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Sommario

La presente tesi ha per argomento il controllo stocastico, ossia il controllo di sis-
temi il cui stato é rappresentato da un processo stocastico. La questione fondamen-
tale nel controllo stocastico é come incorporare l’incertezza nell’azione di controllo,
quindi come modellare l’incertezza. Diversi approcci sono possibili, le cui prestazioni
dipendono principalmente dalla specifica applicazione. In particolare, la tesi affronta
due approcci molto promettenti nella gestione di eventi incerti nei problemi di con-
trollo: l’approccio stocastico e l’approccio robusto. Entrambe le metodologie sono
illustrate attraverso un’applicazione industriale. L’approccio robusto é applicato al
problema del controllo dei livelli di scorta. Le quantitá immagazzinate nei buffer sono
utilizzate per soddisfare una domanda esterna ed incerta, di cui non si conosce la
distribuzione stocastica. La domanda é assunta non nota ma limitata da vincoli pre-
definiti. L’obiettivo che ci si pone é quindi trovare la politica di controllo ed i livelli di
scorta iniziali tali che la domanda sia sempre soddisfatta. A tal fine é stata utilizzata
la Robust Invariant Set Theory, una specifica teoria ampliamente usata nel controllo
robusto. Il metodo di controllo proposto é applicato ad un impianto di produzione che
si trova nel Sud Italia: i risultati di simulazione ne mostrano l’efficacia e l’affidabilitá.
L’approccio stocastico é invece applicato al problema della climatizzazione degli edi-
fici. L’obiettivo che ci si pone é lo sviluppo di strategie di controllo predittive al fine
di una piú efficiente ed economica climatizzazione mantenendo alti livelli di comfort
per gli occupanti. I disturbi sono principalmente le condizioni meteorologiche e gli
occupanti l’edificio. Le incertezze sono modellate in maniera stocastica: la proba-
bilitá di distribuzione dei disturbi puó essere approssimata ragionevolmente con una
distribuzione normale e quindi identificata. Un caso di studio significativo é scelto
per condurre l’analisi delle prestazioni del controllo via simulazione. Diverse strategie
di controllo predittive basate sul modello dell’edificio sono confrontate, anche con un
controllore industriale: i risultati di simulazione dimostrano l’efficacia e la flessibilitá
del metodo di controllo proposto.
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Parole chiave: Controllo predittivo basato su modello in ambito stocastico, con-
trollo robusto, controllo ad orizzonte recessivo, controllo climatico abitativo, teoria
degli insiemi robusti invarianti.
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Resume

The thesis focuses on the stochastic control, i.e. control of systems involving uncer-
tainty and whose states are represented by a stochastic process. The basic idea in
stochastic control is how to incorporate uncertainty in the control action, i.e. how
to model it. Several approaches are applicable, whose performances mainly depend
on the specific application. In particular, the thesis deals with two attractive ap-
proaches to handling uncertainty in the control problem: the stochastic approach and
the robust approach. Both these methods are illustrated through an industrial appli-
cation. The robust approach is applied to classical problem of multistorage system
control. An external uncertain demand is satisfied by using items stored in buffers.
The demand, whose probability distribution is unknown, is assumed to be unknown
but bounded inside given constraint sets. The Robust Invariant Set Theory, a specific
theory broadly used in robust control, is exploited to find a control law and the initial
buffer levels guaranteeing that an unknown bounded demand is always satisfied. The
proposed control method is applied to a manufacturing plant located in South Italy:
simulation results prove its efficacy and the reliability.
The stochastic approach is employed in the building climate control. The goal is to
develop predictive control strategies to save energy in indoor climate control while
maintaining high user comfort. The disturbances mainly consist of the weather and
the people occupying the building. Uncertainties are modeled in a stochastic fashion:
the disturbances probability distribution can be approximated well as a normal dis-
tribution and then identified. One industrial relevant case study was selected to carry
out an in-depth simulation analysis of control performances. Several predictive con-
trol strategies based on the building model were compared, to an industry-standard
controller as well: simulation results prove the efficacy and the tunability of the pro-
posed control method.

Keywords: Stochastic Model Predictive Control, Robust Control, Receding Hori-
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zon Control, Building Climate Control, Robust Invariant Set Theory.
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Preface

The thesis focuses on stochastic control, i.e. control of systems whose states are
represented by a stochastic process. The control problem is naturally uncertain:
in most of the industrial applications some of the agents acting on the system are
not known, at best we have a probabilistic model of the expected outcomes of their
actions. It is then desirable to reduce disturbance effects and provide robustness to the
control action without increasing in complexity. Handle uncertainty and robustness
have been a central theme in the development of the field of automatic control. The
most common approach adopted in industry so far is simply to take the nominal
behavior of uncertainty, the so-called ”certainty equivalence” approach; it can work
well in some cases, but in general it does not make the control strategy aware that
the system dynamics can deviate from the nominal ones. To derive more efficient
and robust control policies the uncertainty has to be incorporated in the controller,
that is ”model uncertainty”. In general uncertain events are incorporated as random
variables and modeled as stochastic processes: one can develop an approximate model
of uncertainty and assume that the uncertain data come from this known model. Thus
the uncertain probability distribution has to be identified. By doing so a stochastic
approach to the control problem is adopted. However, when upper and lower bounds
for uncertainties can be inferred from historical data or decision makers’ experience
more easily and with more confidence than empirical probability distributions for the
same quantities, it would be preferable to adopt a deterministic approach to make a
controlled system robust against uncertain events: the uncertainty is assumed to have
a known range of allowed values, but no knowledge is given on which allowed values
will actually be taken. This approach is referred as robust or worst case approach.
All decisions are made accounting for the worst disturbance outcome in order to have
good control performances for any disturbance realization. Clearly this can lead to
an unnecessarily conservative and then expensive control action, while the stochastic
approach leads to less conservative control actions. However in general stochastic
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control problem is intractable to solve and requires a great amount of memory and
computation time, while the robust control problem is usually tractable and less
computationally demanding the the stochastic control problem. Nevertheless there
are some stochastic control problems that can be solved efficiently, such as the control
of systems with gaussian disturbances and quadratic criteria (LQG). As a conclusion,
both the illustrated control methods have advantages and disadvantages. Which
approach to apply and how to model uncertainty mainly depends on the specific
application. In this thesis a stochastic control problem has been solved in indoor
climate control while the robust approach has been applied to multistorage system
control. In details, the following activities have been conducted during the PhD
course:

• numerical computation of robust invariant sets for multistorage sys-
tems. Multistorage systems with control and state constraints dealing with un-
known demand have been studied. Exploiting a theory broadly applied in robust
control (Robust Invariant Set Theory) and two Matlab toolboxes (MultiPara-
metric and InvSetBox), two kind of sets have been computed: robust invariant
sets and robust control invariant sets. These sets contain the states whose trajec-
tory will never violate the system constraints: to compute the robust invariant
set a feedback control law has to be provided hence the autonomous system is
considered. To compute the robust control invariant set the non-autonomous
system is employed. The robust invariant sets have been computed for two
commonly adopted feedback policies;

• providing the closed form of robust invariant sets for multistorage
systems. Starting from the numerical results obtained in the previous activity
and exploiting a well known algorithm, the closed form of the robust invariant
set and of the robust control invariant set for the investigated system and for
any system size has been provided. The obtained results allow to compute the
invariant sets without resorting to any numerical computation, which could be
intractable. The computed invariant sets permit to derive buffer conditions to
be satisfied in order to prevent stockouts;

• developing predictive control strategies for indoor climate control. A
stochastic model-based predictive (Stochastic MPC ) approach has been inves-
tigated for indoor climate control that takes into account weather predictions.
The control aims at increasing energy efficiency while respecting constraints
resulting from desired occupant comfort. Exploiting methods and results avail-
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able in literature, the stochastic control problem has been formulated, then
made tractable and solved by standard solvers for linear, quadratic and conic
optimization. Several approximations to speed up the optimization routine have
been developed and compared.

The first two activities have been conducted at the Department of Engineering,
University of Sannio in Benevento. We would gratefully acknowledge Prof. Francesco
Borrelli for his essential and important contribution to the work on the robust control
of multistorage systems.

The last activity have been conducted at the Automatic Control Laboratory, Swiss
Federal Institute of Technology, Zürich, as part of OptiControl project, which aims at
developing predictive control strategies to save energy in indoor climate control while
maintaining high user comfort. The authors gratefully acknowledge the contributions
of the OptiControl project participants, which consists of members from Siemens
Building Technologies, the Building Technologies Laboratory of EMPA Dübendorf,
the Federal Institute for Meterology and Climatology MeteoSwiss and the Systems
Ecology Group of ETH Zurich. Swisselectric, CCEM-CH and Siemens Building Tech-
nologies are acknowledged for their financial support of the OptiControl project. In
particular the authors would like to gratefully thank Prof. Manfred Morari for allow-
ing us to visit his group at ETH in Zürich and for invaluable comments and suggestions
on the results presented in this work. These visits have allowed us to establish a great
working relationship with the group. In particular, we would like to deeply thank Dr.
Colin Jones and Ing. Frauke Oldewurtel for sharing their knowledge and their work
with us.

Finally, we would gratefully acknowledge the important role played by our tutor,
Prof. Luigi Glielmo, and co-tutor, Ing. Carmen Del Vecchio for their fundamental
contribution and support to our work during the PhD activities.

The organization of the thesis is the following

• chapter 1 deals with the classical problem of buffer level control. An external
demand is satisfied by using items stored in buffers. The control target is to
guarantee that buffers have always enough stocks to satisfy the demand. Uncer-
tainty is modeled in a nonstochastic fashion: the demand is assumed to be un-
known but bounded inside given constraint sets. These unknown-but-bounded
specifications for uncertainties are quite realistic in several situations. Upper
and lower bounds for production and demand can be inferred from historical
data or decision makers’ experience. The proposed approach has been applied
to a manufacturing plant located in South Italy to show its performances;
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• chapter 2 deals with the building climate control. The goal is to develop pre-
dictive control strategies to save energy in indoor climate control while main-
taining high user comfort. The disturbances mainly consist of the external
environment or weather and the people occupying the building. Uncertain-
ties are modeled in a stochastic fashion: statistical analysis have shown that
the disturbances probability distribution can be well approximated as a normal
distribution and identified. The corresponding stochastic control problem is ef-
ficiently solved exploiting standard solvers. Several predictive control strategies
based on the building model are compared to both an ideal controller and an
industry-standard controller to show the performances of the proposed control
method.
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Chapter 1

Robust Control for

Constrained Multistorage

Systems

Multistorage systems represent a very important class of systems which model many
real processes such as flexible manufacturing systems, communication networks, and
transport systems. These dynamical systems represent processes that produce and/or
transfer goods, possibly storing them temporarily in safety stocks (buffers) which sup-
ply an external demand. The final goal of a multistorage system is to satisfying any
admissible demand by possibly minimizing some operational costs, such as the stock-
ing cost. Unfortunately, many real systems work in uncertain and varying conditions.
The demand is often unknown, then a stochastic process should be employed for mod-
eling it. However the this requires stochastic information which can be unavailable.
A more realistic and confident approach than building an empirical probability dis-
tributions for the uncertain quantities can be to assume a known range of allowed
values for demand and production, which can be inferred from historical data or
decision maker experience. Thus the uncertainties are modeled in a nonstochastic
fashion by assuming them unknown but bounded inside given constraint sets. This
leads to adopt a robust approach to the control problem investigated in our work.
The classical problem of buffer level control is then addressed by means of robust
invariant set theory for linear and switched linear systems: the target is to determine

15



Robust Control for Constrained Multistorage Systems

production scheduling and item levels to be stored in buffer guaranteeing that an
unknown bounded demand is always satisfied. We consider a manufacturer produces
several items stored into n buffers. The external demand for items is continually sup-
plied through stored items (make-to-stock manufacturing system). A simple model
with n decoupled integrators and n additive bounded disturbances is employed. The
dynamic coupling arises from bounded total production capacity and bounded total
demand. Invariant set theory for linear and switched linear systems is exploited to
compute robust positive invariant sets and controlled robust invariant sets for two
commonly used scheduling policies. The explicit expression of the invariant sets for
any arbitrary n is provided. The integrator model is further extended in order to take
into account different type of constraints, setup costs and changeover times. How to
use hybrid systems formalism in order to compute the corresponding robust invariant
sets is part of future investigations.
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1.1. Introduction

1.1 Introduction

We consider multistorage systems with control and state constraints dealing with
unknown demand. A manufacturer produces several items which are kept in safety
stocks in order to supply an external unknown demand. Production is make-to-stock,
i.e., a demand is satisfied by using items in stock while triggering a stock replen-
ishment order. This model is generic and it corresponds to several implementations
such as: (i) the items are distinct components assembled into a single product at a
single facility (in this case, buffers connect the production line of intermediate prod-
ucts with the assembly line of final products), (ii) the items are distinct products
produced at a single facility and supplying distinct demands, (iii) the items represent
the same product manufactured and distributed at different locations, (iv) the items
represent the same product and distinct buffers are kept for high-priority and low-
priority customers. In this chapter the general term ”item typology” is adopted with
the following interpretation: item i is kept in the buffer xi and has and associated
demand di. The buffer level xi can be increased by producing ui and the demand
di can be satisfied if xi ≥ di. An example of the first implementation is depicted in
Figure 1.1 [31]. This kind of models are used in different contexts, such as manufac-

Set Buffers Line 1

Raw-Intermediate Line 1

type 2type 1type 4

type 1

type 2

type ni

1

Set Buffers Line 2

Assembly LineRaw-Intermediate Line 2

Raw-Intermediate Line N

Figure 1.1: Scheme of a two-stages multiproduct batch production plant.

turing, network routing communications, logistic and traffic control, the minimization
of transportation and stocking costs [11, 21, 22, 45, 69, 84, 98, 100]. For instance xi(t)
can represent the energy stored at time t in the i-th battery charged by ui(t) while
serving a time-varying load di(t). Other typical applications of this kind of systems

17



Robust Control for Constrained Multistorage Systems

concerns both the minimization of transportation and stocking costs [103] and the
supply contract for the repeated delivery, on a long time horizon, of a given quantity
of a certain commodity [109]. An appropriate inventory level has to be maintained at
the delivery points at each time in order to face any demand. As the demand is usually
unknown, stochastic methods has been applied to solve this kind of problems, often
based on dynamic programming [21, 98, 100]. This approach requires the knowledge
of stochastic information which might be not available. In this case, a worst-case ap-
proach can be used modeling the uncertainties in a different way [28–30]. The demand
is assumed to be unknown-but-bounded and upper and lower bounds for production
and demand are assigned (usually out of historical data as well explicitly stipulated
in supply contracts). In conclusion we considered a worst case approach to the con-
trol of multistorage systems in the presence of storage and production capacity hard
constraints and uncertain demand. Although our results apply to larger classes of
storage systems, the language used in the chapter is typical of manufacturing process
and two commonly adopted production control laws are investigated. The case study
presented in the section 1.9 is also related to a manufacturing system.

1.1.1 Literature Review

A classical control problem consists of scheduling the production of each item ty-
pology in order to guarantee that buffers have enough stocks to satisfy the demand
(i.e. stockout never occurs) [24, 57, 95, 113]. The buffer levels are subject to hard
constraints [28–30]. Over the last decades this problem has been studied from many
different angles. Computing an optimal dynamic scheduling policy (i.e. a policy which
takes into account the current state of inventory levels before deciding which item
should be produced next) is not an easy task: it requires to choice of three unknowns:
which item to produce, when to start the production and for how long. Starting from
a preliminary study of Zheng and Zipkin [115], in [65] the author provides the explicit
form of the optimal scheduling policy for two item typologies requiring identical pro-
duction times. De Vericourt and coauthors in [113] generalized the results in [65] when
the two item typologies require different production times. The authors also explicitly
noticed the difficulties of generalizing the results to more than two item typologies.
Further extensions to the results in [113] can be found in [43] and references therein.
The authors in [24, 57, 95] study the case of multiple item typologies by focusing on
fixed scheduling sequence. Independently from the adopted scheduling policy, the
stockouts are typically modeled either as lost demand, thus constraining bufferlevels
to assume positive values, or by backordering demand and allowing bufferlevels to
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1.2. Model and Problem Statement

take negative values corresponding to the unmet demand. In both cases the stock-
out risk is minimized by introducing a buffershortage cost. Moreover, the scheduling
policies proposed in the aforementioned works are independent on initial buffer levels
and could lead to stockouts even under nominal operation. In presence of uncertain
inputs, a state feedback strategy can make the system more robust.

1.2 Model and Problem Statement

A system with n buffers storing n item typologies is shown in in Figure 1.2. The

Figure 1.2: Set of Buffers. The i−th buffer has level xi, outflow di and inflow ui

scheme in 1.2 models also the two-stages multiproduct batch production plants de-
picted schematically in the Figure 1.1. The Figure 1.2 is presented here to point
out the system variables xi(k), ui(k), di(k) per each buffer type i. This kind of sys-
tems is modeled with n decoupled integrators and additive disturbances: xi(k + 1) =
xi(k) + ui(k) + di(k) where xi is the level of buffer i, ui the production rate of the
i-th typology and −di is its demand for i = 1, . . . , n. Multiple item typologies can be
produced during time instant k and k + 1. This is possible by either having multiple
production lines or switching the production of one line between different typologies
during the sampling time. This work focuses on model (1.1)-(1.2) and studies the
buffer conditions and the production laws such that for each product typology and
at each time k there are items stored in the buffer sufficient o satisfy the demand
(stockout never occurs). To gain insight in initial buffer level conditions we make use
of robust invariant set theory [60,73,104] for linear and switched linear systems. The
largest sets of initial buffer levels xi(0) is computed such that no-stockout (xi(k) ≥ 0 at
all time instants k) is guaranteed for all admissible demands di(k), i = 1, . . . , n. Both
the case of a generic admissible control law ui(k) (and thus compute ”robust controlled
invariant sets”) and two specific production control laws ui(k) = f(x1(k), . . . , xn(k))
(and thus compute ”robust invariant sets”) is studied. The first production law is the
Replenish Lowest Buffer (RLB) law: at each time instant k the system produces at the
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Robust Control for Constrained Multistorage Systems

maximum rate the item typology corresponding to the lowest buffer level. The second
production law is the Distribute Production Capacity (DPC) law: at each time instant
k the control policy starts producing the item typology with the lowest buffer level.
The buffer will be filled up to the maximum demand value or up to the maximum
buffer level reachable with the available production capacity. If there is a residual
production capacity it will be used to replenish the second lowest buffer, and so on,
until the maximum production capacity is reached or all buffers have been replenished
at their maximum demand values. In RLB policies only one product typology can
be produced at a time. In DPC policies more product typologies can be produced at
the same time. Since the proposed control laws are piecewise linear functions, the use
of hybrid system theory and tools is necessary to compute the corresponding robust
invariant sets. The following discrete time model is considered

x(k + 1) = x(k) + u(k) + d(k) (1.1)

with the uniform sampling time equal to ∆T = tk+1−tk. System (1.1) represents a set
of n buffers where n types of items are stored. The state is x(k) = [x1(k), . . . , xn(k)] ∈
Rn where xi(k) represents the level of the i-th buffer at time tk, the positive input
is u(k) = [u1(k), . . . , un(k)] ∈ Rn where ui(k) is the production rate for the i-th
item typology during the sampling interval [tk, tk+1). The element wise negative
vector d(k) = [d1(k), . . . , dn(k)] ∈ Rn represents the external demand and di(k) is
the demand of the i-th typology in the sampling interval [tk, tk+1). A scaled model
will be used, i.e., xi(k) denotes the number of products of type i stored at time
instant k divided by ∆T and u(k) and d(k) represent production and demand rates,
respectively, rather than absolute quantities. System (1.1) is subject to the following
constraints for all k ≥ 0:

x(k) ∈ Xn !{x ∈ Rn | 0 ≤ xi ≤Mi i = 1, . . . , n} (1.2a)

u(k) ∈ Un !{u ∈ Rn |
n∑

i=1

ui ≤ Pmax,

0 ≤ ui ≤ pmax
i i = 1, . . . , n} (1.2b)

d(k) ∈ Wn !{d ∈ Rn |
n∑

i=1

di ≥ −Dmax,

− dmax
i ≤ di ≤ 0 i = 1, . . . , n} (1.2c)

pmax
i ≥dmax

i i = 1, . . . , n. (1.2d)

Constraint (1.2a) sets an upper-bound Mi to the maximum buffer capacity and
it imposes that a stockout never occurs (xi ≥ 0), i.e. it guarantees that demand
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1.2. Model and Problem Statement

is always satisfied. Constraint (1.2b) sets an upper-bound pmax
i to the production

rate ui of the i-th typology. Moreover, at any instant k the overall production can
not exceed the maximum value Pmax (which represents the maximum production
capacity of the plant or machine). Constraint (1.2c) sets an upper-bound dmax

i to the
demand d(k) of the i-th typology. Moreover, at any instant k the overall demand can
not exceed the maximum value Dmax. Constraint (1.2d) guarantees that the plant
production capacity for each item is greater than the maximum demand. The case
∑n

i=1 pmax
i ≥ Pmax ≥ Dmax ≥ 0 is studied.

