transfer of heat due to infiltration through the facade and to the exchange of
air when the window is open. This is equal to (ρCp) · ˙Vex, where ˙Vex is the rate of
exchange of air with or without the open window. Finally t0 is the value of time at
the last time step of the main solver.

5.1.6 Algorithm

Based on the assumptions made above we developed a MatLab function capable of
simulating the use of the windows of a zone by its occupants. This function is called
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Figure 5.3: Actions taking place at each (5 minute) time step of the window model.

by the thermal solver of the simulation tool at each of its hourly time steps. As we
have mentioned, this time step will probably be greater than that of the time steps
we want to use within our window opening model of say 5 minutes. The outputs
of the function will therefore be short arrays of values of the state of the window
(so far restricted to: closed - 0 or open - 1) and exchange of air [m3

s ] that have
been generated over the larger time step which may be useful for results analysis
purposes.

The inputs on the properties of the zone (volume and floor surface, thermal
conductances g1e and g12, air infiltration, width and height of the openable glazed
surface) are provided by the main solver at the beginning of the simulation. At
each of the solver’s hourly time steps, the window opening model is also provided
with the indoor temperature at the beginning of the period to be simulated and
the 15 minute sequences of occupants’ presence and meteorological data (outdoor
temperature and solar radiation) over that period.

The following example illustrates how the model works: we suppose that the
model’s time steps last 5 minutes, that it received inputs from the core solver at
the time step of 10:00:00 and is now calculating what happens over the time step
covering the period from 10:15:01 to 10:20:00. From time step 10:15:00 we have
the instantaneous values of the meteorological data (including Te) and the state of
occupants’ presence over the preceding 15 minutes; we also have the instantaneous
values for the indoor temperature Ti, the thresholds of olfactory comfort Ccomf,i and
the shift ΔTi (allowing for the calculation of Thot,i and Tcold,i) of each occupant i
present as well as the indoor concentration of pollutants Ci, the state of the window
and rate of ventilation that are all parsed by the model’s simulation of its last time
step. At 10:15:01 new values of the state of occupancy will be valid for the period
from 10:15:01 to 10:30:00. The model checks whether there is a change in the state of
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occupant presence. At the arrival of a new occupant, new values for Ccomf,i and ΔTi

are selected. If the input of occupant presence is an array with one component for
each occupant, we can store these values picked at the first arrival of the occupant
and keep them constant during the whole simulation. If not, these values need to
be recalculated at each change in the number of occupants present. In the former
case the occupant the most sensitive will act when (s)he is uncomfortable, in the
latter case the values of the thresholds of comfort in use will be compared to the new
selection and the most stringent values will be adopted. When an occupant leaves,
her/his parameters of comfort will be erased in the former case, in the latter case
they will go unchanged. At her/his departure the last occupant “decides” whether
(s)he will close the window or not; this will depend on the season (“yes” during the
cooling season5, “no” otherwise). Once the parameters of comfort are determined
for the coming time step they are compared to the values of indoor temperature Ti

and concentration of pollutants Ci. If the state of the window needs to be changed
to improve the occupants’ comfort it will be changed and the new state recorded for
this time step and the resulting rate of ventilation, concentration of pollutants and
indoor temperature will be calculated for an opened or closed window during the
time step and stored. These values are then parsed on to the next time step and
the above process is re-iterated.

5.1.7 Discussion

In order to validate this model it would be necessary to be able to couple it to a
reliable thermal solver and apply it to the case study of a building monitored for
many variables (occupant presence, state of windows, level of pollutant concentra-
tion, indoor temperature, meteorological data). This has unfortunately not been
possible. Although this is undeniably a weakness of the model, it should not lessen
its importance. The algorithm we have developed is straight-forward and based on
well-accepted hypotheses: occupants need to be present to operate windows, the
stimuli motivating people to open and close windows are both thermal and olfactory
in nature. Nevertheless there are some obvious limitations to the model:

1 Fanger’s formalism is well-accepted in the case of air-conditioned buildings
yet studies have shown that people in naturally ventilated buildings are more
tolerant to higher and lower indoor temperatures. Nevertheless the model
could easily adapt to this by either improving the distributions entered for Tcold

and Thot
6; an even stronger amendment to the model would be to integrate

more advanced models of occupants’ thermal comfort such as those proposed
by [46].

2 The interaction between occupants is not really clear: of all the people present,
who makes the decision to change the state of the window? The occupant with

5“Heating” and “cooling” seasons are determined based on the outdoor temperature averaged
over the last 24 hours.

6This will also improve the debatable assumptions made on the distance between Tcomf and Tcold

and Thot (constant width of interval of tolerance and symmetry of occupants’ comfort regarding
cold and hot we mentioned in the previous chapter.
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the most authority? The most sensitive occupant? We so far we have chosen
the latter. This subject is discussed in [6]; the integration of the authors
remarks should be studied and the model maybe improved.

3 The model considers neither inter-zonal flows (and the simulation of the open-
ing of doors), nor wind-driven ventilation). It also considers the “window” of a
zone to be the total of all its openable glazed surface. These assumptions were
necessary for the development of a simple model concentrated on occupants’
behaviour towards windows in situations (e.g. for urban planning) in which
little is known of the internal organisation of space. However, the model could
be straightforwardly integrated with a more comprehensive building simula-
tion program which would include transient calculations of bulk inter-zonal
airflows.

4 Windows are considered to be either open or closed. A future version of
the model might consider different proportions of opening and the associated
consequences for rates of ventilation.

This model is nevertheless a good starting point for the development of a more
reliable and complete model of air exchange and occupant thermal comfort due to
occupants’ interactions with windows.

5.2 Model of solid waste

5.2.1 Motivation

Although solid waste plays no direct part in the thermal behaviour of a building
and its needs in resources, it can nevertheless act as a useful source of matter and
of energy, requiring direct incineration or the combustion of biogas produced by
(an)aerobic digestion, or as a burden, demanding its transport to centres of treat-
ment or disposal; the latter consuming energy and emitting CO2 in the process. If
we want to promote decentralised local production of energy in its various forms, en-
courage autonomy in cities’ resources and reduce their impact on the environment7,
it is useful to model the production of waste and to integrate this within a modeling
tool such as SUNtool.8

5.2.2 Description of the model

Although the construction of buildings is an important contributor to the waste
produced during their life cycle, we only concentrate on the solid waste produced
by their occupants. In this, we consider each zone of each building on a weekly
basis, as this is the typical time scale of collection of waste by city services. It is
important to distinguish between the different types of solid waste, as each type will
have different uses. We first consider organic waste as it can be used to produce bio-
fuel (to be locally used for the production of electricity and heat) and useful organic

7For this we refer the reader to an excellent article published by the “New Scientist” [47]
8We have already considered “liquid waste” in chapter 5 in the form of grey water produced by

appliances.
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matter (such as fertilizer or construction material). Among non-organic waste we
distinguish recyclable refuse (glass, paper, aluminium, metal) from the rest that will
either be directly buried in a landfill or burnt (thereby producing energy and emitting
CO2 and other pollutants). Finally we differentiate, for all types of waste (recyclable
and non-recyclable), the fraction that can be used locally and the remaining part
that will have to be transported out of the simulated neighbourhood; this can be
considered as an output of a neighbourhood’s “metabolism”.

The total amount of waste produced per week by a zone will depend on whether
the zone is residential or commercial. Within the latter category we distinguish
different types of trade as the types of waste and amounts will strongly depend on
this. For each zone (of both categories) we calculate the total amount of waste
produced each week from annual averages per person that we then multiply by the
total number of occupants of the zone multiplied by the “fraction of normal presence”
(i.e. the cumulated hours of presence of all occupants over the week compared to the
average over the year). Each different type of waste represents a constant fraction
of the total. We then have for each type i and each zone j the weekly value of:

Wij(t) =
OccCumulj(t)
OccCumulAvej

· WeeklyProdi (5.11)

This calculation can be done in a pre-processing stage as soon as the time series of
occupant presence has been generated for each zone.

5.2.3 Discussion

Commercial activities in the municipality of Lausanne (that was kind enough to give
us their data) each have to declare an estimation of the yearly amount of recyclable
and non-recyclable waste they produce in order to be taxed. This gives an excellent
idea of the amount of waste produced per trade and per number of employees but no
clue on how this evolves over the year. Domestic non-recyclable waste is collected
twice a week and recyclable wastes are collected at lower frequencies depending on
their type. This high temporal resolution is helpful in understanding the seasonal
variation in waste production. On the other, hand spatial resolution is very low as
the collection of waste is done per neighbourhood of approximately 10000 people.
This simple model is an attempt, based on yearly averages, to reproduce realistic
figures that could give a global idea of the waste that can be recovered and waste that
will need to be treated which arises from a neighbourhood. A more complex model
could consider the variation over time (while many studies observe little variation
within households and offices, certain trades have clear seasonal variations) and
variation over households in general or the relation between the size of a household
(i.e. number of people) and the amount of waste produced, provided that data to
study these dependences is available.
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Chapter 6