Remark 1 In model (1.1) production and demand of all typologies at time k are
synchronous. In case of one production line, switches between different typologies will
occur during the sampling interval [tk, tk+1); these are not captured in the proposed
model. Model (1.1)-(1.2) also does not include delays and setup times. Nevertheless,
we will show that nonintuitive and interesting results can be obtained by studying the
robust feasibility of model (1.1)-(1.2).

For system (1.1) under constraints (1.2) and assumption (1.3), the problems we con-
sider in our work can be stated as follows:

Problem 1 Compute the largest set of initial buffer levels x(0) such that for all
admissible demands there exists a control law satisfying production constraints (1.2b)
and buffer level constraints (1.2a). This set is the maximal control robust invariant
set C∞ (defined in Section 1.3). Hence, in this case, we are not interested in a specific
production control law but we examine the initial buffer condition that guarantee that
the system remain feasible for any demand. The set C∞ is computed in Section 1.4.

Problem 2 Compute the largest set of initial buffer levels x(0) such that for the
RLB and DPC feedback policies, production constraints (1.2b) and buffer level con-
straints (1.2a) are satisfied for all admissible demands. This set is the maximal robust
positive invariant set O∞ for the closed loop system (defined in Section 1.3). The
set O∞ is computed in Section 1.5 for the RLB control law and in Section 1.5 for the
DPC control law.

Remark 2 The first problem has been investigated in [28–30] for a larger class of
multi-inventory dynamical systems. The results presented in [28–30] are more gen-
eral than the one presented in Section 1.4. However, by focusing on the simpler system
class (1.1), our approach allows to explicitly compute the maximal control robust in-
variant set C∞ for arbitrary n.
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While computing the robust invariant sets described above is an interesting numerical
exercise, we remark that the main contribution of this work is to provide the analytical
expression for the invariant sets for arbitrary n. We also remark that the results of this
work can be used in the design of control systems for constrained systems and applied
to guaranteeing feasibility in model predictive control, since the constraints can be
satisfied for all time if and only if the initial state is contained inside an invariant set.

Remark 3 In push systems the buffer holds products waiting to be manufactured.
Therefore the problem becomes the dual of the one presented in this section. The
main feasibility condition consists in having each buffer level below a fixed constant and
avoiding that the queue of products waiting to be manufactured grows to infinity [34,
55,96]. The results presented in this work can be extended to push systems.

Without loss of generality we first will assume that:

Pmax = 1
Dmax = 1
Mi = Mj = M i, j = 1, . . . , n.

(1.3)

In the Section 1.7, the simplifying assumption (1.3) is removed and system (1.1)–(1.2)
is extended in order to take into account setup times. In this case, we show how to
use hybrid systems formulation in order to numerically compute the corresponding
robust invariant sets. In the next section a brief review on invariant set theory in
provided.

1.3 Background on Robust Invariant Sets

This section has been extracted from [60, 73, 104] and provides the basic definitions
and results for robust invariant sets for constrained linear systems. A comprehensive
survey of papers on set invariance theory can be found in [27].
We will first introduce some basic concepts before defining the invariant sets that we
wish to compute. We deal with two types of systems, namely, autonomous systems:

x(k + 1) = fa(x(k), w(k)), (1.4)

and systems subject to external inputs:

x(k + 1) = f(x(k), u(k), w(k)). (1.5)
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1.3. Background on Robust Invariant Sets

We will assume the origin is an equilibrium for both systems and that both systems
are subject to disturbance w(k) and to the constraints:

x(k) ∈ X, u(k) ∈ U, w(k) ∈ W ∀ k ≥ 0. (1.6)

The sets X and U and W are polyhedra and contain the origin in their interior. Two
different types of sets are being considered: invariant sets and control invariant sets.
We will first discuss invariant sets. The invariant sets are computed for autonomous
systems. These types of sets are useful to answer questions such as: “For a given
feedback controller u = k(x), find the set of states whose trajectory will never violate
the system constraints”. The following definitions are derived from [20,23,27,73,75].

Definition 1 (Robust Positive Invariant Set) A set O is said to be a robust pos-
itive invariant set for the autonomous system in (A.2) if

x(0) ∈ O ⇒ x(t) ∈ O, ∀w(t) ∈ W and ∀t ∈ N+

The set O∞ is a maximal robust positive invariant set if 0 ∈ O∞, O∞ is robust
positive invariant and O∞ contains all robust positive invariant sets that contain the
origin.

Control invariant sets are defined for systems subject to external inputs. These types
of sets are useful to answer questions such as: “Find the set of states for which there
exists a controller such that the system constraints are never violated”. The following
definitions are derived from [20,23,27,73,75].

Definition 2 (Robust Control Invariant Set) A set C ⊆ X is said to be a robust
control invariant set for system (A.3) if for every

x(k) ∈ C ⇒ ∃u(k) ∈ U| f(x(k), u(k), w(k)) ⊆ C ∀w(k) ∈ W

The set C∞ is said to be the maximal robust control invariant if it is robust control
invariant and contains all robust control invariant sets contained in X.

The following algorithm provides a procedure for computing the maximal robust
control invariant subset if system (A.3) is considered or the maximal positive invariant
subset if system (A.2) is considered [13,20,73]. We first need the following definition.
The set

Pref (S, W) ! {x ∈ X | ∃u ∈ U s.t. f(x, u, w) ⊆ S ∀ w ∈ W} (1.7)
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defines the set of system (A.3) states which can be robustly driven into the target set
S in one time step. Similarly, for the autonomous system (A.2), we use Prefa(S) to
denote the set of the states that robustly evolves to S ⊆ X0 in one step:

Prefa(S, W) ! {x ∈ X0 | fa(x, w) ∈ S, ∀w ∈ W}. (1.8)

Algorithm 1.3.1 (Computation of C∞ (O∞))

1. Ω0 = X

2. Ωk+1 = Pref (Ωk, W) (Ωk+1 = Prefa(Ωk, W))

3. If Ωk+1 = Ωk then C∞ ← Ωk+1 (O∞ ← Ωk+1) return; Else, set k = k + 1 and
goto 2.

Algorithm 1.3.1 generates the set sequence {Ωk} satisfying Ωk+1 ⊆ Ωk,∀k ∈ N and it
terminates if Ωk+1 = Ωk so that Ωk is the maximal robust positive invariant set O∞
if system (A.2) is considered or Ωk is the maximal robust control invariant set C∞ if
system (A.3) is considered. We refer the reader to [13,20,73] for details on the finite
time termination of Algorithm 1.3.1. For practical implementation of Algorithm 1.3.1,
it is necessary to develop a procedure for computing the one-step set Pref (Ωk, W).
Given two sets Ω ⊂ Rn and Φ ⊂ Rn, the Pontryagin difference Ω ∼ Φ and the
Minkowski sum Ω⊕ Φ are two set-theoretic concepts, which are useful in developing
such algorithm. We refer the reader to [60, 73] for their definitions. The Pontryagin
difference can be computed for polytopes by solving a sequence of LPs [75] as follows.
Define the P and Q as

P = {y ∈ Rn |P yy ≤ P b}, Q = {z ∈ Rn |Qzz ≤ Qb}, (1.9)

then

W = P .Q (1.10a)

= {x ∈ Rn | P yx ≤ P b −H(P y,Q)} (1.10b)

where the i-th element of H(P y,Q) is

Hi(P y,Q) ! max
x∈Q

P y
i x (1.11)

and P y
i is the i-th row of the matrix P y. The implementation of the Minkowski sum

via projection will be used in this work and is described below. Consider the two
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1.4. Computation of the Maximal Robust Control Invariant Set

polyhedra P and Q, then

W = P ⊕Q

=
{

x ∈ Rn | x = y + z, P yy ≤ P b, Qzz ≤ Qb, y, z ∈ Rn
}

=
{

x ∈ Rn | ∃y ∈ Rn, subj. to P yy ≤ P b, Qz(x− y) ≤ Qb
}

=
{

x ∈ Rn | ∃y ∈ Rn, subj. to

[
0 P y

Qz −Qz

] [
x

y

]
≤

[
P b

Qb

] }

= Projx

({
[xT yT ] ∈ Rn+n |

[
0 P y

Qz −Qz

] [
x

y

]
≤

[
P b

Qb

] })
. (1.12)

where Projx(X ) denotes the projection of the set X on the x space. By using
the elementary operations above one can compute the one-step set Pref (Ωk, W) and
Prefa(Ωk, W) for linear systems as follows. Assume system (A.3) to be linear, i.e.,
x(k + 1) = Ax(k) + Bu(k) + w(k). Then, the one-step robust set can be immediately
computed by first computing the Pontryagin difference Ω.W and then the Minkowski
sum as follows:

Pref (Ω, W) = A−1((Ω.W)⊕ (−BU)) (1.13)

Algorithm 1.3.1 is also used to compute the maximal robust positive invariant set O∞
for the system (A.2): it generates the set sequence {Ωk} satisfying Ωk+1 ⊆ Ωk,∀k ∈ N
and it terminates if Ωk+1 = Ωk so that Ωk is the maximal robust positive invariant
set O∞ for the autonomous PWA system. Then the one-step set Prefa(Ωk, W) has to
be computed for implementing the Algorithm 1.3.1. In the Appendix A a brief review
of invariant sets and the computation of Prefa(Ωk, W) for piecewise affine systems
is provided. We point out that the computation of Prefa(Ωk, W) when applied in
Algorithm 1.3.1 for PWA systems can explode computationally.

1.4 Computation of the Maximal Robust Control

Invariant Set

In this section the Problem 1 is studied. The objective is to compute the maximal
robust control invariant set for system (1.1) subject to constraints (1.2)-(1.3) for
arbitrary n. We denote by In the identity matrix of dimension n, by 0n a zeros column
vector of dimension n and by 1n a ones column vector of dimension n. Given two n-
dimensional vectors u = [u1, . . . , un] and v = [v1, . . . , vn], we denote by HR(u,v) the
set HR(u,v) = {x ∈ Rn | ui ≤ xi ≤ vi i = 1, . . . , n}. Given the set Ln = {1, 2, . . . , n}
we denote by group(f, n) the set composed of all the subsets Ln

f,i of Ln of dimension
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f : group(f, n) =
{

Ln
f,1, . . . , L

n
f,nf

}
with nf =

(
n

f

)
. As an example group(2, 3) =

{{1, 2}, {1, 3}, {2, 3}} and L3
2,1 = {1, 2}. The following theorem provides the explicit

form of the maximal robust control invariant set for arbitrary n.

Theorem 1 The maximal robust control invariant set C∞ for system (1.1) subject to
constraints (1.2) is

C∞ = {x ∈ Rn|0 ≤ xi ≤M, i = 1, . . . , n,
∑

j∈Ln
f,i

xj ≥
∑

j∈Ln
f,i

dmax
j − 1, Ln

f,i ∈ group(f, n),

i = 1, . . . , nf , f = 2, . . . , n}
(1.14)

Proof:We follow the Algorithm 1.3.1 for computing C∞.

• Step 0. Ω0 = HR(0,M)

• Step 1. Ω0 .W = HR(dmax,M). Ω1 = Pre(Ω0, Wn) = A−1((Ω0 . InWn) ⊕
(−InUn)) = HR(dmax,M) ⊕ (−Un). By using equation (1.12) Ω1 can be
computed as follows

M =






[xnT ynT ] ∈ R2n |





0 In

0 −In

In −In

−1nT 1nT

−In In





[
x

y

]
≤





M1n

−dmax

0n

P max

pmax










Ω1 = Projxn

(
M

)
.

(1.15)

where pmax = [pmax
1 (k), . . . , pmax

n (k)] ∈ Rn By using Fourier-Motzkin pro-
cedure (see [73]), it can be proven by direct computation that the projection
in (1.15) can be written as:

Ω1 = {xn ∈ Rn | xi ≤M, i = 1, . . . , n,
∑

j∈Ln
f,i

xj ≥
∑

j∈Ln
f,i

dmax
j − Pmax,

Ln
f,i ∈ group(f, n), i = 1, . . . , nf , f = 1, . . . , n}

(1.16)

• Step 2. By using (1.10) and (1.11), then

Ω1 .Wn = {xn ∈ Rn | xi ≤M, i = 1, . . . , n,
∑

j∈Ln
f,i

xj ≥
∑

j∈Ln
f,i

dmax
j ,

Ln
f,i ∈ group(f, n), i = 1, . . . , nf , f = 1, . . . , n}.

(1.17)
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Feedback Policy

In the set Ω1 .Wnthe constraints
∑

j∈Ln
f,i

xj ≥
∑

j∈Ln
f,i

dmax
j , ∀ Ln

f,i ∈ group(f, n) are redundant for f =
2, . . . , n, i = 1, . . . , nf , Therefore Ω1 .W = HR(dmax,M)= Ω0 .W and thus
the proof is completed.

We remark that in [30] the authors have proven that Algorithm 1.3.1 converges in
one iteration for a larger class of systems. !Theorem 1 shows that for the buffer
model (1.1)-(1.3) the maximal robust control invariant set can be computed explicitly
for arbitrary n without resorting to the Algorithm 1.3.1. The explicit form (1.14)
of the maximal robust control invariant set provides an interesting insight which is
shown next through an example. Let n = 3 and pmax

i = pmax
j = dmax

i = dmax
j = 1 the

invariant set for system (1.1) subject to constraints (1.2)-(1.3) is so composed: (i)
every buffer level is greater or equal to 0 and smaller or equal to M , (ii) the sum of
any two buffer levels is greater or equal to 1, (iii) the sum of all three buffer levels is
greater or equal to 2. The above set of constraints guarantee the existence of a control
law u(k) = f(x(k)) which does not lead to stockout for any feasible demand profile.
We remark that the system variables are normalized to the maximum production rate.
More examples can be found in Section 1.8. In the next two sections we will cope
with the Problem 2, i.e. the computation of the maximal robust positive invariant
set O∞ both under the RLB policy and under the DPC control law.

1.5 Computation of Maximal Robust Positive In-

variant Set under the RLB Feedback Policy

Consider system (1.1) subject to the constraints (1.2)-(1.3) and define the RLB control
law for i = 1, . . . , n, as follows:

ui(k) =






pmax
i if (xi(k) ≤ xj(k) ∀j /= i) and (xi(k) ≤M − pmax

i )
and

∑i−1
l=1 ul(k) = 0

0 otherwise.
(1.18)

The RLB control law works as follows: at each time instant k the system produces
at the maximum rate the product typology corresponding to the lowest buffer level i,
unless x(k) is greater than M − pmax

i .

Remark 4 The constraint
∑i−1

l=1 ul(k) = 0 in the control law (1.18) is introduced in
order to uniquely define the control law in case there are several buffers at the same
minimum level. Any other ordering can be used.
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The maximal robust positive invariant setO∞ for system (1.1) subject to constraints (1.2)
under the control law (1.18) can be computed numerically for a fixed n. Numerical
tests (reported in Example (4)) show that the set O∞ might be non-convex and diffi-
cult to write in explicit form for arbitrary n. However, a closed form solution can be
found under the following assumption:

pmax
i = dmax

i = 1 ∀ i = 1, . . . , n (1.19)

The control law (1.18) with assumption (1.19) becomes:

ui(k) =

{
1 if (xi(k) ≤ xj(k) ∀j /= i) and (xi(k) ≤M − 1)
0 otherwise

(1.20)

Under the control law (1.20) system (1.1) is given by:

xi(k + 1) =






xi(k) + 1 + di(k) if (xi(k) ≤ xj(k) ∀j /= i)
and (xi(k) ≤M − 1)

xi(k) + di(k) otherwise
i = 1, . . . , n

(1.21)

The following theorem provides a closed form solution for maximal robust positive
invariant set for system (1.21) for arbitrary n.

Theorem 2 The maximal robust positive invariant set O∞ for system (1.1) with
n ≥ 2 subject to constraints (1.2)-(1.3) under the control law (1.20) is:

O∞ = {x ∈ Rn | xi ≤M, i = 1, . . . , n,
∑

j∈Ln
f,i

xj ≥ αf , Ln
f,i ∈ group(f, n),

i = 1, . . . , nf , f = 1, . . . , n}
(1.22)

where αk for k = 3, . . . , n is defined recursively as follows:

αk = (αk−1 + 1)k/(k − 1), α2 = 2, α1 = 0. (1.23)

Proof:We prove Theorem 2 by using (i) induction arguments, (ii) the Algorithm 1.3.1
and (iii) the procedure outlined in Section 1.3 for computing O∞ for PWA systems.
It is immediate to prove that the set O∞ is constrained by xi ≤ M . A simple
inspection shows that the control law (1.20) for all x ∈ HR(0n, M1n) will never drive
the integrators outside the level M for all possible disturbances. Therefore, next we
consider the set (1.22) and focus only on the constraints xi ≥ 0 and

∑
j∈Ln

f,i
xj ≥

αf , Ln
f,i ∈ group(f, n). We compute the set O∞ for n = 2, n = 3 and then
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for n = i + 1 assuming that O∞ is described by (1.22)-(1.23) for n = i. Also, as
mentioned in Remark 4 we prefer to work with the multi-valued system (1.21) rather
than with one of its possible single-valued and discontinuous implementation. The
results will not change but the exposition will be simplified. The maximal robust
positive invariant set O∞ for system (1.1) subject to constraints (1.2) under the
control law (1.20) for n=2 is:

O∞ = {x ∈ R2 | xk ≤M, x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 2}. (1.24)

The proof is by construction as follows:

Step 0. Ω0 = HR(02, M12).