Discussion

Contribution of this thesis to the modelling of occupant behaviour

The work presented in this thesis aims at contributing to the prediction of resource
demand (energy, water and waste as well as possible exchanges between them, e.g.
derivation of energy from waste) and its evolution with time within an urban context
- whether at the scale of a whole neighbourhood or that of a zone within a building.
Occupants play a important role in defining that demand either directly, with the
use of appliances, or indirectly by interacting with the building: opening windows,
moving blinds or simply being present and thus giving off heat. They are also
the main producers of the solid and liquid wastes that can be recycled into new
resources for the neighbourhood. Our objective has been to develop models capable
of predicting the aspects of occupant behaviour that have an important impact upon
urban resource consumption and waste production.

To satisfy this objective we have developed a suite of stochastic models. At its
core we have a model simulating occupant presence thereby providing the necessary
condition (presence) for related models of occupants’ interactions. This has two
important advantages: because the output of the model of occupant presence has to
be useful to all models of occupant behaviour it has pushed us to develop a model
capable of covering all aspects of occupant presence that can be of importance to
each model of occupant behaviour. The model is therefore a complete stand-alone
model and can be used as an input to any model of occupant behaviour, whether
developed by ourselves or not. On the other hand the randomness of variables (e.g.
electricity consumption) caused by occupant behaviour results from the combined
randomness of occupant presence and of the behaviour of occupants when these are
present; by using occupant presence as an input to models of occupant behaviour we
are able to concentrate on the part of this randomness directly due to the behaviour
of occupants and model it appropriately.

The model of occupant presence we propose is the first to our knowledge that
simulates a pattern of presence that varies over a whole year, thereby including days
of total absence over short and long periods of time that have important implications
for the time varying resource flows. The model has been developed to use inputs that
are easily available and/or simple to use: the profile of the probability of presence
is already a standard input to building simulation tools, data on long periods of

103



104 CHAPTER 6. DISCUSSION

absence are easy to find or deduce and we have devised the “parameter of mobility”
as a variable that can be easily understood by a non-expert user of the model. In
the case of office buildings the validation of the model has shown very convincing
results for a set of statistics (intermediate periods of presence and absence, time of
first arrival and last departure, cumulated hours of presence over a day and a week)
that essentially cover the different characteristics of occupant presence which are
important to the models of occupant behaviour.

The strength of the model of appliance use is the fact that it focuses on each
aspect of randomness in a dedicated way: randomness is split into occupants’ owner-
ship of appliances (this determines, at the beginning of the simulation, the appliances
to be considered), their presence (a necessary condition for the use of certain appli-
ances) and the use of appliances, which are themselves split into different categories
of use based on how this depends on occupant presence. Moreover the adoption of a
bottom-up approach makes the model easy to update with new inputs and to amend
where necessary. The validation done so far in the case of offices shows better results
than the best standard method available to date and this in a situation where that
method should do well: it has proven itself capable of simulating variation over time
and variety between occupants similar to that measured without compromising on
aggregated.

The use of indoor temperature and concentration of pollutants as stimuli for
occupants’ interaction with windows seems to be a sound choice that other models
are gradually adopting. Outdoor temperature plays a part in influencing occupant
behaviour by reducing or increasing indoor air temperature due to its low thermal
capacity; this is taken into account by the sub-hourly thermal solver integrated into
the model allowing us to work with very short time steps, an important feature dur-
ing the heating season. The fact that the model of window opening is behavioural
makes it very flexible and a good starting point for further development; perhaps
based on more comprehensive models of stimuli-interaction relationships. Finally,
we have also developed a simplified model for predicting refuse production. Al-
though temporally crude, this last stochastic model is nevertheless appropriate for
its purpose - given the usual frequency with which refuse is removed for treatment.

It is also worth noting that these models represent the first comprehensive suite of
stochastic models of the key features of occupants’ presence and related interaction
which influence urban resource flows. Furthermore, the generic nature of these
models is such that they are scale independent; by this we mean that they are equally
applicable for integration with single building or urban simulation programs. There
is nevertheless scope for their further improvement.