Step 1. Ω0 . W2 = HR(12, M12). Ω1 = Prefa(Ω0, W2) =
⋃

(y,j)∈{1}×{1,2} S
+
y,j ,

where S+
1,1 ! {x ∈ X2 | x +

[
1
0

]
∈ HR(1,M), x1 ≤ x2} and S+

1,2 ! {x ∈

X2 | x +

[
0
1

]
∈ HR(1,M), x2 ≤ x1}. By computing S1,1 and S1,2 we obtain

Ω1 = Prefa(Ω0, W2) = HR

([
0
1

]
,

[
M − 1

M

])
⋃

HR

([
1
0

]
,

[
M

M − 1

]) (1.25)

Step 2. Ω1 . W2 =
[⋃

y=1,...,3(Φy ⊕ (−W2))
]c

where
⋃

y=1,...,3 Φy = Ωc
1. By di-

rect computation Φ1 = {x ∈ R2| x1 < 0}, Φ2 = {x ∈ R2 | x2 < 0}, Φ3 = {x ∈
R2 | x1 < 1, x2 < 1}. Rewrite Ω1.W2 as Ω1.W2 =

[⋃
y=1,...,3(Φy ⊕ (−W2))

]c
=

⋂
y=1,...,3(Φy⊕ (−W2))c =

⋂
y=1,...,3 S∗y . By direct computation: Φ1⊕ (−W2) =

{x ∈ R2 | x1 < 1}, Φ2 ⊕ (−W2) = {x ∈ R2 | x2 < 1} and (Φ3 ⊕ (−W2)) is
computed by projecting the set

Φ3 ⊕ (−W2) = Projx

({
[xT yT ] ∈ R2+2 |




0 I2

−I2 I2

12T −12T





[
x

y

]
≤




12

02

1




})

.

(1.26)
The Fourier-Motzkin procedure for computing the projection in (1.26) yields:

Φ3 ⊕ (−W2) = {x ∈ R2 | x1 < 2, x2 < 2, x1 + x2 < 3, } (1.27)
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Therefore, S∗1 = {x ∈ R2 | x1 ≥ 1}, S∗2 = {x ∈ R2 | x2 ≥ 1}, S∗3 = {x ∈
R2 | x1 ≥ 2} ∪ {x ∈ R2 | x2 ≥ 2} ∪ {x ∈ R2 | x1 + x2 ≥ 3}. In conclusion
by direct computation we obtain Ω1 . W2 =

⋂
y=1,...,3 S∗y = {x ∈ R2 | x1 ≥

1, x2 ≥ 1, x1 +x2 ≥ 3, } (note that the constraints “≥ 2” are redundant). Ω2 =
⋃

(y,j)∈{1}×{1,2} S
+
y,j , where S+

1,1 ! {x ∈ X2 | x+

[
1
0

]
∈ Ω1.W2, x1−x2 ≤ 0}

and S+
1,2 ! {x ∈ X2 | x +

[
0
1

]
∈ Ω1 . W2, x2 − x1 ≤ 0}. By explicitly

computing S1,1 and S1,2 we obtain S+
1,1 = {x ∈ R2 | x1 ≥ 0, x2 ≥ 1, x1 + x2 ≥

2, x1 − x2 ≤ 0}, S+
1,2 = {x1 ≥ 1, x2 ≥ 0, x1 + x2 ≥ 2, x2 − x1 ≤ 0}, and

therefore Ω2 = {x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 2}.

Step 3. Ω2 .W2 =
[⋃

y=1,...,3(Φy ⊕ (−W2))
]c

where
⋃

y=1,...,3 Φy = Ωc
2. By direct

computation Φ1 = {x ∈ R2| x1 < 0}, Φ2 = {x ∈ R2 | x2 < 0}, Φ3 = {x ∈
R2 | x1 +x2 < 2}. Rewrite Ω2.W2 as Ω2.W2 =

[⋃
y=1,...,3(Φy ⊕ (−W2))

]c
=

⋂
y=1,...,3(Φy⊕(−W2))c =

⋂
y=1,...,3 S∗y . By direct computation: (Φ1⊕(−W2)) =

{x ∈ R2 | x1 < 1}, (Φ2 ⊕ (−W2)) = {x ∈ R2 | x2 < 1} and (Φ3 ⊕ (−W2)) is
computed by using the Fourier-Motzkin procedure for:

Projx

({
[xT yT ] ∈ R2+2 |




0 12T

−I2 I2

12T −12T





[
x

y

]
≤




2
02

1




})

. (1.28)

the projection in (1.28) yields:

Φ3 ⊕ (−W2) = {x ∈ R2 | x1 + x2 < 3, } (1.29)

Therefore S∗1 = {x ∈ R2 | x1 ≥ 1}, S∗2 = {x ∈ R2 | x2 ≥ 1} S∗3 = {x ∈
R2 | x1 + x2 ≥ 3}. In conclusion by direct computation we obtain Ω2 .W2 =
{x ∈ R2 | x1 ≥ 1, x2 ≥ 1, x1 + x2 ≥ 3, } which equals Ω1 .W2 and terminates
the algorithm. It is proven that the set (1.22) with α2 in (1.23) is O∞ for n = 2.

The maximal robust positive invariant setO∞ for system (1.1) subject to constraints (1.2)
under the control law (1.20) for n=3 is:

O∞ = {x ∈ R3 | xk ≤M,x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 + x2 ≥ 2,

x1 + x3 ≥ 2, x2 + x3 ≥ 2, x1 + x2 + x3 ≥ 4.5}
(1.30)

The proof is by construction. We remark that the construction of the setO∞ for n = 3
is not necessary for the proof, but it is included next in order to better understand
the induction arguments when constructing the set O∞ for n = i + 1.
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Step 0. Ω0 = HR(03, M13).

Step 1. Ω0 . W3 = HR(13, M13). Ω1 = Prefa(Ω0, W3) =
⋃

(y,j)∈{1}×{1,2,3} S
+
y,j ,

where S+
1,1 ! {x ∈ X3 | x +




1
0
0



 ∈ HR(13, M13), x1 ≤ x2, x1 ≤ x3}, S+
1,2

and S+
1,3 are computing considering the remaining two regions of the closed loop

PWA system (1.21) for n=3. The computation of Prefa(Ω0, W3) yields

Ω1 = Prefa(Ω0, W3) = HR








0
1
1



 ,




M − 1

M

M









⋃
HR








1
0
1



 ,




M

M − 1
M








⋃

HR








1
1
0



 ,




M

M

M − 1









(1.31)

Step 2. Ω1.W2 =
[⋃

y=1,...,r(Φy ⊕ (−W2))
]c

where
⋃

y=1,...,r Φy = Ωc
1. The set Ωc

1

(the complement of Ω1) in (1.31) is

Ωc
1 =

⋃
i=1,2,3 {xi < 0}︸ ︷︷ ︸

Type I

⋃
i=1,2,3





⋂

j∈L3
2,i

xj < 1





︸ ︷︷ ︸

Type II⋃
{x1 < 1, x2 < 1, x3 < 1}︸ ︷︷ ︸

Type III

.

(1.32)

We observe the following: constraints of type I and type II are equivalent to
the constraints (at the same iteration step) for the case n = 2 (Φ1,Φ2,Φ3), the
only difference is that constraints of type I are extended to the third dimension
(x3 < 0) and constraints of type II are extended to all couples: x1 + x3 < 1,
x2 + x3 < 1, x1 + x2 < 1. Constraint of type III is the new type of constraint
which appears when moving from n = 2 to n = 3. By definition

⋃
y=1,...,r Φy =

Ωc
1 and thus, Φ1 = {x ∈ R3 | x1 < 0}, Φ2 = {x ∈ R3 | x2 < 0}, Φ3 = {x ∈

R3 | x3 < 0}, Φ4 = {x ∈ R3 | x1 < 1, x2 < 1}, Φ5 = {x ∈ R3 | x1 < 1, x3 < 1},
Φ6 = {x ∈ R3 | x2 < 1, x3 < 1}, Φ7 = {x ∈ R3 | x1 < 1, x2 < 1, x3 < 1}.
From an algorithmic point of view the computation of Pontryagin differences and
Minkowsky sums on the sets arising from constraints of type I and II proceed as
in the case n = 2. As an example consider the set Φ4 and compute (Φ4⊕(−W3))
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by using Fourier-Motzkin procedure:

Φ4 ⊕ (−W3) = Projx

({
[xT yT ] ∈ R3+3 |





0 0 0 1 0 0
0 0 0 0 1 0
−I3 I3

13T −13T





[
x

y

]
≤





1
1
03

1





})
.

(1.33)
the projection in (1.33) yields:

Φ4 ⊕ (−W3) = {x ∈ R3 | x1 < 2, x2 < 2, x3 < 2, x1 + x2 < 3} (1.34)

which corresponds to Φ3⊕ (−W3) for n = 2 in (1.27). When computing the last
set (Φ7 ⊕ (−W3)) by using Fourier-Motzkin procedure for

Φ7 ⊕ (−W3) = Projx

({
[xT yT ] ∈ R3+3 |




0 I3

−I3 I3

13T −13T





[
x

y

]
≤




13

03

1




})

.

(1.35)
we obtain:

Φ7⊕(−W3) = {x ∈ R3 | xi < 2 ∀ i, xi+xj < 3 ∀ i /= j, x1+x2+x3 < 4, } (1.36)

In summary, the computation of Ω1 .W3 =
⋂

y=1,...,7 S∗y yields S∗i = {xi ≥ 1}
for i = 1, 2, 3, S∗4 = {x1 ≥ 2} ∪{ x2 ≥ 2} ∪{ x3 ≥ 2} ∪{ x1 + x2 ≥ 3},
S∗5 = {x1 ≥ 2} ∪ {x2 ≥ 2} ∪ {x3 ≥ 2} ∪ {x1 + x3 ≥ 3}, S∗6 = {x1 ≥ 2} ∪ {x2 ≥
2}∪{x3 ≥ 2}∪{x2 +x3 ≥ 3}, S∗7 = {x1 ≥ 2}∪{x2 ≥ 2}∪{x3 ≥ 2}∪{x1 +x2 ≥
3} ∪{ x2 + x3 ≥ 3} ∪{ x1 + x3 ≥ 3} ∪{ x1 + x2 + x3 ≥ 4}, When computing the
intersections of the sets S∗i for i = 1, . . . , 7 and removing redundant constraints
we get: Ω1 . W3 =

⋂
y=1,...,7 S∗y =

⋃
i,j∈group(2,3){x1 ≥ 1, x2 ≥ 1, x3 ≥

1, xi + xj ≥ 3, } which are the equivalent of the constraints at the same step
for n = 2 replicated for all the couples (xi, xj). The computation of the sets
proceeds as in the case n = 2 computing the one-step reachable sets S+

i,j for all
sets and for all three regions of the closed loop PWA system. The set Ω2 is not
reported here.

Step 3. When computing the complement of Ω2, Ωc
2 =

⋃
y=1,...,7 Φy we obtain the

following sets: Φi = {xi < 0} for i = 1, 2, 3, Φ4 = {x1+x2 < 2}, Φ5 = {x1+x3 <

2}, Φ6 = {x2 + x3 < 2}, Φ7 = {x1 + x2 < 3, x1 + x3 < 3, x2 + x3 < 3}, At
this point the iteration on the sets Φ1, . . . ,Φ6 proceeds as in the case n = 2
generating the equivalent constraints for O∞ as for n = 2; making sure that
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type I are extended to all xi and type II are extended to all couples, thus
generating:

O1
∞ = {x ∈ R3 | xk ≤M, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 + x2 ≥ 2,

x2 + x3 ≥ 2, x1 + x3 ≥ 2}.
(1.37)

The final set will be O∞ = O1
∞

⋂
O2
∞. The set O2

∞ arises from Φ7. In fact, we
obtain

Φ7 ⊕ (−W3) = Projx

({
[xT yT ] ∈ R3+3 |





0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 1 0 1
−I3 I3

13T −13T





[
x

y

]
≤





3
3
3
03

1





})
.

(1.38)
the projection in (1.38) yields:

Φ7 ⊕ (−W3) = {x ∈ R3 | xi < 1 ∀ i, xi + xj < 4 ∀ i /= j, x1 + x2 + x3 < β3, }
(1.39)

where β3 = 1 + 3 · 3/2 and it is computed as follows: sum up the first three
rows of (1.38) to get 2y1 + 2y2 + 2y3 < 3 · 3, therefore y1 + y2 + y3 < 3 · 3/2
and from the last equation x1 + x2 + x3 < 1 + 3 · 3/2. Proceeding with the
computation O∞ one can notice that the constraints xi +xj < 4 in Φ7⊕ (−W3)
are redundant. Therefore, the one-step reachability computation takes the last
constraint in Φ7⊕ (−W3), x1 + x2 + x3 < β3 reverts it and sums it up to −1 to
obtain

x1 + x2 + x3 ≥ β3 − 1 = 3 · 3/2 (1.40)

Constraint (1.40) is invariant in the next iteration and constitutes O2
∞. In

conclusions

O∞ = {x ∈ R3 | xk ≤M, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 + x2 ≥ 2,

x2 + x3 ≥ 2, x1 + x3 ≥ 2, x1 + x2 + x3 ≥ 4.5}.
(1.41)

It is proven that the set (1.22) with α3 in (1.23) is O∞ for n = 3.

Now we assume that O∞ is defined by (1.22)-(1.23) for n = i and prove that (1.22)-
(1.23) holds true for n = i + 1. This will conclude the proof. We focus only on the
main steps in order to avoid tedious sets enumeration. By using the same arguments
used for the case n = 3, we can prove that O∞ for n = i + 1 will be described by
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two sets O∞ = O1
∞

⋂
O2
∞. O1

∞ can be immediately described by considering O∞ for
n = i:

O∞ = {x ∈ Ri | xk ≤M, xk ≥ 0, k = 1, . . . , i,
∑

j∈Li
f,k

xj ≥ αf ,

Li
f,k ∈ group(f, i), f = 2, . . . , i, k = 1, . . . , nf , }

(1.42)

and replicating all the constraints with the additional dimension i + 1:

O1
∞ = {x ∈ Ri+1 | xk ≤M, xk ≥ 0, k = 1, . . . , i + 1,

∑
j∈Li+1

f,k
xj ≥ αf ,

Li+1
f,k ∈ group(f, i + 1), f = 2, . . . , i, k = 1, . . . , nf , }

(1.43)

where αf is defined recursively in (1.23). As for n = 3, the set O2
∞ for n = i + 1 will

be the outcome of the iterations on a set of the following form: Φlast = {x1 + x3 +
· · ·+ xi+1 < αi + 1, x2 + x3 + · · ·+ xi+1 < αi + 1, . . . , x1 + x2 + · · ·+ xi < αi + 1}.
We remark here that for n = 3, last=7 and Φ7 had constraints of the type “. . . < 3”
which agrees with the fact that 3 = α2 + 1. From the Minkowski sum we obtain:

Φlast ⊕ (−Wi+1) = Projx

({
[xT yT ] ∈ R2i+2 |





0 0 · · · 0 0 1 · · · 1
...

...
0 0 · · · 0 1 1 · · · 0
−Ii+1 Ii+1

1i+1T −1i+1T





[
x

y

]
≤

≤





αi + 1
...

αi + 1
0i+1

1





})
.

(1.44)
by computing the projection (1.44) and removing redundant constraints one obtains:

Φlast ⊕ (−Wi+1) = {x ∈ Ri+1 | xi < 1 ∀ i, x1 + x2 + · · ·+ xi+1 < βi+1, } (1.45)

where βi+1 = i(αi+1)
i−1 + 1 and it is computed as follows: sum up the first i + 1 rows

of (1.44) to get iy1 + iy2 + iy3 + · · · + iyi+1 < (i + 1)(αi + 1), therefore y1 + y2 +
y3 + · · ·+ yi+1 < (i+1)(αi+1)

i and from the last equation in (1.44) x1 + x2 + x3 + · · ·+
xi+1 < 1 + (i+1)(αi+1)

i . Proceeding with the computation, the one-step reachability
computation takes the constraint in x1 +x2 +x3 + · · ·+xi+1 < 1+ (i+1)(αi+1)

i , reverts
it and sums it up to −1 to obtain:

x1 + x2 + x3 + · · ·+ xi+1 ≥
(i + 1)(αi + 1)

i
. (1.46)
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Constraint (1.46) is invariant in the next iteration and constitutesO2
∞. In conclusions:

O2
∞ = {x ∈ Ri+1 | x1 + x2 + x3 + · · ·+ xi+1 ≥

(i + 1)(αi + 1)
i

}. (1.47)

and O∞ = O1
∞

⋂
O2
∞ with O1

∞ in (1.43) and O2
∞ in (1.47) with αi+1 = (i+1)(αi+1)

i .
It is proven that the set (1.22) with αi+1 in (1.23) is O∞ for n = i+1. This concludes
the proof by induction.!

Remark 5 We believe that there might be a simpler approach to proving Theorem 2
which makes use of the system symmetries and does not require the computation of
intermediate sets as in the lengthy proof of Theorem 2.

Theorem 2 shows that when the buffer model (1.1)-(1.3) is controlled by the RLB
Feedback Policy in (1.18)-(1.19) the maximal robust positive invariant set can be
computed explicitly for arbitrary n. A brief intuitive explanation of the idea of
Fourier-Motzkin elimination is given in Appendix B. See [72] for a more detailed
description of the algorithm. The explicit form (1.22)-(1.23) provides also an inter-
esting insight illustrated next through an example. Let n = 3, then stockout will
never occur with the RLB policy if the initial buffer levels satisfy the following con-
ditions: (i) every buffer level is greater than 0, (ii) the sum of any two buffer levels
is greater than 2, (iii) the sum of all three levels greater than 9/2. We remark that
the system variables are normalized to the maximum production rate. By comparing
O∞ in (1.22)-(1.23) and C∞ in (1.14) for n = 3 it is clear that there is room for
improvement on the RLB policy, i.e., there might exist a control law which excludes
stockout with lower initial buffer levels. Next we show that the DPC policy is one of
those. More examples can be found in Section 1.8.