Scope for further validation and improvement

The model of occupant presence has done well in generating patterns of presence
for offices but it has not yet been tested in the case of residential buildings. As we
pointed out in chapter 3 there should not be any fundamental differences between
the simulation of presence within an office zone or a residential zone by the model;
nevertheless this hypothesis obviously needs to be tested and new default values for
its inputs need to be determined. There is however a potential difference in terms
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of occupants’ activity; that is, whilst present within a residential zone, an occupant
might not be “active” during hours of sleep. This does not change the functioning
of the model itself but, in the case of residential zones, the output of the model
will have to be complemented by an indication of the state of “activity” (asleep
or awake) of the occupant before being used by the models of occupant behaviour.
Furthermore, for the model to be used generally we will need to determine, for
residential zones in particular but also for offices, reliable default values (profiles of
probability of presence, long absences, mobility, etc.) and check how sensitive the
model is to changes in these inputs. The parameter of mobility was also deduced
from the data measured for each office; we will need to define, for both types of
buildings, levels of “mobility” (e.g. “high”, “medium”, “low”) and the numerical
values of the parameter that will correspond to them. For the time being periods of
long absence are initiated randomly for random periods of time based on the inputs
entered; the model would profit from slight modifications that would make the longer
periods of absence correspond more closely to typical periods of vacation. We used
for the validation of the model inputs based on measured data with a time step of
15 minutes; we will need to see how the results of the model change if we adopt less
detailed profiles of probability of presence.1 We have seen that applying the IFM at
different scales of time with the same inputs can lead to catastrophic results. For
the model to be able to operate with time steps of any length, we should produce the
necessary calculation to adapt the probabilities of transition to the change in length
of the time step. In order to simplify calculations we have supposed that the state
of presence of an occupant is independent of that of any other. While this is not
true we can probably make the model compensate for this error by feeding it with
the same inputs for occupants whose presence would be correlated.2 It should be
checked how well this works and how we could otherwise consider the dependence in
presence of occupants without having to make the model unnecessarily complicated.
Finally, this model has been conceived to provide inputs to behavioural models. It
would be an interesting step in the testing of the model to use it to generate the
input to a well-accepted model of occupant behaviour (such as Lightswitch-2002)
and compare the results of the combined models with the results provided by other
models of occupant presence and with measured data to further assess the model’s
validity.

Due to time constraints, the significant effort that has been invested in data
collection has unfortunately not been exploited to validate the appliance model.
Terminating this validation would be extremely helpful, particularly as we expect
residential load profiles to be a greater challenge for the model than those from
office buildings. Once the results of the model have been assessed the same data
can be used to determine the relative importance of each appliance type to overall
(aggregate) predictions. For example the stochastic simulation of certain appliances
(probably low power appliances such as phones and fax-machines) might be of little
consequence for the prediction of peak loads while the precision with which others

1Standard profiles of probability of presence are typically available on an hourly basis.
2In the case of occupants whose presence is known to be identical (e.g. the presence at home

of a parent and a young child, or the occupancy of a conference room) we generate one pattern of
presence and multiply it by the number of occupants.
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are simulated (most probably cookers) may prove to be determinant. In such a case
it might be more efficient to reduce the level of detail of unimportant appliances (e.g.
by incorporating them into the “stuff” category) and concentrating on the precise
simulation of important appliances. On a related issue, the cyclic and intermit-
tent load profiles of certain appliances have been represented by levels of constant
power. In the former case (e.g. fridges, freezers, washing-machines, tumble-driers,
dishwashers, etc.) the effect of this averaging should be compared to that of us-
ing fixed profiles; this will then indicate which option to choose. In the latter case
(modern induction cookers, computers, etc.) the same comparison as above should
be applied for each type of appliance and a method for integrating intermittency
in the cases where it seems necessary should then be developed. Finally, once well
validated model is available for a given set of installed appliances and a given profile
of presence of its occupants it will be necessary to assess the importance of appliance
ownership and occupant presence inputs to the model by analysing the sensitivity
of results to changes in these inputs.

Regarding the calibration of the model, it will be easy to find inputs directly re-
lated to appliances (e.g. power of use and stand-by), while those related to occupant
behaviour (e.g. probability of switch ON, duration of use) will probably require the
further collection and analysis of profiles of appliance consumption and occupant
presence, unless reliable studies of this kind have already be made (e.g. within na-
tional surveys or by appliance manufacturers or researchers in the field of energy
simulation) and can be used. The same data and analysis can also inform us of the
relationships that exist between the number of people present and the number of
appliances being used, such as how many appliances will a single person use? How
many people will share the same appliance? How will the power of an appliance
depend on the number of people using it?

Validation the model of window opening would require the acquisition of data.
This could be performed on the offices of the LESO building as occupant presence
(room occupancy), the status of windows (open/closed) and outdoor and indoor
temperature are already being measured. Some offices are also equipped with CO2

detectors (a measure of air quality). This could lead to a first assessment of the
model, a test of its founding hypotheses (mainly the choice of indoor temperature
and concentration of pollutants as stimuli) and a prioritisation of what aspects need
to be amended. The use of Fanger’s method to determine the thermal comfort
of occupants (initially developed in the case of air-conditioned buildings) could be
complemented or simply replaced by methods better adapted to naturally venti-
lated buildings.3 Finally, once the behaviour of the occupants is considered to be
well simulated, the model could be equipped with more advanced methods for the
simulation of air exchange with outdoors and adjacent zones of the building.

Research needs in the field of occupant behaviour

Stochastic modelling of human interactions is still in its infancy. This thesis has
presented important stepping stones that have been developed by ourselves and by

3Haldi and Robinson propose in ref:Haldi Robinson a model capable of considering occupants’
adaptation to indoor conditions from which the model could clearly profit.
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many fellow researchers over the past few years. There are nevertheless many gaps
to be filled and whole fields or new research to be developed; we present in the next
lines those that seem most important.

While much effort has been put into simulating the use of lighting appliances
and windows, blinds and doors have not profited from the same attention; both
these models of occupant interaction will remain incomplete until more advanced
algorithms for their simulation have been developed.

Issues such as the reactive inertia of the occupant or group dynamics have yet
to be studied. As humans tend to be a little lazy the frequency of interaction tends
to be affected by the convenience with which the interaction is realised. In other
words, we have ’interaction inertia’, but since we are responsible for our own dis-
comfort, we may be forgiving of the corresponding departures from optimal comfort.
Interactions are likely to differ between mono-occupant and multi-occupant spaces,
where decision making process of the group can vary from “polite” (the first person
experiencing a discomfort is allowed to decide) through “democratic” (the majority
vote decides the response) to dictatorial” (someone with an assertive personality
who creates a culture of dominating the environmental regulation controls).

One of the most straight-forward means for an occupant to (consciously) influ-
ence her/his indoor environment is the use of controls regulating the HVAC system.
This “behaviour” of the occupant is among the most influential on a buildings’
needs in resources for heating and cooling yet its simulation has so far received little
attention.

The models presented in this thesis show great possibilities for the integration
of occupant behaviour into building simulation programs. However, owing to the
scarcity of data that supported their development they do not necessarily have
widespread applicability: the occupancy presence model is based on data from a
limited number of single occupant offices, so that non-office uses are not necessarily
covered and there is a dearth of up to date data regarding use of the range of ap-
pliances, both domestic and non-domestic. What is needed is a concerted effort to
gather high quality data from a good sample of the range of key building types to
develop and validate the set of stochastic models of human interactions.
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Appendix A

The inverse function method

The “Inverse Function Method” (IFM) is used to generate a sample of realizations
of events from a given probability distribution function (PDF). The method works
by:

- inverting the cumulated density function (CDF) of the random variable of
interest,

- selecting1 uniformly a number between 0 and 1 and

- using the inverted CDF to relate the selected number to a value adopted by
the random variable.

Procedure

Let us go through the corresponding successive calculations. Say we would like to
“sample” an exponential distribution whose PDF is given by:

p(x) = λ · e−λx for x ≥ 0 (A.1)

We first need to deduce its CDF, corresponding to the probability that the random
variable X takes on a value equal or smaller than a given x (≥ 0):

Pr(X ≤ x) =
∫ x

0
p(X) dX = 1 − e−λx (A.2)

whose inverse function is:

y = 1 − e−λx ⇐⇒ x = − 1
λ

ln (1 − y) (A.3)

To each value of y between 0 and 1 corresponds a unique value of x of the domain of
definition of the PDF. When the value of x is given, then y takes on the probability
that the random variable X will take on a value smaller than or equal to x. When

1We will use the verb “select” to represent the action of “randomly determining” the value(s) to
be adopted by a random variable in accordance with its PDF. In the case of the uniform distribution
this is done by random number generators available in most numerical computing environments; in
the case of other distributions, this can be done with the IFM presented here.
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the value of y is given, then x takes on the value for which the probability that the
random variable X takes on a value smaller than or equal to x is equal to y.