1.6 Computation of Maximal Robust Positive In-

variant Set under the DPC Feedback Policy

Consider system (1.1) subject to (1.2)-(1.3). At time k let m(k) = [m1, . . . ,mn] be
the index vector of the state components in increasing order, i.e., mi ∈ [1, n] for
i = 1, . . . , n, mi /= mj for all i /= j, and xmi ≥ xmj for all j < i. Define the following
DPC control law for i = 1, . . . , n:

umi(k)(k) =






min {(dmax
mi(k) − xmi(k)(k)), if (xmi(k)(k) < dmax

mi(k)) and
(Pmax −

∑i−1
j=1 umj(k))} (

∑i−1
j=1 umj(k) < Pmax)

0 otherwise
(1.48)
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The DPC control policy produces the item typologies whose buffer levels are less than
the corresponding demand value; it starts from the lowest and it continues increasing
order until the machine has production capacity. The buffer will be filled up to the
maximum demand value or to the maximum buffer level reachable with the residual
production capacity. The following theorem shows that the DCP policy (1.48) is the
”best” policy in the sense that O∞ = C∞.

Theorem 3 The maximal robust positive invariant set for system (1.1) subject to
constraints (1.2)-(1.3) under the control law (1.48) is equal to C∞ in (1.14), i.e.,

O∞ = {x ∈ Rn|0 ≤ xi ≤M, i = 1, . . . , n,
∑

j∈Ln
f,i

xj ≥
∑

j∈Ln
f,i

dmax
j − 1, Ln

f,i ∈ group(f, n),

i = 1, . . . , nf , f = 2, . . . , n}
(1.49)

Proof: We prove the theorem in two steps. First, we prove thatO∞ is a robust positive
invariant set and then we prove that it is the largest one. Consider the set of buffers
x(k) ∈ O∞, let I(k) be the index of all buffers in x(k) smaller than the corresponding
demand values, xi(k) < dmax

i if i ∈ I(k). Denote by xp(k + 1) the buffer levels at
time k + 1 assuming no demand, i.e. xp(k + 1) = x(k) + u(k). Then, x(k) ∈ O∞
implies that xp

i (k + 1) = dmax
i for all i ∈ I(k) and dmax

i ≤ xp
i (k + 1) ≤ M for all

i ∈ {1, . . . , n}\I(k). This, holds true by the fact that
∑

i∈I(k) xi(k) ≥
∑

i∈I(k) dmax
i −

Pmax, by O∞ in (1.49) and by the definition of the control law (1.48). In conclusion
all buffers of xp(k+1) will be greater or equal than the corresponding demand values,
(and less or equal to M). The disturbance d(k) will lower the buffer levels from
xp(k + 1) to x(k + 1). However, from the assumption on the disturbance d(k) (1.2c)-
(1.3) and the property of xp(k + 1) we immediately derive that x(k + 1) ∈ O∞.
To see this, let d(k) be one possible disturbance realization and J(k) the index of
all components of d(k) different from zero. Then

∑
j∈J(k) dj(k) ≥ −Dmax, which

implies that
∑

j∈J(k) dj(k) ≥ −Pmax. This is derived from the assumption on the
disturbance d(k), (1.2c), and from the constraint −Dmax ≥ −Pmax. As xp

j (k) ≥
dmax

j (k) for all j, we have proven that
∑

j∈J(k) xp
j (k) ≥

∑
j∈J(k) dmax

j which implies
that

∑
j∈J(k) xp

j (k) + dj(k) =
∑

j∈J(k) xj(k + 1) ≥
∑

j∈J(k) dmax
j − Pmax, that is

x(k+1) ∈ O∞. This proves that O∞ in (1.49) is a robust positive invariant set. Next
we prove that it is the maximal robust positive invariant set. Assume there exists
a set of buffers which does not satisfy at least one of the inequalities defining O∞
in (1.49), i.e., ∃ I(k) such that

∑
i∈I(k) xi(k) <

∑
i∈I(k) dmax

i − Pmax. In this case,
by the definition of the control law (1.48) we conclude that there exists l ∈ I(k) such
that xp

l (k) < dmax
l . The disturbance d(k) with dl(k) = dmax

l and dj(k) = 0 for all
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j /= l will led to and infeasible x(k + 1). !

1.7 Extended Modeling

A brief discussion, on how to further extend the results presented in this article to
take into account setup times is provided.

1.7.1 Control Policy Function of the Disturbance

The RLB and DPC control laws studied in this manuscript are a function of the
current system state. Some manufacturing plants might have a preview on future
demand (the disturbance). In this case the control laws could be function of the
disturbance as well. In the simplest case (preview of one step) we could have u =
f(x, d). A classical example of f in such case is the extension of the DPC law (1.48):

ui(k) =

{
min{pmax

i , (dmax
i − xi(k)− di(k))} if (xi(k) ≤ −di(k))

0 otherwise
(1.50)

The control policy (1.50) works as follows: at each time k it fills to the maximum
disturbance quantity the buffer smaller than the its current disturbance di(k). The
computation of the maximal positive invariant set O∞ for system subject to con-
straints (1.2) under the control law (1.50) and other classes of feedback policies func-
tion of the disturbance is a non-trivial extension of this work and is the object of our
current studies.

1.7.2 Extension to Model Setup Times

The simplified system (1.1) can be extended in order to model setup times, i.e. the
time required for switching the production from a product typology to a different one.
In this case the system can be modeled as a switched system. In fact, at each time
instant k, each buffer level has two different behaviors depending on the production
choice at the previous step. If we assume one production line manufacturing one item
typology per sampling interval, a simple model can be derived. Introduce a new state
storing the previous input:

uold(k + 1) = Inu(k) (1.51)
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and denote the production rate loss due to the setup time for product i by uloss,i.
The following piecewise affine system models the buffer dynamics with setup-times:

xi(k + 1) =






xi(k) + ui(k) + di(k) if (ui(k) /= 0 and uold,i(k) /= 0)
or (ui(k) = 0)

xi(k) + ui(k)− uloss,i + di(k) otherwise

uold(k + 1) = Inu(k).
(1.52)

The system (1.52) can model the buffer dynamics with setup-times if the RLB feed-
back policy is applied, because the RLB control law produces one item typology per
sampling interval. The case of one production line manufacturing more item typolo-
gies per sampling interval with setup-times can be modeled by the following piecewise
affine system:

xi(k + 1) =

{
xi(k) + ui(k) + di(k) if (ui(k) = 0)
xi(k) + ui(k)− uloss,i + di(k) otherwise

(1.53)

The system (1.53) models the occurrence of a setup every time an item typology is
produced. The number of setups is then overestimated because the model (1.53) does
not capture that there is no setup when the production line starts to produce at time
k + 1 the same item typology manufactured at the end of time k. A possible way
to prevent this overestimation would be, for example, to store the production order.
The DPC feedback policy can be applied to system (1.53), because it can produce
several item typologies per sampling interval. The DPC control law must be rewritten
taking the setups into account. Define the following modified DPC control law for
i = 1, . . . , n:

umi(k)(k) =






min {(dmax
mi(k) − xmi(k)(k)), if (xmi(k)(k) < dmax

mi(k)) and
(Pmax −

∑i−1
j=1 umj(k))} (

∑i−1
j=1 umj(k) < Pmax) and

(umi(k)(k) > uloss,i)
0 otherwise

(1.54)

The constraint (umi(k)(k) > uloss,i) is added because the control input associated to
item typology i is larger than zero if there is enough production rate to cope with the
loss due to setup. Note that, if the loss due to setup was such that buffers cannot have
enough additional in stock in order to satisfy all admissible demands, the persistent
feasibility for the closed-loop system could not be guaranteed. The computation of
the maximal robust control invariant set C∞ for the systems described above and the
design of a feasible control policy with large robust positively invariant sets is subject
of future research.
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1.8 Numerical Examples

Objective of this section is to compute numerically the robust invariant sets described
in this paper and validate out theoretical results. All the sets in this section have
been computed with the Multi-Parametric Toolbox [76], [77] and the Matlab Invari-
ant Set Toolbox (InvSetBox) [73]. A processor, equipped with an Intel Core Duo
processor with a clock frequency of 2.0 GHz has been used to compute the sets.
The reader is refereed to the Appendix B for a more detailed explanation of invariant
set computation. We consider two or three item typologies in order to be able to
graphically visualize the results. The normalization Dmax = Pmax = 1 is used in
all the examples. In the examples (1), (3) and (5), constraints (1.3) are used. In
the examples (2), (4) and (6), we consider different upper bounds to the production
and demand rates for each product typology. Throughout the examples we assume
Mi = Mi = 1, . . . , N however different numerical values for M are chosen for a better
visualization of the sets. The production plants are modeled by system (1.1) subject
to constraints (1.2) for n=2 or n=3. To satisfy the external demand, (during the sam-
pling time) each item typology must be produced in order to keep the buffer levels in
the computed sets. A production law driving the buffer levels out the computed sets is
infeasible. The numerical results show that: (i) the RLB and DPC feedback policies
guarantee that stockout will never occur if the initial buffer levels take value into the
corresponding set C∞, (ii) the DPC feedback policy can satisfy the external demand
with lower buffer levels. In this section we consider applying the above procedure for
computing O∞ and C∞ to some numerical examples:

Example 1 (Computation of C∞ under Assumption (1.19))
We compute the maximal robust control invariant set C∞ for system (1.1) subject to
constraints (1.3) for n=2 and n=3. C∞ for n=2 is:

0 ≤ x1 ≤M, 0 ≤ x2 ≤M

x1 + x2 ≥ 1.
(1.55)

and it is depicted in Figure 1.10(a) (M = 2). C∞ for n=3 is:

0 ≤ x1 ≤M, 0 ≤ x2 ≤M, 0 ≤ x3 ≤M

x1 + x2 ≥ 1, x1 + x3 ≥ 1, x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 2.

(1.56)

and it is depicted in the Figure 1.10(b) (M = 2).
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Example 2 (Computation of C∞ for n = 3)
The maximal robust control invariant set C∞ for system (1.1) subject to constraints (1.2)
for n = 3, pmax = [1; 1; 1] and dmax = [0.8; 0.7; 0.4] is:

0 ≤ x1 ≤M, 0 ≤ x2 ≤M, 0 ≤ x3 ≤M

x1 + x2 ≥ 0.5, x1 + x3 ≥ 0.2, x2 + x3 ≥ 0.1
x1 + x2 + x3 ≥ 0.9.

(1.57)

and it is depicted in the Figure 1.4(a) (M=1.5). The maximal robust control invariant
set C∞ for system (1.1) subject to constraints (1.2) for n = 3 and dmax = [0.5; 0.3; 1]
is:

0 ≤ x1 ≤M, 0 ≤ x2 ≤M, 0 ≤ x3 ≤M

x1 + x3 ≥ 0.5, x2 + x3 ≥ 0.3
x1 + x2 + x3 ≥ 0.8.

(1.58)

and it is depicted in the Figure 1.4(b) (M=1.5).

Example 3 (Computation of O∞ under RLB and Assumption (1.19))
System (1.1) subject to constraints (1.2) under the RLB control law (1.20) for n = 3 is
rewritten as an autonomous PWA system defined over four polyhedral regions reported
in the Figure 1.5(a) (M = 5). The maximal robust positive invariant set O∞ is:

0 ≤ x1 ≤M, 0 ≤ x2 ≤M, 0 ≤ x3 ≤M

x1 + x2 ≥ 2, x1 + x3 ≥ 2, x2 + x3 ≥ 2
x1 + x2 + x3 ≥ 4.5.

(1.59)

and is depicted in the Figure 1.5(b) (M = 5).

Example 4 (Computation of O∞ under the RLB Feedback Policy)
The system (1.1) subject to constraints (1.2) under the RLB control law (1.20) for

n = 2, pmax = [0.9; 0.8] and dmax = [0.5; 0.3] is rewritten as an autonomous PWA
system over three polyhedral regions. The corresponding maximal robust positive in-
variant set O∞ is depicted in Figure 2.11(a) (M = 3). The system (1.1) subject to
constraints (1.2) under the RLB control law (1.20) for n = 3, pmax = [0.9; 0.9; 0.9]
and dmax = [0.5; 0.3; 0.1] is rewritten as an autonomous PWA system defined over
four polyhedral regions. The corresponding maximal robust positive invariant set O∞
is depicted in Figure 2.8(a) (M = 3).

Example 5 (Computation of O∞ under DPC and Assumption (1.19))
System (1.1) subject to constraints (1.2)-(1.3) under the DPC control law (1.48)-

(1.19) for n = 3 is rewritten as an autonomous PWA system defined over 23 regions
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depicted in Figure 2.5(a) (M = 2). The corresponding maximal robust positive in-
variant set O∞ is:

0 ≤ x1 ≤M, 0 ≤ x2 ≤M, 0 ≤ x3 ≤M

x1 + x2 ≥ 1, x1 + x3 ≥ 1, x2 + x3 ≥ 1
x1 + x2 + x3 ≥ 2.

(1.60)

and it is depicted in Figure 2.5(b) (M = 2).

Example 6 (Computation of O∞ under the DPC Feedback Policy)
System (1.1) subject to constraints (1.2) under the DPC control law (1.48) for n=3,

pmax = [1; 1; 1] and dmax = [0.5; 0.3; 1] is rewritten as an autonomous PWA system
defined over 19 regions depicted in Figure 1.8(a) (M = 1.5). The corresponding
maximal robust positive invariant set O∞ is:

0 ≤ x1 ≤M, 0 ≤ x2 ≤M, 0 ≤ x3 ≤M

x1 + x3 ≥ 0.5, x2 + x3 ≥ 0.3
x1 + x2 + x3 ≥ 0.8.

(1.61)

and it is depicted in the Figure 1.8(b) (M = 1.5).

0  M
0  

M

x
1

x
2

(a) n=2 (b) n=3

Figure 1.3: C∞ under the Assumption (1.19).

Remark 6 As mentioned in the Appendix B, the methods for computing the robust
one-step set can be intractable for relatively for large systems. The numerical calcula-
tion of the invariant sets C∞ and O∞ explode computationally respectively for n > 10
and n > 6, in the sense that the invariant set computation will take days. It is useful
to explicitly compute the invariant sets for arbitrary n without resorting to numerical
calculations.
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(a) dmax
1 (b) dmax

2

Figure 1.4: C∞ for n=3.

(a) SPWA (b) O∞

Figure 1.5: SPWA and O∞ under RLB and the Assumption (1.19).

In the next section a case study will show how the explicit expression of the invariant
sets could be used in manufacturing.

1.9 Case Study

We consider a two-stages metal cold presswork factory located in the South of Italy.
It consists of one production line and one assembly line, manufacturing 14 different
item typologies (see the Figure 1.1, assuming only one production line). Then, a set
of 14 buffers has to be controlled in order to prevent stockouts. Two type changes
occur in one day of work; the setup time does not depend on the item typology.
The maximum assembly rate dmax

i , as well as the maximum production rate pmax
i are
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Figure 1.6: O∞ under the RLB Feedback Policy.

(a) SPWA (b) O∞

Figure 1.7: SPWA and O∞ under DPC and the Assumption (1.19).

known per each typology i = 1 . . . 14. If we don’t consider setup, the overall maximum
production rate Pmax

ns will be equal to the maximum production rate, that is:

Pmax
ns = max

i
{pmax

i } i = 1 . . . 14

We have computed the production rate loss due to the setup time, denoted by ploss,
through a worst case assumption. The total time spent for the two daily setup is
converted into a production loss rate considering the number of items that would be
produced during the setup time at a production rate equal to Pmax

ns :

ploss =
2 · setup time · Pmax

ns

24
The worst case assumption consists in using Pmax

ns rather than the pmax
i corresponding

to each item typology. Hence, the effective overall daily maximum production rate
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(a) SPWA (b) O∞

Figure 1.8: SPWA and O∞ under the DPC Feedback Policy.

Pmax is computed considering the production loss due to setup, that is:

Pmax = Pmax
ns − ploss

The overall daily maximum assembly request Dmax is supposed to be equal to the
overall daily maximum production capacity, according to the case Pmax ≥ Dmax.
Then, after normalizing all the quantities to the maximum production rate, the
model (1.1) can be applied to this industrial case assuming a daily sampling time,
the normalized assembly request of the typology i as the demand rate di and the
normalized production rate of the typology i as the production rate ui. The following
data have been used:

dmax = [0.04; 0.04; 0.05; 0.05; 0.05; 0.12; 0.12; 0.07; 0.08; 0.02; 0.03; 0.07; 0.07; 0.07]

pmax = [0.83; 0.92; 1; 1; 1; 0.92; 0.92; 0.92; 1; 0.75; 0.75; 0.92; 0.92; 0.92]

Dmax = Pmax = 0.81.

We assume a simulation horizon of 50 days and a demand profile over this horizon
depicted in the Figure 1.9(a). For the types 10 and 11, corresponding to the smallest
maximum demand rate, the demand is supposed to be constantly equal to its maxi-
mum value. The sum of all the demand rates is equal to Dmax at each time step. The
plant model under the DPC feedback policy, which has been proved to be the ”best”
policy, has been simulated assuming different initial buffer states. The objective of the
control policy is to be feasible, i.e. to guarantee a continuous production flow, namely
to have enough additional in stock in order to satisfy all admissible assembly requests.
This target can be achieved depending on the initial buffer conditions. If the initial

44



1.10. Conclusions and Future Steps

buffer states belong to an invariant set, the buffer dynamics will never become nega-
tive, which is the case of unmet demand. The numerical computation of the invariant
set O∞ for the investigated manufacturing system, which has 14 buffers, would be
intractable. Exploiting the results in the Theorem 3, it is possible to detect the initial
buffer levels leading to infeasibility without any computation. This is shown through
an example. According to the explicit expression of the invariant set described in 1.49,
the sum of all the initial buffer levels has to be greater or equal to 0.07, which means
that the sum of the items stored in all the buffers at the beginning of the production
period must be bigger or equal to 672. The Figure 1.10(a) shows the buffer dynamics
of 12 product types corresponding to the assembly request depicted in Figure 1.9(a)
and corresponding to an initial condition xi(0) = 0.005, ∀i = 1, . . . 14. The dy-
namics of the buffers for types 10 and 11 will be equal to zero because the demand
rate is equal to its maximum value all the time. Note that the buffers are always
nonnegative, then the feasibility of the control policy holds (the policy is ”persistent”
feasible). The produced item number per day is depicted in the Figure 1.9(b). The
Figure 1.10(b) shows the same buffer dynamics corresponding to an initial condition
xi(0) = 0.001, ∀i = 1, . . . 14. This initial condition does not belong to the invariant
set of the system under the DPC feedback policy. Note that the number of products
in the buffers becomes negative, which means that the assembly requests cannot be
satisfied. The Figure 1.10(b) illustrates this infeasible case. The investigated case
study describes a possible industrial application of the proposed results. The use of
computed invariant set as a terminal set constraint in a receding horizon scheduling
policy is currently under research.