By considering x to be the value actually taken on by the random variable X
and by generating for y random values distributed uniformly between 0 and 1, it is
now possible to generate a sample of values for a random variable X with a given
PDF.

IFM with discrete empirical PDFs

The successive steps of this method are shown in figure A.1 where the PDF to be
sampled has been discretized into a set of histograms. The discretisation of the
PDF is a common procedure. In many cases the analytical expression of the CDF is
not invertible; replacing it by a set of discrete values simplifies the method without
sacrificing the reliability of its predictions. Also the user might be interested in
using empirical probability distribution functions (EPDF) computed directly from
collected data. In this case it is more interesting to directly use the measured EPDF
than try to fit it to an analytical expression (that might need to be discretized
anyway).

The most simple application of the IFM is its use to determine the outcome of a
process with two discrete states. For example, in the case of the model of occupant
presence, if we want to know whether the occupant will change her/his state of
presence (given by the probability of transition Tij for i �= j), we select a number
between 0 and 1 and compare it to the value of Tij ; if it is smaller than or equal
to Tij then the event will take place and the occupant will change her/his state, if
it is greater than Tij the event does not take place and the state of presence is not
changed.

Monte Carlo

Monte Carlo methods function by generating random numbers and observing what
fraction of the numbers obey a given property. In their simplest form they are iden-
tical to the IFM. They can also be applied as a numerical method for the calculation
of integrals which are too complicated to be solved analytically.
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Appendix B

Simulating residential appliance
use.

Unsatisfactory results for the validation of the total energy consumption in the
case of residential appliances have motivated us to analyse in detail how the model
simulates the use of appliances that depend directly on occupant behaviour (i.e.
appliances of categories 2 and 3).

By adopting a simplified version of the model and comparing both measured
and simulated “uses” of an appliance we were able to attribute the underestima-
tion of total energy consumption to the input data rather than to the model itself.
Furthermore the replacement of constant average values of power by intermittent
values selected at each time step has proven itself an important step towards the
correct simulation of peak values while not impairing the prediction of energy con-
sumption. Finally the analysis of the model has pointed out the importance played
by the probability of switch ON of each appliance in obtaining realistic profiles of
appliance use and that this input must be entered as a daily profile of probability
rather than as a constant value.

Methodology

The first step made was to strip the model down to its simplest form. Interac-
tions between occupants were not considered and occupant presence was reduced to
whether the zone was occupied or not. As we were interested in testing the model
for the use of appliances by occupants, we focused our attention on appliances of
categories 2 and 3 when not in stand-by mode. To do this we generated days1 of use
of single appliances with the “Leave-One-Out” method, joining successive simulated
days together to form 100 continuous simulated periods of appliance use of the same
length in time as that of the measured period (as can be seen in figure B.1).

Simulated and measured appliance use were compared by observing the following
properties at each operation of the appliance:

- duration of use of the appliance

1The time step used for the calibration, simulation and validation is 1 minute.
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Figure B.1: Measured (top) and simulated (centre and bottom) load profiles of a
cooker.

- energy consumed during at each use

- daily frequency of use

- probability of finding the appliance ON for each time step of a day

- probability of the appliance being switched ON for each time step of a day

- value of power of the appliance when in use (either power averaged over each
period of use or value of power at each time step of all uses)

Different strategies of simulation were considered concerning the level of power
of an appliance in operation and the probability of switching it ON. For the latter
we compared using either a constant value (such as initially done in the model of
appliance use) or a profile of probability of switch ON (with 1 minute time steps)
based on the measured times of switch ON of the appliance. The model as discussed
so far considers appliances to function at constant levels of power selected, when
the appliance is switched ON, from a distribution entered as an input to the model.
The values of this distribution correspond to the power of each measured use of
the appliance averaged over the period of that use. As argued in chapter 4, this
way of modelling the power demand of appliances is clearly a handicap for the
simulation of peaks, especially for appliances whose load profile varies greatly. An
alternative method would be to select a level of power at each time step of the use



115

of an appliance; the input distribution of power would then correspond to all values
of power appearing in the measured data.

Results

The first configuration tested was that closest to the initial model of appliance use:

- the probability of switching an appliance ON is constant,2

- appliances operate at a constant power when switched ON

- and are switched OFF when occupancy changes from 1 to 0.

Of the properties used to test the model the daily frequency (i.e. average number
of times the appliance is switched ON per day) does reasonably well. As expected
the probability of switch ON as well as the probability of finding an appliance in use
are more or less evenly scattered over the time steps of an average day. The average
power is slightly underestimated (1000W simulated for a cooker compared to 1094W
measured), but the distribution of power shows the model’s inability to simulate the
peak values measured. This is quite obvious as only averaged values of power are
entered by the input distribution and is made clear in the top plot of figure B.2
that compares (all) the levels of power measured with those simulated. Figure B.4
shows the distributions of the simulated and measured duration of use and energy
consumption, here in the case of a computer. Both are similarly underestimated:
the average simulated duration of use of a computer is 99 minutes (corresponding
to 32% less than the measured average duration of 147 minutes); the total time of
use simulated is 1080 minutes (corresponding to 39% less than the measured total
time of use of 1771 minutes); the average simulated energy is 0.031kWh (36% of the
averaged measured energy consumed by the appliance at 0.049kWh).

The first modification we introduced was to replace the constant probability of
switching ON an appliance by a profile of probability of switch ON. While this
had little effect on the simulation of energy consumption it (quite naturally) greatly
improved the probability of switching ON an appliance and the probability of finding
the appliance ON at each time step of a day (see figure B.3). We then replaced the
averaged values of power by intermittent values selected at each time step, and the
distribution of average power previously used as an input by that of all values of
power measured. This also has little effect on the simulation of energy consumption.
It corresponds to a slight improvement of the average power (1025W instead of
1000W) but has a considerable impact on the distribution of the levels of power the
appliance functions at as can be seen in figure B.2.

Explanation to the underestimation of energy consumption

The results obtained so far clearly indicate that the underestimation of energy con-
sumption is linked to that of the duration of use. In order to test this assumption

2We consider occupants to interact with appliances only from 7AM to 12PM; outside of this
time-frame the probability of switch ON is equal to 0.
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Figure B.2: Distribution of simulated (blue) and measured (red) levels of power of a
cooker. The top plot results from the use of averaged power values while the bottom
plot from the use of intermittent values selected at each time step.
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Figure B.3: Top: probability of switching ON a cooker for each time step of a day
(in red the measured profile entered as an input, in blue the profile resulting from
100 simulations). Bottom: probability of finding a cooker ON (in red the measured
profile, in blue the profile resulting from 100 simulations).

we relaxed the condition that an appliance should be switched OFF at the depar-
ture of the occupant(s). Durations of use simulated then become samples of the
distribution of durations used as inputs. This corresponds to a clear improvement
in the simulation of both durations of use and energy consumption as can be seen
in figure B.5. The average duration of use of a computer (140 minutes) now differs
by only 5% from the measured value, the total time of use (1458 minutes) is only
17% less than that measured and, as we assumed, the average energy consumption is
improved by very much the same proportion, to within 10% (0.044kWh as compared
to the measured value of 0.049kWh).

What we are witnessing here is not an intrinsic flaw of the model but rather
one of the method used for its validation. As we have observed the simulations
of appliances not switched OFF at departure (obviously) provide similar results to
the measured values: both the duration of use and energy consumed are off by
approximately the same fraction. This confirms that the underestimation of energy
consumption is linked to the underestimation of duration of use. That the model is
being biased by its inputs can be explained as follows:

- The distribution of durations of use of each appliance input into the model
contains periods of use where the appliance was and was not switched OFF at
departure.
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Figure B.4: Distributions of simulated (blue) and measured (red) duration of use
and energy consumption in the case of a computer switched OFF at the departure
of the occupant(s).
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Figure B.5: Distribution of simulated (blue) and measured (red) duration of use and
energy consumption in the case of a computer not switched OFF at the departure
of the occupant(s).
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- When the model selects a duration for the use of the appliance it either selects
a period of “normal” use or of “shortened” use.

- As these simulated periods of use have a chance of then being shortened by
the departure of the occupant the overall duration of uses will very probably
be underestimated.

This should nevertheless not be a problem for the future use of the model provided
that periods of uninterrupted use of appliances are used to calibrate the model.

Conclusion

In essence the model has shown itself to be capable of predicting occupant-dependent
appliance energy demand with a good degree of accuracy, provided as usual that the
input calibration parameters are sound.
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