1.10 Conclusions and Future Steps

This chapter has reported on the classical problem of buffer level control by means of
robust invariant set theory for linear and switched linear systems. We have provided
the analytic expression of robust positive invariant sets and controlled robust invariant
sets for two common scheduling policies. The results of this paper allow to compute
the invariant sets for an arbitrary number of buffers without resorting to recursive
algorithms. We believe that our work may have a broad impact if developed further.
For instance, it can lead to a systematic way to analyze the feasibility properties of well
studied and commonly implemented scheduling control laws. Also, the application of
receding horizon scheduling polices in manufacturing plants [31, 89, 108] can benefit
from the proposed study. In fact, it is well known that when a receding horizon (or
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Figure 1.9: Demand profile and control inputs over 50 days.
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Figure 1.10: Buffer dynamics with stockouts over 50 days.

moving horizon) scheduling policy is used, the persistent feasibility of the closed-loop
systems is hardly guaranteed [31]. The results of this chapter allow to simply compute
an invariant set which can be used as a terminal set constraint in a receding horizon
scheduling policy. This is a key element for guaranteeing the persistent feasibility of
the closed-loop system.
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Chapter 2

Stochastic Model Predictive

Control for Indoor Climate

Control

One of the most critical challenges facing society today is climate change and thus
the need to realize massive energy savings. Since buildings account for the largest
fraction in total energy use, energy efficient building climate control can have an
important contribution. The work presented in this chapter is part of the OptiCon-
trol Project, which aims at developing predictive control strategies to save energy
in indoor climate control while maintaining high user comfort. Weather forecasts
are employed to achieve this target. In particular we investigate a stochastic model-
based predictive approach for indoor climate control that takes into account weather
predictions and thus increase energy efficiency while respecting constraints resulting
from desired occupant comfort. The system model is bilinear, time-varying and with
stochastic uncertainty. Model predictive strategies with time-varying and probabilis-
tic constraints are assessed in terms of energy savings, constraint violations as well
as computational requirements and compared with strategies used in today’s cur-
rent practice. We also describe methods to reduce the computational time without a
significant performance loss. Simulation results show that Stochastic Model Predic-
tive Control (SMPC) methods can achieve significant improvements with respect to
current controllers.
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2.1 Use of Weather and Occupancy Forecasts For

Optimal Building Climate Control (OptiCon-

trol)

The presented work is part of the OptiControl Project 1, which aims at developing
predictive control strategies to save energy in indoor climate control while maintaining
high user comfort. The project was started in May 2007 and involves the following
institutions:

• Terrestrial Systems Ecology Group, ETH Zurich, Switzerland;

• Automatic Control Laboratory, ETH Zurich, Switzerland;

• Building Technologies Laboratory, EMPA Dübendorf, Switzerland;

• Federal Office of Meteorology and Climatology (MeteoSwiss), Zurich, Switzer-
land;

• Building Technologies Division, Siemens Switzerland, Ltd, Zug, Switzerland.

The investigated control policies use weather and occupancy forecasts, whose benefits
have been investigated in many studies 2.2.1. The most promising and interesting case
studies were selected for large-scale simulations and in-depth analysis, mainly involv-
ing office buildings. The dynamic model of office buildings was identified and validated
by the Building Technologies Laboratory of EMPA Dübendorf. Hourly weather data
(predictions and observations) from 10 representative European measurement sites
were provided by the Federal Institute for Meteorology and Climatology MeteoSwiss.
The control algorithms were investigated by the Automatic Control Laboratory from
ETH Zurich, which we collaborated with to developed and implemented the stochastic
control strategy described in this chapter. Building models, weather data and control
algorithms have been used to simulate the behavior of real buildings under different
control strategies. The OptiControl Project activities included the development of
a modeling and simulation environment, the Building Automation and Control Lab-
oratory software (BACLab), as well as the implementation of databases containing
weather and occupancy data and building system parameters. A set of performance
criteria were defined to assess the proposed control solutions. A comprehensive report
on the activities and results achieved in the OptiControl Project so far can be found
in [38]. In this chapter we will focus on predictive strategies and analyze a case study.

1http://www.opticontrol.ethz/
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2.2 Introduction

Buildings account for approximately 40% of the total energy usage in industrialized
countries, of which more than 50% is electrical power [44]. The Figure 2.1 shows
the total end use of energy; in residential and commercial sectors the major part of
the energy consumption is in buildings. This includes energy used for controlling
the indoor climate and for installed equipment [6]. Energy use and utility cost can

Figure 2.1: Energy consumption in different sectors [6].

be reduced by increasing the efficiency of building systems, by distributing thermal
energy more efficiently while meeting the needs of users. Since a building that is built
today has an expected lifetime of at least 50 to 100 years, it is urgent to investigate the
existing Heating, Ventilation and Air Conditioning (HVAC) systems and to increase
their energy efficiency. The use of predictive control strategies is appealing in building
climate control due to several reasons, such as slow system dynamics, comfort ranges
for the controlled variables defined by European standards, time-dependent costs
and bounds for control actions. Initial idealized investigations have demonstrated
that foreknowledge of upcoming weather conditions can significantly decrease energy
consumption [64]. As building dynamics are highly affected by uncertainties, indoor
climate control must cope with disturbance rejection. The disturbances mainly consist
of the external environment or weather and the people occupying the building, who
generate heat, CO2 and set demands for temperature, illuminance and air quality. In
this work we investigate how knowledge of the statistics of realistic weather predictions
can be incorporated into a model predictive control (MPC) framework. This advanced
control technique is so popular in industry mainly because of its capability to handle
multivariate variable problems as well as incorporate constraints for the manipulated
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and the controlled variables. The basic idea of MPC is to exploit the model of the
process to predict the future evolution of the system and compute the control actions
by optimizing a cost function depending on such predictions. Moreover, if the future
disturbances of the controlled system are known or their distribution can be identified,
a stochastic MPC can be developed in order to explicitly take into account the effect
of disturbances on the future evolution of the system. A stochastic MPC strategy will
be next described and applied to building climate control. Common approximations
are compared through simulation.

2.2.1 Literature Review

The use of disturbance predictions (e.g. weather forecasts) for indoor climate control
has been investigated in many works [9, 32, 36, 62, 64, 68, 82]. The cited papers and a
more extensive bibliography can be found at the OptiControl site
http://www.opticontrol.ethz.ch/Literature.html. In these studies the predic-
tive strategies turn out to be more efficient and promising compared to the conven-
tional, non predictive strategies in thermal control of buildings. In [62] the authors
have developed both certainty-equivalence controllers using weather predictions and
a controller based on stochastic dynamic programming for a solar domestic hot wa-
ter system. The strategies are based on probability distributions derived from the
weather data. The simulation results have shown that the predictive control strate-
gies can achieve a lower energy cost compared to a non-predictive strategy. In [66–68]
the use of a short-term weather predictor based on the real weather data in the control
of active and passive building thermal storage inventory is explored. The predicted
variables include ambient air temperature, relative humidity, global solar radiation,
and solar radiation. A receding horizon policy is applied, i.e. an optimization is
computed over a finite planning horizon and only the first action is executed. At
the next time step the optimization is repeated over a shifted prediction horizon. It
has been shown that the electrical energy savings relative to conventional building
control can be significant. A predictive control strategy using a forecasting model of
outdoor air temperature has been explored in [36] for intermittently heated radiant
Floor Heating Systems (RHF). The control action consists of deciding when to supply
the heat to the floor. In the conventional intermittent control technique the decision
is based on the past experience. The experimental results show that use of the predic-
tive control strategy could save between 10% and 12% energy during the cold winter
months compared to the existing conventional control strategy. Energy savings in
a predictive Integrated Room Automation (IRA) are investigated in [64]. The pro-
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posed model predictive strategy manipulates passive thermal storage of the building
based on predicted future disturbances (e.g. weather forecasts). Comfort bounds are
provided for the room temperature. Both conventional, non-predictive strategies and
the predictive control strategies are assessed using a performance bound as a bench-
mark. The performance bound is an ideal controller, i.e. no mismatch between the
controlled process model and the real plant and perfectly known disturbances. The
predictive control outperforms the non-predictive control because the room temper-
ature can be kept within its comfort bounds with minimum energy, i.e. low cost
energy sources are exploited as much as possible. The effect of automatic blinds and
lighting control on heating and cooling requirements are studied in [32]; the authors
investigate the reduction in annual primary energy requirements for indoor climate
control achieved in Rome by applying automated lighting control. In the study [9]
the influence of occupant behavior on energy consumption was investigated in a single
room occupied by one person. The simulated occupant could manipulate six controls,
such as turning on or off the heat and adjusting clothing. The simulation results have
shown that occupant behavior significatively affects the energy consumption in the
room. In conclusion, from the literature we can learn that potential benefits can be
obtained for indoor climate control by predictive strategies as well as by including
automated blinds and lighting in the control action. We focus on individual building
zone or room, i.e. Integrated Room Automation (IRA) [64], in which there are both
high energy sources (e.g. chillers, gas boilers, conventional radiators) and low energy
methods (e.g. blind operation and evaporative cooling) for heating and cooling. This
is also the practise employed in standard 382/1 [2] and 380/4 [3] of Schweizerischer
Ingenieur- und Architektenverein (SIA 2). Low cost energy sources make use of the
thermal storage capacity of the building and thus are slow and heavily dependent
on weather conditions. Hence the model predictive control should fit very well: if
predictions of the future system evolution can be computed, low cost energy sources
can be used for controlling the building and meeting the occupant requirements. The
aim is to avoid the conventional expensive energy sources as much as possible in favor
of the low cost ones.

2.2.2 Outline

In Section 2.3 the building model is provided and an autoregressive model for the
disturbances is identified. In Section 2.4 the optimization problem taking weather
uncertainties into account is formulated. Then in Sections 2.5 and 2.5.2 the proposed

2http://www.sia.ch/d/index.cfm
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control schemes are assessed and simulation results are presented. Finally conclusions
and future steps are provided in Section 2.6.

2.3 Modeling

We aim at investigating how the proposed Stochastic Model Predictive Control (SMPC)
strategy taking weather uncertainty into account can increase energy efficiency in in-
door climate control while respecting occupant comfort. Hence we need to develop
a model of the system and to identify the uncertainty in order to employ the Model
Predictive Control (MPC) technique. In the following subsections first the building
model is developed, then a predictor of the error in weather forecasts is identified,
finally the augmented model including both the building and the prediction error
model is presented.

2.3.1 Building Model

In order to study potential energy savings we investigated a single room/zone model.
As discussed in [64] and in 2.2.1, it is reasonable to estimate building-wide savings
by integrating multiple zone models. The single room/zone will be represented as
a simple lumped-parameter model. This means that, for example, the state for the
room temperature is lumped over all floors and the whole room. The model as well
as the parameter and cost estimation for a wide range of building types has been
provided by the Building Technologies Laboratory of the Swiss Federal Laboratories
for Materials Testing and Research (EMPA). As described in [47] and in [46], the
system under investigation has the following six control inputs:

u1 = blind position [0 : closed ... 1: open]

u2 = electric lighting

u3 = floor heating (positive values ←→ heating) [W/m2]

u4 = slow ceiling for cooling (positive values ←→ cooling) [W/m2]

u5 = evaporative cooling usage factor [0: off ... 1: on]

u6 = heating power radiator (positive values ←→ heating) [W/m2]

The cost of each control action is denoted as follows:

c =
[
c1 c2 c3 c4 c5 c6

]T
. (2.1)
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The above costs are derived from the corresponding delivered energy, i.e. electricity
energy [47]. The control inputs u3 and u4 are related to ”slow ceilings”, i.e. cooling
ceilings by capillary tube systems [46]. The following eight disturbances are taken
into account:

v1 = solar gains with closed blinds [W/m2]

v2 = additional solar gains with fully open blinds [W/m2]

v3 = room illuminance by solar radiation with closed blinds [lux]

v4 = additional room illuminance with fully open blinds [lux]

v5 = internal heat gains by occupants [W/m2]

v6 = internal heat gains by equipment (e.g. computers) [W/m2]

v7 = outside temperature [oC]

v8 = wet bulb temperature [oC] .

The wet bulb temperature depends on the outside temperature and humidity and
defines the minimum temperature that may be achieved by evaporative cooling. Solar
gains describe the amount of energy that is introduced to the room by solar radiation.
We account for the heat gain coming into the room through solar gain and artificial
lighting with closed blinds and the difference to partially or fully open blinds [46].
The goal is to use as much as possible the low cost energy sources such as u1 and u5

rather than the conventional heating and cooling elements such as u6. This target is
reflected in the cost function, e.g. c1, c5 2 c6 . The controlled outputs are:

y1 = room temperature [oC]

y2 = room illuminance [lux]

y3 = ceiling surface temperature [oC]

The system is subject to q input constraints:

U := {u ∈ Rm | Fu ≤ f} , (2.2)

and to s output constraints:

Y := {y ∈ Rp | Gy ≤ g} , (2.3)

where F ∈ Rq×m, G ∈ Rs×p, f ∈ Rq and g ∈ Rs. In the investigated control problem,
the set U ⊂ Rm is a polytopic set describing the upper and lower bounds on the
actuators, denoted by umax and umin. The set Y ⊂ Rp is described by the upper and
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Figure 2.2: Schematic diagram of the zone (adapted from [64])

lower bounds on the outputs, denoted by ymax and ymin, therefore by thermal and
illuminance comfort requirements. A schematic diagram of the lumped parameter
model of the single room/zone is depicted in Figure 2.2. In the center of the figure is
the room node, to the left are the slabs, at the bottom the inner walls and to the right
the facade with windows. The nodes in the diagram describe the states of the system
representing the temperatures at different locations. The room temperature is the
state x1, the remaining states represent the slab temperatures, floor, ceiling and the
inner and outer wall temperatures. Each node i has a heat storage capacity given by Ci

and the heat transmission coefficients Ki are the conductances between nodes. There
are non constant parameters in the model, such as the heat transmission through the
windows, which depends on the blind position. Then this heat transmission is assumed
to be the sum of two terms: one constant term representing heat gain with closed
blinds, the other modeling the heat gain with partially or fully opened blinds. The
room illuminance is due both to natural and artificial lighting. The natural lighting
depends on the solar gain coming into the room through the windows, then on the
blind position as well. In the diagram, the arrow on the heat transmission coefficient
block introduces a nonlinear term in the model equations, precisely a bilinear term
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because the heat transmission coefficient is multiplied with the control input. The
heat flux equation for each node can be derived from the Figure 2.2 directly. For
example, node 6 gives:

C6 · ẋ3 = u3 − u4 + K15(v8 − x6) · u5 + K6(x1 − x6) + . . . (2.4)

. . . + K5(x5 − x6) .

Notice the bilinear term K15(v8−x6) ·u5: the heat transfer coefficient K15 depends on
the free cooling usage factor u5. Notice that the external and wet bulb temperatures v7

and v8 are also nodes in this diagram but are taken as fixed temperature sources. The
heat transfer coefficient K16 represents the facade insulation due to the position of the
blinds and can therefore be varied by changing the blind position u1, which results in
a bilinear term in the system dynamics u1K16(x1 − v7) [46]. We also have a bilinear
term in the equation representing the room illuminance:

y2 = v3 + u1 · v4 + γ · u2 (2.5)

where γ is a scaling factor to account for the fact that u2 is given in terms of en-
ergy but we want to look at the illuminance. Then the room model is given as the
following 12th-order, stochastic discrete, time-varying, bilinear model:

xk+1 = Axk + Buuk + Bvvk +
6∑

i=1

(Bxu,ixk + Bvu,ivk)ui,k (2.6a)

yk = Cxk + Duuk + Dvvk +
6∑

i=1

(Dvu,ivk)ui,k . (2.6b)

The sampling time is 1 hour. The matrices Bxu,i ∈ R12×12, Bvu,i ∈ R12×8 and Dvu,i ∈
R3×8 account for the bilinear terms in states, inputs and disturbances per each input.
The output, state, input and disturbance variables at each time step k are denoted
respectively by yk ∈ R3, xk ∈ R12, uk ∈ R6 and vk ∈ R8. Therefore, for example,
the ith state at time k is denoted by xk,i. As mentioned above, comfort bands are
defined by placing upper and lower bounds on the outputs y. However, because
buildings are not occupied at all times of the day and building standards allow for
different bands during different times of the year, we have time-varying constraints
on the room temperature y1 and the room illumination y2. These allowed comfort
constraints are defined independently for each country (e.g. [12], [37]). The constraints
used in this paper are defined for Switzerland and are defined based on SIA standard
382/1 [5], [1]. According to these standards, the comfort bands can be violated
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from time to time. This allows to put probabilistic constraints on the outputs. The
room/zone model 2.6 is nonlinear, which leads to a nonlinear MPC problem. Since
nonlinear MPC problems can be extremely difficult to solve because it might involve a
non-convex optimization, we will resort to the Sequential Linear Programming (SLP)
method to address this issue. The SLP technique consists of iteratively linearizing
the objective and constraints around the current optimal point by a Taylor series
expansion until a convergence criterion is met. For applying the SLP technique to
the indoor climate control, we need to iteratively linearize the nonlinear equality
constraints deriving from the building model. The disturbance variables involved
in the bilinear terms are assumed to be equal to available forecasts. The resulting
subproblems will be provided in the next subsections; they can be approximated and
recast to tractable optimization problems. The basic formulation of SLP algorithm is
described in the Appendix C. We will next develop the weather uncertainty model.

Remark 7 In the OptiControl Report [38] several building variants are investigated,
considering also the indoor air quality and more control inputs, such as mechanical
ventilation, which provides the room with fresh air. The interested reader can find
further details on the modeling of building in [46]. The building system variants have
been defined and discussed in [47]. A large-scale simulation study has been carried out
to select cases with the highest saving potential, whose results are presented in [49].

2.3.2 Augmented Model for Disturbance Rejection

We need the weather predictions over the future horizon to apply an MPC algorithm.
Weather forecasts from MeteoSwiss are available, thus, for any disturbance vj , an
estimate v̂j of the future disturbances vj , j = 1 . . . 8 is available to the controller over
some finite horizon. However the predictions are uncertain. Define at each time k:

vk = v̂k + ṽk, (2.7)

where v̂ is a random error. We account for this uncertainty by treating the error
in the prediction as the output of a linear system driven by a gaussian noise. An
autoregressive model is identified to predict the error in weather forecasts at time
k + 1 based on the previous output. Thus the following linear stochastic process
models the error in prediction:

ṽk+1 = Hṽk + Kwk, wk ∼ N (0, I8) . (2.8)

The residuals are assumed to be normally distributed with zero mean and covariance
KKT , hence they can be expressed in terms of a standard normal variable wk. Look-
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ing at the eight disturbances defined in the previous section, there are four that are
linearly dependent on solar gain v1 (i.e. v2, v3 and v4). Furthermore, the outside
temperature and wet bulb temperature have a quite smoothly evolution, while the
solar gain has a high variability. The uncertainty in outside and wet bulb temper-
atures is much smaller, then it has a negligible effect on the room compared to the
solar radiation [53]. This is due to the high thermal insulation of the facade and to
accurate temperature estimates, further corrected by a Kalman filter; we refer the
reader to [53] for further details. Therefore this helps to obtain temperature and wet
bulb temperature forecasts more accurate compared to solar gain predictions. As a
consequence, in this initial study it is sufficient to consider the uncertainty only in
the solar radiation prediction. So the matrices FH and K in the error model 2.8
are simply scalars. To make the control design include information about measured
disturbances, the zone model is augmented as follows:

[
xk+1

ṽk+1

]
=

[
A BvH

0 H

] [
xk

ṽk

]
+

[
Bv

0

]
v̂k +

[
BvK

K

]
wk+

+

[
Bu,1 + Bxu,1xk + Bvu,1v̂k . . . Bu,6 + Bxu,6xk + Bvu,6v̂k

0 . . . 0

]
uk =

= Aa

[
xk

ṽk

]
+ Ba

v v̂k + Ba
wwk + Ba

kuk. (2.9)

[
yk

]
=

[
C DvH

] [
xk

ṽk

]
+

[
Dv

]
v̂k +

[
DvK

]
wk+

+
[
Du,1 + Dvu,1v̂k . . . Du,6 + Dvu,6v̂k

]
uk =

= Ca

[
xk

ṽk

]
+ Da

v v̂k + Da
wwk + Da

kuk.

where xk ∈ Rn, yk ∈ Rp. Notice that the matrices Ba
k and Da

k are time-varying.
To summarize, the model which the control strategy has to be based on has been
developed.

2.3.3 Kalman Filter

The weather forecasts are updated each 12th hour and the predictions look forward
for 72 hours for a location situated at a weather station next to the building being
controlled. Therefore we must use old predictions until new ones will be provided.
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Accurate hourly measurements can be available locally from sensors on the building.
We assume the measurement availability and exploit this information by applying a
standard Kalman filter to the error model (2.8) in order to incorporate the latest
measurements each hour. The Kalman filter is useful both to update future pre-
dictions and to locally correct the systematic error in the predictions. We apply the
Kalman filter [39,71] to outside and wet bulb temperature as well. In the next section
the control problem will be formulated.

2.4 Control Problem Formulation

A model-based predictive approach is exploited for the inddor climate control problem.
Model predictive control strategies for stochastic systems aiming at increase energy
efficiency while respecting constraints resulting from desired occupant comfort are
formulated and analyzed in the following.

2.4.1 Introduction to Model Predictive Control

Model Predictive Control (MPC) is one of the most successful technologies applied in
a wide variety of application areas including chemicals, food processing, automotive,
and aerospace applications. At each time instant, this method uses a model and all
currently available information to predict the system future evolution over a given
prediction horizon and solve an open-loop constrained optimization problem. A num-
ber of future control actions is computed but only the first move is applied. At the
next time step, the overall procedure is repeated over a shifted prediction horizon.
In presence of disturbances, measured and predicted variables are different. A conve-
nient way to handle uncertainties, which are involved in most real applications, is to
assume that uncertainty is unknown but bounded to adopt a worst case approach, as
applied in Robust MPC (e.g. [17,19,85,111]). By doing so, the uncertainty is treated
as deterministic because the disturbance realizations can assume values, with equal
probability, in a range determined by experience or analysis (e.g. for sensor inaccu-
racy). The robust approach can be unnecessarily conservative because the control
action has to work well for all admissible disturbances. Moreover every uncertainty
whose probability distribution has the same support would lead to identical results.
Even if the robust approach can be less pessimistic through a closed-loop optimiza-
tion [17], a more realistic approach can be adopted: to identify the distributions of
uncertain model parameters and use these to solve a stochastic MPC problem. Fur-
ther details on MPC and stochastic MPC are provided in the Appendix D. Stochastic
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MPC formulations have been proposed and investigated for additive and multiplica-
tive disturbances in [41,42,54,107,114]. The performance index is the expected value
of the usual quadratic cost and the uncertain variables over the prediction horizon
are described as stochastic variables with known probability distribution functions.
The key point of the control problem is how to deal with uncertainty. Two different
approaches will be discussed in the following subsections [51].

2.4.2 Certainty Equivalence Model Predictive Control

A simple way to deal with uncertainty in the traditional MPC framework is simply to
neglect the disturbance and solve a deterministic finite-horizon optimization problem,
i.e. certainty equivalence MPC (CE-MPC). The disturbance variables involved in
the bilinear terms are assumed to be equal to available forecasts. As described in
the Appendix D, the future disturbances are replaced with deterministic estimates,
usually the conditional mean. In the augmented system 2.9 we model the error in
prediction as a linear system driven by a gaussian disturbance, whose mean is zero
and whose realizations over the prediction horizon are uncorrelated. Therefore the
deterministic disturbance estimates we consider are exactly the weather forecasts.
The CE-MPC problem is then based on the following deterministic system:

xk+1 = Axk + Buuk + Bv v̂k +
6∑

i=1

(Bxu,ixk + Bvu,iv̂k)ui,k (2.10a)

yk = Cxk + Duuk + Dv v̂k +
6∑

i=1

(Dvu,iv̂k)ui,k . (2.10b)

The resulting deterministic formulation of Problem (4) is:

Problem 3 (Certainty Equivalence MPC)

min
u0,...,uN−1

N−1∑

k=0

cT uk

s.t.

system dynamics (2.10)

Gyk ≤ g k = 1, . . . , N

Fuk ≤ f k = 0, . . . , N − 1

(2.11)

Since the future values of disturbances are exactly as predicted, there is no future
uncertainty in the controller and there are no robustness guarantees in this case.
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Practical experience has demonstrated that it is often possible to achieve good per-
formance nonetheless. That is the reason for investigating the CE-MPC in the indoor
climate control.

2.4.3 Stochastic Model Predictive Control

In this section the stochastic MPC problem based on the augmented model 2.9 is
formulated. The control law applied at time k is the function uk(·) : Rn 3→ U and yk

is the system output at time k when the state is x0 at time 0. We choose to minimize
the expected value of the non renewable primary energy cost (NRPE) distribution
over the prediction horizon N . We must solve a finite horizon stochastic optimal
control problem with probabilistic constraints on the outputs over a planning horizon
of length N :

Problem 4 (Stochastic MPC)

min
u0,...,uN−1

E

[
N−1∑

k=0

cT uk(xk)

]

s.t.

system dynamics (2.9)

P {Gyk ≤ g} ≥ 1− α k = 1, . . . , N

Fuk(xk) ≤ f k = 0, . . . , N − 1

(2.12)

where 1 − α is the predefined probability level for constraint satisfaction, xk is the
current system state and u0 ∈ U . The constraints on the control inputs and on the
manipulated variables have been defined in 2.2 and in 2.3. The probabilistic con-
straints included in Problem (4) are called ”chance constraints”. See the Appendix D
and the Appendix E for further details on chance constraints and Stochastic MPC.
States and outputs are stochastic variables depending on a normal disturbance. Since
the cost is linear and it is an affine linear transformation of normally distributed vari-
ables, it has a normal distribution. The coefficients in the objective, as well as lower
and upper bounds on inputs and outputs, have been defined in 2.1. Problem (4) con-
tains an infinite number of convex input constraints, non-convex chance constraints
on the states and requires optimization over the class of input functions u(·). In the
following sections, we will address the problem to obtain a convex and easily solvable
formulation of Problem (4): first we will investigate how to parameterize the control
inputs to make Problem (4) tractable, then the non-convex probabilistic constraints
in Problem (4) will be reformulated as convex, deterministic constraints.

60



2.4. Control Problem Formulation

Control Parametrization

The stochastic control problem formulated in 4 is very hard to solve; the traditional
dynamic programming approach is practically intractable except for very special
cases (e.g. stochastic linear-quadratic control). In control literature, several meth-
ods have been proposed to find suboptimal policies that work well in practice, among
which MPC is a very effective technique. It is known that if the uncertainty is to be
accounted for in the formulation of an MPC problem, it will be preferable to have a
state feedback mechanism in the controller rather than open-loop input sequences, in
the sense that the control policy is computed on the basis of currently available infor-
mation. The controller is able to react to future disturbance realization more properly.
In the open-loop prediction MPC the control action over the prediction horizon is only
a function of the current state and not of disturbance and state realizations, while
having future control inputs formulated as functions of measured states is usually
called closed-loop prediction MPC [16,17]. Hence, in open-loop prediction MPC there
won’t be future state measurements and the input sequence must guarantee constraint
satisfaction for all disturbances. However the open-loop approach is computationally
very attractive, it might lead to infeasibility and instability problems [86, 87] and it
can also result in highly conservative control behavior. The closed-loop approach is
less conservative: there will be state measurements at each time instant and feed-
back control policies typically introduce degrees of freedom in optimization [15, 78].
Then the closed-loop prediction MPC is an attractive approach for the indoor climate
control, which is highly affected by uncertainty. In closed-loop prediction MPC opti-
mizing over arbitrary functions is however in general not tractable if constraints have
to be satisfied. A popular approach to addressing this issue, which can still be quite
conservative, is to ”prestabilize”, i.e. to compute stabilizing control laws off-line and
the online computation is restricted to select one of these control laws as well as a
sequence of admissible offsets to the selected control law [14,17,87]. This parametriza-
tion, unfortunately, leads to a non-convex set of feasible decision variables. Recent
results given in [18, 59, 80, 110, 112] describe one approach to address this problem.
The authors have proposed to parameterize the control action as an affine function
of the disturbance sequence both in the case of gaussian and unknown but bounded
uncertainty. This leads to a convex set of feasible decision variables. In case of norm-
bounded uncertainty, this affine disturbance feedback parametrization is shown to be
equivalent to the affine state feedback parametrization in [59] in the sense that is
leads to the same control inputs. Equivalent parametrization has been investigated
in case of stochastic disturbances in [94, 107, 110, 112]. Whereas in [112] and [107] a
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second order cone program is formulated, [94] deals with a linear problem, which can
be beneficial for large-scale problems. In [110], after deriving the explicit dependance
of states and inputs on disturbance in case of affine state feedback parametrization,
the authors show that an equivalent and tractable convex optimization problems can
be obtained by a nonlinear change of variables both in a stochastic and unknown but
bounded (worst-case) setting. Then the optimization in Problem (4) can be solved
in a computationally efficient fashion using convex optimization methods by param-
eterizing the control inputs as affine functions of the past disturbance sequence as
follows:

uk(wk) :=
k−1∑

j=0

Mk,jwj + hk, (2.13)

where wk = [wT
0 , . . . , wT

k−1]
T is the disturbance realization at time k, Mk,j ∈ Rm×r

and hk ∈ Rm, ∀ k = 0, . . . , N − 1. Define

u :=
[
uT

0 u1(·)T . . . uT
N−1(·)

]T
and (2.14)

M :=





0 . . . . . . 0

M1,0 0
. . . 0

...
. . . . . .

...
MN−1,0 · · · MN−1,N−2 0




,h :=





h0

...

...
hN−1




.

where the disturbance feedback matrix M ∈ RmN×Nr is a strictly block lower trian-
gular matrix with bandwidth N − 1, which can be written as a block matrix with
each block Mk,j ∈ Rm×r if j < k, otherwise Mk,j = 0 [59, 74, 110]. Then the inputs
are written as u = Mw + h.

Remark 8 We remark that, although perfect state measurements are generally as-
sumed available, still the proposed methods can be used in practice with an estimate
of the state, obtained by an observer or a state estimator.

By parameterizing the control policy as an affine function of the past disturbance se-
quence, the input constraints of Problem (4) involve uncertainty and they are required
to be satisfied for all possible disturbances. The formulation (2.13) set the inputs to
be an affine functions of normally distributed disturbances having an unbounded
value range. This would result in input constraint violations and then infeasibility
in the optimization routine unless M = 0. Only in the latter case the inputs can
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be constrained to lie within a bounded set. A possible approach to addressing this
issue is to relax the hard input constraints and restrict the constraint satisfaction to
subsets with prescribed probability levels. Therefore it is necessary to define chance
constraints also on the inputs, not only on the outputs. It is desirable to impose a
higher probability of satisfaction on input constraints. We denote this probability
level by 1− αu. Hence the Problem (4) can be re-written as a closed-loop prediction
stochastic MPC (CLP-SMPC) as follows:

Problem 5 (Closed-Loop Prediction SMPC)

min
M,h

E

[
N−1∑

k=0

cT uk(wk)

]

s.t.

system dynamics (2.9)

P {Gyk ≤ g} ≥ 1− α k = 1, . . . , N

P {Fuk(wk) ≤ f} ≥ 1− αu k = 0, . . . , N − 1

uk(wk) :=
k−1∑

j=0

Mk,jwj + hk

(2.15)

Remark 9 Notice that the cost function in Problem (5) has a normal distribution
with expected value equal to 0 then it is equal to the linear cost function

∑N−1
k=0 cT hk.

Remark 10 We remark that the control strategy being considered is a receding hori-
zon policy (see the Appendix D for a brief overview). We solve an optimization prob-
lem at each k over a horizon of length N , but only the first input is actually applied to
the controlled system. Since we are considering affine causal controller and the first
m rows of M are zero, the first control input u0 = h0 is deterministic.

By setting the block matrix M to the zero matrix and optimize over only the offsets
h, we obtain the following open-loop prediction stochastic MPC (OLP-SMPC):
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Problem 6 (Open-Loop Prediction Stochastic MPC)

min
h

N−1∑

k=0

cT uk

s.t.

system dynamics (2.9)

P {Gyk ≤ g} ≥ 1− α k = 1, . . . , N

Fuk ≤ f k = 0, . . . , N − 1

uk := hk

(2.16)

Notice that in Problem (6) we don’t need to resort to input chance constraints. As
mentioned above, this approach is generally conservative, but it is also significantly
less computationally demanding. The next subsection deals with the probabilistic
constraints or chance constraints. Since they are in general non-convex, we need to
investigate how to reformulate them as tractable constraints.

Chance Constraints

Once we choose the control policies, we need to deal with chance constraints for solv-
ing the Problem (5). In building climate control there is a natural tradeoff between
energy usage and occupant comfort: tighter comfort bounds requires higher energy
use. Since the observed weather realizations can differ from their predictions, this
tradeoff cannot be given in deterministic terms and we must account for the stochas-
tic nature of comfort satisfaction. Today’s building standards require that indoor
temperature be maintained within a given bound only with a prescribed probabil-
ity; European standard bounds on the temperature and illuminance can be found
in [2, 3, 12, 37]. This flexibility accounts for both the potential energy-saving benefits
of violating constraints from time to time as well as the uncertainty involved in the
weather predictions. Conditions of this form can be translated into so-called chance
constraints (see the Appendix E). Chance constraints are in general non-convex and
difficult to incorporate into an optimization problem since they involve the evaluation
of multivariate integrals. There exists, however, a small class that is easier to deal
with. In particular, it is well-known that if the disturbance is normally distributed,
the functions are bi-affine in the decision variables and the disturbances are consid-
ered in the constraints, then the chance constraints can be equivalently formulated
as deterministic second order cone constraints (see the Appendix D). While these
constraints are convex and hence Second Order Cone Program (SOCP) can be com-
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puted efficiently in theory, the investigated control problem involves a large number
of variables and its solution can be very time consuming (see 2.5.2 to get an idea of
computational times). For this reason, we might need approximated reformulations of
the stochastic control problem to reduce the computational burden of the optimiza-
tion routine. We will next provide a deterministic and convex reformulation of the
chance constraints in Problem (5), then we will discuss some approximations of the
resulting control problem, which reduce the computational effort of the optimization
routine.

Equivalent Second Order Cone Formulation of Chance Constraints

The previous section introduced various common methods in the literature for ob-
taining a finite convex parametrization of the control law. In this section we ex-
amine deterministic convex reformulations of the chance constraints of Problem (5).
We consider the augmented model 2.9. We focus on the probabilistic constraints of
Problem (5) on yk and on uk parameterized as affine function of disturbances. For
notational convenience, we define the output vector over the horizon length N :

y :=
[
yT
0 · · · yT

N−1

]T

where y ∈ RpN . We define in the same manner the input vector u ∈ RmN , the
disturbance vector w ∈ RrN , and prediction vector v̂ ∈ RrN and finally the offset
vector h ∈ RmN . Furthermore we define:

C :=





Ca

CaAa

Ca(Aa)2

...
Ca(Aa)N−1



 D :=





Da
0 0 ... ... ... 0

CaBa
0 Da

1 0 ... ... 0
CaAaBa

0 CaBa
1 Da

2 0 ... 0

...
...

...
...

...
...

Ca(Aa)N−1Ba
0 Ca(Aa)N−2Ba

1 ... ... CaBa
N−2 Da

N−1





Dw :=





Da
w 0 ... ... ... 0

CaBa
w Da

w 0 ... ... 0
CaAaBa

w CaBa
w Da

w 0 ... 0

...
...

...
...

...
...

Ca(Aa)N−1Ba
w Ca(Aa)N−2Ba

w ... ... CaBa
w Da

w





Dv :=





Da
v 0 ... ... ... 0

CaBa
v Da

v 0 ... ... 0
CaAaBa

v CaBa
v Da

v 0 ... 0

...
...

...
...

...
...

Ca(Aa)N−1Ba
v Ca(Aa)N−2Ba

v ... ... CaBa
v Da

v



 (2.17)
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where C ∈ RpN×n, D ∈ RpN×mN , Dw ∈ RpN×Nr, Dv ∈ RpN×Nr and 0 is a zero
matrix with appropriate dimensions. We can express the input and the output vectors
over the prediction horizon and given the initial state x0 in terms of the matrices 2.17:

u = Mw + h

y = Cx0 + Dh + DM + Dvv̂ + Dww

with M and h defined in the subsection 2.4.3. Then the probabilistic constraints on
inputs and outputs in the Problem (5) can be rewritten in terms of the matrices 2.17
as follows:

P {F(Mw + h)− f ≤ 0} ≥ 1− αu (2.19a)

P {G(Cx0 + Dh + DMw + Dvv̂ + Dww)− g ≤ 0} ≥ 1− α (2.19b)

where F := IN×N ⊗ F , f := 1N×1 ⊗ f , g := 1N×1 ⊗ g and G := IN×N ⊗ G

(⊗ is the Kronecker product). The constraints 2.19 are joint chance constraints,
meaning that all of the inequalities have to hold simultaneously. Unfortunately joint
chance constraints are in general non-convex and hard to deal with. Therefore we
approximate the joint chance constraints with the following set of separate chance
constraint [70]: this means that each inequality in 2.19 is considered separately, for
i = 1 . . . Nm, j = 1 . . . Np:

P {Fi(Mw + h)− fi ≤ 0} ≥ 1− αu,i

P {Gj(Cx0 + Dh + DMw + Dvv̂ + Dww)− gj ≤ 0} ≥ 1− αj (2.20a)

where Fi is the ith row of the matrix F, Gj is the jth row of the matrix G, fi
and gj are respectively the ith of the vector f and the jth element of the vector g.
The probability levels 1 − αu,i and 1 − αj are specified for each individual row, as
proposed in [35, 92]. This approach may be rather conservative because it does not
account for the fact that the separate chance constraints can be correlated. Since
w follows a normal distribution and the random variables in 2.20 are also normally
distributed, it is possible to exploit a classic result in [99] (see the Appendix E for
proof details). Therefore the separate chance constraint 2.20 can be formulated as
the following equivalent deterministic constraints with i = 1 . . . Nm, j = 1 . . . Np:

Φ−1(1− αu,i)‖FiM‖2 ≤ fi − Fih (2.21a)

Φ−1(1− αj)‖Gj(DM + Dw)‖2 ≤ gj −Gj(Cx0 + Dh + Dvv̂) (2.21b)

where Φ is the standard Gaussian cumulative probability function. The inequali-
ties (2.21) are second order cone constraints that are convex in the decision variables
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M and h. The Problem (5) can be cast as a convex deterministic second-order cone
program (SOCP) with i = 1 . . . Nm, j = 1 . . . Np:

Problem 7 (CLP-SMPC as SOCP)

min
M,h

E

[
N−1∑

k=0

cT

(
k−1∑

l=0

Mk,lwl + hk

)]

s.t.

Φ−1(1− αu,i)‖FiM‖2 ≤ fi − Fih

Φ−1(1− αj)‖Gj(DM + Dw)‖2 ≤ gj −Gj(Cx0 + Dh + Dvv̂)

(2.22)

where the offset vector h, the block matrix M as well as each block Mk,l have been
defined in the subsection 2.4.3. Exploiting the deterministic reformulation of the
chance constraints on the outputs given in 2.21, the OLP-SMPC Problem (6) can be
formulated as a deterministic linear program:

Problem 8 (OLP-SMPC as LP)

min
h

N−1∑

k=0

cT hk

s.t.

Fuk ≤ f

Φ−1(1− αj)‖GjDw‖2 ≤ gj −Gj(Cx0 + Dh + Dvv̂)

(2.23)

with j = 1 . . . Np.

Remark 11 The probability levels both in Problem (7) and in Problem (8) have to
be larger than 0.5 in order to obtain a convex optimization problem (see [70], Theo-
rem 2.5).

To summarize, if we parameterize the control input as an affine function of past dis-
turbances that are normally distributed, then a convex deterministic formulation of
the original stochastic MPC problem can be derived, which is equivalent in the case
of separate chance constraints. The resulting optimization problem is a second-order
cone program (SOCP), which then has to be solved at each sampling interval. Al-
though recent results in linear conic optimization provide quite efficient algorithms for
solving SOCPs also for large (but non huge) scale problems [7, 79, 90], the complex-
ity can grow quickly with problem size. Exactly how large is ’large’ is investigated
through simulation in section 2.5 for the particular case study of building control.
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In case the equivalent reformulation is not tractable, several approximations can be
used. We will next describe some approximations to reduce the computational burden
of the optimization routine.

Approximation of Stochastic Model Predictive Control

In this subsection we will discuss some possible ways to reduce the computational
complexity of the equivalent deterministic Second Order Cone Problem (7). One
way is to reduce the number of degrees of freedom in the optimization routine. In
Problem (7) we optimize over each block Mk,l ∈ Rm×r and each offset hk ∈ Rm×1,
for k = 0 . . . N − 1 and l = 0 . . . k − 1. The number of optimization variables grows
quadratically with the horizon length and can lead to computationally prohibitive op-
timization. By reducing the number of degrees of freedom in the choice of the optimal
input moves other suboptimal strategies can be applied. This sort of approximations
of the Problem (7) are described next. The computational issues that could result
from some of the proposed approximations will be discussed as well.

M Pre-computation Fixing M to be a constant matrix, rather than choosing it
through an optimization problem online will significantly reduce the size of the prob-
lem to be solved. There are many possible heuristics available to choose a particular
M [14, 87], but we here take a pragmatic approach and simply solve problem CLP-
SMPC for a certain number of initial states. Then we fix M to be the average of the
resulting solutions; all subsequent optimization problems are solved by replacing M
with the computed average. One must optimize only over the offset vector h, thus
the Problem (7) is cast as a linear program. This technique reduces significantly the
computational effort, however it can lead to infeasibilities due to the fact that the
bounds on the outputs are time-varying. Denote by Mc the constant block matrix
obtained from the pre-processing step described previously. Taking Mc for M the
constraints in 2.21 can be re-written as follows:

Fih ≤ fi − Φ−1(1− αu,i)‖FiMc‖2 (2.24a)

GjDh ≤ gj −Gj(Cx0 + Dvv̂)− Φ−1(1− αj)‖Gj(DMc + Dw)‖2 (2.24b)

with i = 1 . . . Nm, j = 1 . . . Np. Clearly only h contains the decision variables.
Since f and g contain upper and lower limits on the actuators and on the outputs,
the constraints 2.24 actually both impose different upper and lower bounds on the
offset vector h. Hence it is likely to have inconsistency in the constraints 2.24 because
the bounds on the outputs can vary over time. A way of addressing this issue could
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be to soft input constraints and output constraints as well and to add high violation
penalties in cost function (a more detailed described of soft constraints can be found
in the Appendix D).

M with Banded Structure As proposed in [81], the number of decision variables
can be reduced by restricting the bandwidth of the matrix M:

Mb :=





0 . . . . . . . . . . . . 0

M1,0 0 . . . . . .
...

...
. . . . . . . . .

Mb,0 · · · Mb,b−1 0 . . .
...

0
. . . . . . . . .

...
. . . . . . . . .

...
0 · · · MN−1,b . . . MN−1,N−2 0





This structure corresponds to parameterizing the control policy to be an affine func-
tion of the previous b disturbances. The CLP-SMPC problem still stays a second
order cone problem but its complexity can be significantly reduced. In particular, the
smaller is b, the smaller is the number of constraints and optimization variables. The
Figure 2.3 shows the sparsity structure of the disturbance feedback matrix M for the
Problem (5) with prediction horizon N = 24, one disturbance and different bands b,
i.e. b = 2, b = 8 and a full band b = N = 24. The plot is produced by the Matlab
SPY function, which is useful to view the distribution of the nonzero elements within
a sparse matrix. Notice that the number of optimization variables contained in the
matrix M grows from 282 to 1800 as b increases from 2 to 24. This shows clearly the
rate of increase in decision variables. In the next subsection we will briefly digress
on the solver employed for the optimization routine and some numerical difficulties
in the computation if the control inputs.

2.4.4 Computational Aspects

Efficient solvers are available on the Matlab platform for linear, quadratic and conic
optimization. We used for our experiments the MOSEK optimization toolbox for Mat-
lab [10], a full-featured optimization package including a primal-dual interior-point
algorithm for linear and conic optimization problems, which has a polynomial-time
complexity [7, 8]. MOSEK is particulary efficient on large-scale and sparse problems
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Figure 2.3: Different banded structures of M for the Problem (5) with prediction horizon N = 24

and one disturbance

as the problem we have to solve. It has a state of the art customized solver for conic
optimization problems. MOSEK can be downloaded for research and evaluation pur-
poses at http://www.mosek.com. Both the linear and the conic optimizer can be
affected by numerical issues due to several reasons, such as:

• problems containing data with very large and very small coefficients are often
hard to solve: significant digits might be truncated in calculations with finite
precision, which can make calculations the optimizer rely on inaccurate;

• even well scaled problems can be numerical hard to solve if they have a certain
structure making them numerical unstable.

Due to numerical finite precision, if the optimizer cannot compute a solution that has
the prescribed accuracy, then it will relax the termination tolerances or apply a tiny
perturbation to the problem data such that the perturbed problem has a solution.
If the solution then satisfies the termination criteria, the solution is denoted near
optimal [10]. In the linear case this can never occur, while this has been seen to occur
often when the optimization problem involves second order cone constraints (CLP-
SMPC and Mb-SMPC strategies). In this case the interior-point optimizer must
exploit a more complex and troublesome algorithm than the linear case (OLP-SMPC
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and Mc-SMPC controllers) and the optimal solutions is harder to provide (see [8] for
details).

Degeneracy and Infeasibility Degeneracy might occur in linear optimization and
then multiple optima will be available at each iteration of the SLP algorithm. For
example, it might happen during the nighttime, when the blind position does not
matter because there is no solar radiation. This can have a negative effect on bilin-
earity treatment and prevent the SLP algorithm C.1.1 from the convergence; it would
be hard to compute a sequence of approximations converging to the original optimal
solution. To avoid degeneracy in linear approximations of 7 or in OLP-SMPC Prob-
lem (8), we can perturb or ”regularize” the linear program and improve the bilinearity
convergence by adding a quadratic term in the objective [56], [106]. The perturbed
objective function in linear approximations of 5 is:

N−1∑

k=0

(
cT hk + γhT

k hk

)

where γ is a positive scalar intended to be ”small”. It has been found that γ = 10−3

is a good choice [106]. We further need to face infeasibility problems. Infeasibility can
occur both in second order cone programs and in linear problems. Feasibility analysis
concerns the problem of whether the chance constraint is feasible. In this case the
optimization routine cannot find a feasible solution. A possible approach is to treat
the output constraints as soft constraints (see the Appendix D for an overview on
soft constraints). Therefore constraint violations are allowed but also penalized in
the objective function in order to keep violations as small as possible. If violations
are not necessary, the original problem will be solved. Notice that the objective
function in the MPC problems previously formulated becomes quadratic and then
the optimization problem to be solved at each SLP iteration becomes a little more
complex, but still efficiently solvable.

Remark 12 We remark that we solve a certain number of linear MPC subproblems
every hour according to the Sequential Linear Programming algorithm C.1.1: each
resulting subproblem to solve can be either a LP, QP or a SOCP, it depends on the
original nonlinear optimization problem. The investigated methods are applied to a
MPC based on a stochastic linear model; each subproblem can be efficiently solved,
although the computational burden of the overall optimization procedure can be pro-
hibitive in case of SOCP.
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In the following sections the proposed control strategies will be assessed and com-
pared to some current controllers and to a theoretical benchmark, called performance
bound (PB). The simulation results presented next will demonstrate the potential
benefits in indoor climate control thanks to the use of stochastic predictive control.

2.5 Simulation Results

We aim at comparing the control strategies based on an MPC framework with both
current practice and the defined benchmark in terms of energy savings, constraint
violations and computational complexity. We will consider next a single, industrially
relevant case study in detail and we will examine the performance of the above con-
trollers on this case via simulation. We will provide the sequence of investigations
for choosing the most suitable controller for the case study. We also made the as-
sumption that the model states are observable and measured and the building model
parameters are perfectly known. Before investigating the control performance, we will
define the experimental setup and test the goodness of fit of the model of the error
in weather predictions. The modeling and simulation software BACLab developed by
the OptiControl team was employed to simulate the building dynamics under several
control strategies. The simulations were performed on an Intel Core Duo processor
with a clock frequency of 2.0 GHz.

Remark 13 We point out that, although a one single case is not yet representative,
the simulation results presented in this section are consistent with the ones shown
in [50],which presents and analyzes several simulation experiments. Moreover, in this
section, we mainly aim at showing how the best controller for a given case study can
be selected. The simulations in [50] were carried out over a year for two sets of
18 meaningful selected cases involving different building attributes and different loca-
tions. Predictive and non-predictive control strategies were compared via simulation
according to defined performance criteria. The comparison involved the the best possi-
ble non-predictive control strategy currently known so far (Rule-Based Controller-4).
Looking at the simulated cases it was concluded that the stochastic predictive control
can gain more in terms of a tradeoff between energy use and violations. The sim-
ulation results further suggest that the performance of SMPC controllers are robust
against model parameter mismatch.

72



2.5. Simulation Results

2.5.1 Performance Criteria and Assessment Procedure

A brief description of the controllers that are investigated by the simulation analysis
is provided in the followings:

• Performance Bound (PB): the ideal controller used as theoretical bench-
mark. There are no uncertainties in the model parameters and in the system
dynamics. A perfect knowledge of future weather is assumed. This ideal con-
troller cannot be implemented in reality, it is more a concept. The performance
bound is computed by solving the MPC problem considering the weather pre-
dictions as perfect, in the sense that there is no uncertainty in the predictions
and a long prediction horizon (6 days);

• Certainty Equivalence MPC (CE-MPC): the CE-MPC is a control strat-
egy based on MPC. The optimization problem to solve is the deterministic
Problem (3). In the controller the uncertainty is simply neglected;

• Closed-Loop Prediction MPC (CLP-SMPC): the CLP-SMPC is a con-
trol strategy based on stochastic MPC. The optimization problem to solve is
the Problem (7). No approximations of the feedback disturbance matrix M are
considered;

• Closed-Loop Prediction Stochastic MPC with Mb (Mb-SMPC): the
CLP-SMPC is a control strategy based on stochastic MPC. The optimization
problem to solve is the Problem (7) with the banded structure approximation of
the feedback disturbance matrix M;

• Closed-Loop Prediction Stochastic MPC with Mc (Mc-SMPC): the
CLP-SMPC is a control strategy based on stochastic MPC. The optimization
problem to solve is the Problem (7) with the pre-computed and constant approx-
imation of the block matrix M. The chance constraints are then reformulated
as approximated linear deterministic constraints. In particular, by setting the
block matrix M to the zero matrix the open-loop prediction MPC (OLP-SMPC)
is obtained;

• Ruled-Based Controller (RBC): the rule-based controller is based on a
non-predictive control strategy. This controller is the current practice and it is
also employed by Siemens Building Technologies as well as a standard certainty
equivalence MPC controller for the studied buildings. This rule-based controller
decides about the position of the blinds and the operation of the evaporative
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cooling based on a series of rules of the kind ”if condition then action”. When
blind position and operation of evaporative cooling are fixed, a one step MPC
with perfect weather forecast (=observed weather data of future step) is run
in order to mimic an underlying PID controller. The RBC requires a simple
implementation but a great tuning effort: determining a good set of rules is
critical for a good performance of this controller. Clearly, by defining more
complicated rules, the RBC can improve the performance. More details on
rule-based control strategies can be found in [52].

The cost function represents the Non-Renewable Primary Energy (NRPE). The con-
trol target is to satisfy constraints with a minimum amount of the NRPE. In order
choose the most effective controller, the assessment of the controllers described above
is split in two parts:

1. first all the control strategies based on the stochastic MPC framework are in-
vestigated (CLP-SMPC, Mb-SMPC, Mc-SMPC, OLP-SMPC);

2. once the best formulation of the stochastic MPC has been chosen, this will
be further compared to industry standard strategies as well as to certainty
equivalence control.

In the assessment procedure, the control performance is analyzed considering:

• the primary energy (NRPE) usage;

• the constraint violations;

• the tunability of the investigated controller;

• the computational effort of the corresponding optimization routine.

Different probability levels of constraint satisfaction are considered to point out the
tunability of the stochastic MPC. Namely it is possible to achieve a better tradeoff
between energy use and constraint violations by simply tuning the parameter α, i.e.
by choosing a more appropriate probability level. For example α = 0.1 implies that
the comfort levels have to be met in 90% of the cases. A higher constraint satisfaction
probability results in a more conservative behavior, i.e. it provides less violations at
the cost of spending more energy. However there is a limit in the achievable tradeoff
between energy usage and violations because the tuning parameter α has to be less
than 0.5 to obtain a solvable optimization problem. To select the most suitable control
strategy for the specific application also the computational effort of the optimization
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routine must be accounted for. If a control strategy results in less energy use and less
violations compared to another strategy, that strategy will clearly be more efficient,
but the corresponding computational burden must not be excessive. As a matter of
fact, the investigated predictive control strategies exploit a receding horizon scheme
and the SLP iterative procedure is applied to obtain a linear model in the optimization
routine; this leads to solve one single optimization problem several times per each
hour. Therefore, the assessment procedure is performed as follows:

1. compute the energy usage and the constraints violations for each controller.
If the controller can be tuned, compute the energy usage and the constraints
violations for some representative values of the tuning parameters;

2. if the violations are acceptable and the controller can be tuned, choose the
tuning that leads to the smallest energy use.

3. if the violations are kept within standard tolerability limits, select the control
strategy taking shorter computational time, even if there is a small increase in
energy usage. How small is ”small” can depend on the specific application.

To summarize, simulation analysis can help to address the problem to find which
formulation of the stochastic MPC problem leads to the best performance in terms of
energy use and occupant comfort while being sufficiently computationally tractable
for the case of building climate control. We will next describe the case study and the
simulation environment BACLab, which all the simulation plots and results presented
in this section are obtained by.

2.5.2 Simulation Environment and Setup

A common and spread building type was selected as case study for the simulation
analysis. The description of the simulation environment has been extracted from
the OptiControl Two Year Report [47]. The BACLab, a MATLAB-based model-
ing and simulation environment developed in the OptiControl project [48], allows to
simulate and investigate many realistic situations involving many different types of
zones/rooms. As already mentioned, in this work we focus on Integrated Room Au-
tomation (IRA), which deals with the control of individual building zones or rooms.
According to to the practice employed in design tools such as SIA 382/1 [2] and
SIA 380/4 [3], the energy and air dynamical behavior is affected to a small extent
by the room/zone interconnection. Therefore the overall building energy savings can
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be studied by integrating multiple zone models. In the simulation environment BA-
CLab a building type can be defined by selecting its features from the following set
of room/zone attributes:

• facade orientation: North, South, South-West, South-Est;

• construction type: Heavyweight, Lightweight;

• building standard: Swiss Average, Passive House;

• window area fraction of the facade: 30% window area per facade, 80% window
area per facade.

The construction type attribute is related to the internal dynamic heat capacity of the
room/zone (80 Wh

m2K for ”Heavyweight” and 36 Wh
m2K for ”Lightweight”). The building

type attribute is related to a bigger or smaller overall heat transfer coefficients both
of opaque facade parts and of windows: in the ”Swiss Average” standards both heat
transfer coefficients are significatively larger than in the ”Passive House” standard.
Combining these attributes it is possible to cover many different building types. The
most common building types are:

• Type 1: Passive House, Heavyweight, 80% window area per facade, either North
or South orientation;

• Type 2: Heavyweight, 30% window area per facade, either North or South
orientation.

Another important key factor in building classification is the number of automated
control actions available in the room/zone. The number of control inputs goes from 6
to 10 and consists of automated blinds and light, both low and high heating/cooling
energy sources, natural/mechanical ventilation Different comfort ranges for tempera-
ture, illuminance and CO2 concentration (given as the main indicator for air quality)
are provided from European standards [2], [3], [37], [12]. For the illuminance comfort
only a lower threshold (500 lux) is applied, because a manual adjustment of internal
blinds is assumed on case of excess incoming solar radiation. The bounds on temper-
ature and illuminance can be either constant or time-varying because dependent on
working hours, which are determined from the occupancy schedule. We used hourly
profiles from the Swiss standards [4], [5] for cellular offices. The simulation setup for
the case study is reported in the following:

• system building with no ventilation action;

76



2.5. Simulation Results

• hourly time step;

• daily prediction horizon N = 24;

• year 2007;

• zurich (MeteoSwiss);

• office building;

• south Orientation and Swiss average building type (heavyweight);

• 30% window fraction area;

• high occupancy;

• illuminance bounds occupancy dependent;

• temperature bound working hour schedule dependent;

• tuning of the stochastic controllers: the controller based on stochastic MPC were
run with different values of the tuning parameter α to set different thermal and
illuminance comfort levels.

The chosen building attributes belong to one of the most common and spread building
types. The simulated room belongs to a passive house with large window areas in
a south orientation. This is one case study to test the suitability of the proposed
control strategies. The discussed control methods were applied to the time-varying
building model described in (2.9), with model parameters defined by the Building
Technologies Laboratory (EMPA).

2.5.3 Goodness of Fit of Weather Uncertain Model

The weather applied to the building was recorded hourly in Zurich during Jan-
uary 2007 and historical predictions for the weather were also made available by
MeteoSwiss for the considered period. Since it is sufficient to consider the uncer-
tainty only in the solar radiation prediction (see the subsection 2.3.2), we need to
identify the parameters H and K in the error model 2.8 for the simulation horizon,
i.e. January 2007, and for Zurich. For this purpose we have investigated the error
in solar gain predictions from hourly solar gain measurements and predictions taken
from the MeteoSwiss station at Zurich over the entire year of 2006. The investigations
are carried out as follows
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1. define a suitable model for the data by detecting the data pattern. For this
purpose, the 1-step lag plot is exploited;

2. fit the model of data by employing an identification toolbox;

3. test the randomness of the residuals to evaluate the correctness of the model
fitting the error data.

The Figure 2.4(a) depicts the 1-step lag plot come out of the empirical error in
solar gain prediction (i.e. measurements-predictions over 2006 at Zurich). A lag is a
fixed time displacement. Lag plots can be generated for any arbitrary lag, although
the most commonly used lag is 1; for the investigated case a lag is a 1 hour time
displacement. Then the Figure 2.4(a) shows the observed prediction error at time kth

hour given its value at time (k − 1)th hour. The lag plot exhibits a linear pattern.
This means that the data have a strong autocorrelation and further suggests that an
autoregressive model might be appropriate. We have used MATLAB’s Identification
Toolbox to fit an autoregressive linear model of the error in solar gain predictions,
obtaining H = 0.6232 and K = 129.35. One way to assess the goodness of fit is
to investigate the randomness of residuals, i.e. the deviation of the observed errors
from the fitted error values. The Figure 2.4(b) shows the autocorrelations for residual
values at different lags up to 100; each lag is a 1 hour time displacement. We can
used this plot to test that there are no time dependance in the residuals, i.e. the
residuals are random. If random, such autocorrelations should be near zero for any
lag [105] and the section 3 of [93]). The Figure 2.4(b) depicts the autocorrelation
for forecast error identification. The red dotted lines in Figure 2.4(b) are the 99%
confidence bands. Almost all of the autocorrelations fall within the 99% confidence
limits (the autocorrelation at lag 0 is equal to 1 per definition). As a conclusion, the
assumption of randomness of residuals is reasonable as well as the model fitting the
error in solar gain predictions. Finally, it is reasonable to assume no violations in
the illuminance as the user would immediately adjust the light level according to the
comfort bounds. Therefore the room illuminance is corrected at each hour to mimic
the user behavior [50].

2.5.4 Stochastic MPC Controller Comparison

We investigate all the control strategies based on the stochastic MPC framework (SM-
PCs):

• CLP-SMPC;
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Figure 2.4: Lag plot and residual autocorrelation for solar radiation.

• Mb-SMPC with b = 2;

• Mb-SMPC with b = 8;

• Mc-SMPC;

• OLP-SMPC.

The optimization routine was run with an hourly time step, a prediction horizon of 24h
and for January 2007. The controllers listed above can be tuned by assigning a specific
value to the parameter α; by doing so the constraint satisfaction probability is set. The
prediction horizon can also be changed; usually a longer prediction horizon usually
improves the controller performance, but this can come at the cost of a significative
increase in computational time. Once the controller is selected, further investigations
n the prediction horizon should be performed. We will next describe the procedure to
set the number of optimal feedback matrices for the Mc-SMPC controller, then the
comparison among all the control strategies listed above will be provided.

Mc-SMPC Controller Consider the Mc-SMPC strategy: the affine disturbance
feedback matrix is first optimized over a given time period ∆T , then the average over
the obtained optimal feedback matrices is computed and fixed for the subsequent
optimization. We carried out several tests with different time periods aiming at
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investigating how the controller performance is affected by the choice of ∆T . We
considered three ∆T :

1. ∆T1 = the first week of January 2007;

2. ∆T2 = the first day of January 2007;

3. ∆T3 = four days of 2006, each one representative of a season.

Optimization was done with an hourly time step, a prediction horizon of 24h and dif-
ferent values of the tuning parameter (α = [0.01, 0.1, 0.2]). For the sake of brevity,
the simulation plots are not depicted. The results showed that the difference in terms
of energy usage and violations relative to the ∆T with minimum energy use was at
most 1%. Then it is enough to optimize over a single day, and likely over a shorter
time period, to compute the fixed Mc. In conclusion the choice of the time period ∆T

seems not to affect in general significatively the controller performances.

The controllers are assessed as follows:

1. the energy usage and the constraint violations for several values of the pa-
rameter α are computed in order to properly tune each controller. The Fig-
ures 2.5, 2.7(b). and 2.6(a) are useful for this purpose;

2. the computational aspects are analyzed by exploiting the Table 2.1 and Fig-
ure 2.7(a);

3. the effect of the prediction horizon on the controller performance is investigated
through the Table 2.2.

The three investigations mentioned above are discussed into detail respectively in the
following three paragraphs.

The Tuning Curve

The Figure 2.5 compares the SMPC strategies in terms of energy use and violations
with the different tuning settings: the energy usage is plotted versus the number of
violations and the amount of violations respectively. The amount and the number of
violations are defined as the sum of the upper and the lower bounds violations of the
comfort band. The SMPCs were run with different values of the tuning parameter
α = [0.001, 0.005, 0.008, 0.01, 0.05, 0.08, 0.1, 0.2]: therefore eight values are
depicted per each controller on the Figure 2.5. One can see that a smaller value of α,
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which corresponds to a higher constraint satisfaction probability, has more primary
energy use but fewer violations. Consider, for example, the Mc-SMPC controller
(red rotated squares): a curve can be easily drawn, going from the first red rotated
square on the top right (α = 0.001) to the last one on the bottom left (α = 0.2).
We can drawn this curve for any controller; we will refer to this curve as tuning
curve. The stochastic MPC methods can achieve a tradeoff between energy use and
probability of constraint violations by moving along the tuning curve. As expected,
the control strategies optimizing over the disturbance feedback matrix M and then
solving a second order cone problem, i.e. CLP-SMPC and Mb-SMPC, outperform
the controllers fixing M either to the zero matrix or to a constant matrix, i.e. Mc-
SMPC and OLP-SMPC, both in terms of energy usage and violations. The CLP-
SMPC and Mb-SMPC controllers show a larger NRPE usage than both Mc-SMPC
and OLP-SMPC, and also an increase in the amount and the number of violations.
One can further see that the rotated squares corresponding to CLP-SMPC and Mb-
SMPC controllers (blue, magenta and yellow) are very close: this is more evident
in Figure 2.7(b). The Figure 2.6(a) illustrates more clearly how to achieve a better
tradeoff between energy use and violation by acting on the tuning parameter alpha:
the plot shows the energy usage and the amount of violations versus the comfort level
for January 2007 when the Mc-SMPC controller is applied. Consider that alpha = 0.1
corresponds to a comfort level of 90%. It can be seen that if one increases the comfort
level, which is equivalent to decreasing alpha, the energy usage will increase as well
at the cost of much violation. It is preferable to select the biggest α resulting in
admissible violations in order to keep the energy consumption as small as possible.
The Figure 2.6(b) shows how the energy usage for the year 2007 can be reduced
by decreasing the comfort level and allowing a larger and still admissible amount of
violation, when Mc-SMPC is applied. The tuning curve both of CLP −SMPC and
Mb-SMPC controller, which have conic constraints, exhibits a countertrend for some
α values. This behavior needs to be further investigated: from a certain point on
further increase in the constraint satisfaction level seems to lead to an small increase
of NRPE usage. This results could be related to active soft constraints and to some
numerical problems in the underlying optimization procedure, as discussed in the
subsection 2.4.4.

Conclusions The performance of CLP-SMPC, which was run with the conic con-
straints 2.21 without any approximation, are superior, despite a countertrend occurs
for some α values. It is evident from the Figure 2.7(b) that the difference in per-
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Figure 2.6: Energy use and violations versus comfort levels when the Mc-SMPC controller is applied.

formance between CLP-SMPC and Mb-SMPC is negligible for the case study; it
would be preferable to use the controller resulting in the smallest computational bur-
den (Mb-SMPC with b = 2, as shown next). The Figure 2.5 further shows that
Mc-SMPC performs better than OLP-SMPC: in particular OLP-SMPC results in a
larger NRPE usage than Mb-SMPC, and also has a clear increase in the amount of
violations. While it is easy to make a decision between CLP-SMPC and Mb-SMPC,
it is not so straightforward to select the more suitable controller among all the investi-
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gated SMPC strategies. For this purpose, we need to look into the computational time
taken for solving the single optimization problem underlying the SMPC controllers.

Computational Burden for Stochastic MPC Controllers

We need to investigate how different approximations might help to reduce the com-
putational burden and the resulting cost in terms of performance. The superior
performance of the control formulations based on a Second Order Cone Problem (7)
comes at the cost of much larger computation time, a comparison of which is given in
Table 2.1 for different prediction horizons. The conic constraints have to be converted
into a specific form to obtain a convex and solvable optimization problem by intro-
ducing additional variables and linear constraints. We provide an example of the size
of the modified problem in case of CLP-SMPC strategy, which has conic constraints,
for N = 24:

• constraints number: 6237;

• variable number: 7881.

Then the CLP-SMPC controller yields a very large increase in problem size and in
computational time compared to the other strategies. The Table 2.1 provides an
overview of the single optimization problem underlying each controller. Applying a
banded structure for the feedback disturbance matrix (Mb-SMPC) can reduce signif-
icantly the computational burden (see the case with b = 2), but it is still problematic.
Since each single optimization problem described in the Table 2.1 has to be solved
several times per each hour, the computational burden of a SOCP can make it not
applicable to an online optimization as the problem size grows. In the building case,
this is especially true if a prediction horizon longer than one day is taken into account,
as seen in the Table 2.1. The OLP-SMPC and Mc-SMPC controllers are pretty much
preferable from a computational point of view. Since the performance of Mc-SMPC
is superior (see the Figure 2.5), it can be considered the most suitable controller ap-
plicable to the case study. This is also shown in the Figure 2.7(a), which depicts the
percentage of energy usage versus the yearly computational time for the 90% com-
fort level. The percentage is computed accounting for the relative difference with the
performance bound (PB). A prediction horizon N = 24 and 3 iterations per each
hour are assumed in the optimization routine. The Figure 2.7(a) shows that a higher
energy consumption is the result of reduced computation time.
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Figure 2.7: Comparison of SMPC strategies for 2007

Conclusions The linear stochastic MPC formulations, OLP-SMPC and Mc-SMPC,
result in higher energy consumption with respect to the CLP-SMPC strategy, while
the difference in computational time is very large; for example, the overall computa-
tional time is about 16 minutes for Mc-SMPC and more than 2 hours for CLP-SMPC.
Moreover the linear stochastic MPC formulations, OLP-SMPC and Mc-SMPC, can
result in an energy consumption comparable to the CLP-SMPC strategy if a little
more violations are allowed. Therefore, the Mc-SMPC is preferable because it out-
performs OLP-SMPC in terms of energy use, while the difference in computational
time is quite small.

Effect of Different Prediction Horizons

The Table 2.2 shows the performance of Mc-SMPC with different prediction horizons.
To report the computational time, only 3 iterations per each hour and January 2007
have been considered.

Conclusions Despite a longer prediction horizon usually improves the controller
performance, as shown in the Table 2.2 a prediction horizon longer than N = 24 does
not really improve the performance of the controller in this particular case because
of too small differences compared to the increase in computational time (some slight
countertrend is likely due to numerical problems). It is however very likely that there
are other buildings, e.g. with active storage elements, where a longer prediction hori-
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zon of several days might be more beneficial. This makes the Mc-SMPC controller
even more preferable.

The room temperature resulting from the application of the Mc-SMPC and the CLP-
SMPC controller is depicted to further prove that the Mc-SMPC controller must be
chosen for this case study. The Figures 2.8 show the resulting room temperature
over the period of January 2007 with α = 0.1 for CLP-SMPC (2.8(a)) and for Mc-
SMPC (2.8(b)). The room temperature evolution are very similar for both controllers.
The Figure 2.12 depicts the disturbances that are acting on the building: external
and wet bulb temperature, solar gains, illuminance as well as internal heat gains by
occupants and equipment. One can see that the chance constraint leads to occasional
violations of the temperature comfort bounds. Since the external temperature is quite
low, the room temperature is kept close to the lower bounds in order to use as less
high cost heating as possible. Then the violations of the lower bounds are found to be
more frequent: the amount of violations is always less than 1K for both controllers. It
can be also seen that there are no very large temperature changes, which is favorable
to the occupants. The peaks in the room temperature correspond to the peaks in
solar radiation. The application of the CLP-SMPC controller does not seem to sig-
nificatively improve the room temperature profile with respect to Mc-SMPC. Hence,
as the computational burden of Mc-SMPC is more attractive, this controller will be
selected for the comparison with both the performance bound and the current prac-
tice. The next subsection will provide the comparison between the selected stochastic
MPC controller and standard controllers via simulation for the case study.

2.5.5 Comparison with Industry Standards

Once we have selected the most favorable stochastic MPC controller, Mc-SMPC, we
compare it with:

• the most typical, broadly applied state-of-the-art of Integrated Room Automa-
tion, i.e. rule-based control (RBC);

• the standard certainty equivalence MPC controller (CE-MPC);

• the ideal controller (PB),

to finally assess the control performance. The industry-standard rule-based controllers
has been developed by Siemens Building Technologies as well as a standard certainty
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(a) CLP-SMPC with α = 0.1
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(b) Mc-SMPC with α = 0.1

Figure 2.8: Room temperature for January 2007

equivalence MPC controller for the studied building. The Mc-SMPC was run for dif-
ferent value of alpha to show the benefits of the tunability of the stochastic predictive
controllers.
In order to evaluate the Mc-SMPC controller performance, the European standards
about tolerable violations need to be considered: standard tolerable amount of vio-
lations are 20 Kh per year for the lower bound and 50 Kh for the upper bound per
year, i.e. total amount of 70 Kh per year.
The following plots will show which controller meets the standards:

• the Figure 2.9: it depicts the comparison of the control strategies mentioned
above in terms of energy use and violations for the year 2007. The red line
in the Figure 2.5(a) is relative to the standard limit for the amount of viola-
tion (70 Kh);

• the Figure 2.10 shows the energy use versus the amount of violations of up-
per bounds (2.10(a)) and lower bounds (2.10(b)). The red line both in the
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Figure 2.10(a) and in the Figure 2.10(b) is relative to the standard limits re-
spectively for the upper (50 Kh) and lower bound violation (20 Kh).
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Figure 2.9: Comparison of PB, RBC, CE-MPC and Mc-SMPC for 2007
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Figure 2.10: Comparison of PB, RBC, CE-MPC and Mc-SMPC for 2007

From the above plots we can learn that:

• from the Figure 2.9: it can be seen that PB shows practically no violations
and requires a very low NRPE usage. The other strategies use more energy
and have violations. The RBC controller requires a very large energy use and
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has much more violations both in terms of amount and number; this controller
exceeds 70 Kh per year of amount of violation. Then RBC does not exhibit
good performance for the case study. The CE-MPC control strategy results in
a smaller NRPE usage than Mc-SMPC but also a very large increase in both
the amount and the number of violations. To make a decision between CE-
MPC and Mc-SMPC we have to look into the tolerability of violations. The
plot shows that CE-MPC exceeds 70 Kh per year of amount of violations. The
amounts of violations for Mc-SMPC are always less than 70 Kh. Further we
have to check if the tolerability limits for upper and lower bounds are satisfied;

• from the Figure 2.10: it can be seen that CE-MPC exceeds both 20 Kh for the
amount of lower bound violations and 50 Kh for the amount of upper bound
violations. The amounts of upper bound violations for Mc-SMPC are always less
than 50 Kh, but the amounts of lower bound violations exceed the limit 20 Kh

for α = 0.1 and α = 0.2. Exploiting the tunability of Mc-SMPC controller
we can adjust the comfort probability level in order to have a smaller amount
of violations. By setting α = 0.01, the Mc-SMPC controller can satisfy all the
tolerability limits at the cost of a small increase in energy use (less than 1 kWh

m2 ).

We will next show the resulting room temperature and control inputs under the Mc-
SMPC controller for different alpha and the RBC controller to further prove that the
Mc-SMPC with α = 0.01 controller must be chosen for this case study.
The Figure 2.13 depicts the disturbances that are acting on the building during the
year 2007. The Figure 2.11 depicts the annual room temperature over the year 2007
for Mc-SMPC with α = 0.001 (2.11(a)), Mc-SMPC with α = 0.2 (2.11(b)) and for
RBC (2.11(c)). The Figures 2.11(a) and 2.11(b) show that an increase in constraint
satisfaction probability, which corresponds to a smaller α, tends to keep the room
temperature more in the middle of the comfort band in order to obtain less violations;
this can be seen mainly during spring and summer. The RBC controller does not
achieve a good performance: the room temperature is always kept too close to the
lower bound, resulting in a large amount and frequency of lower bound violations
mainly in winter and fall. The Figure 2.15 shows the resulting heating and cooling
control inputs over the year 2007 for Mc-SMPC with α = 0.01 (2.14(a)) and for
RBC (2.14(b)). It can be seen that the two control inputs are never applied at the
same time, as expected. Both heating and cooling are more frequently applied by
the RBC controller; in particular RBC makes a large use of cooling. Despite the
larger use of heating during the colder months, the room temperature is lower when
the RBC controller is employed, as shown in Figures 2.11. This is likely due to the
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blind control, which has a large effect on the controller performance; the Mc-SMPC
controller is able to move the blinds to an arbitrary position, while the current practice
RBC allows three different positions. This is shown in the Figures 2.15(a) and 2.15(b),
which depict the blind control respectively for Mc-SMPC with α = 0.01 and for RBC.

Remark 14 In the OptiControl Report [52] an advanced RBC controller is described,
which is based on the same rules but it can move the blinds to an arbitrary positions,
as the Mc-SMPC does. The simulation results depicted in the report show that the
Mc-SMPC controller can perform better than the advanced RBC controller as well.

In conclusion the proposed Mc-SMPC strategy is clearly superior compared to the
industry standards.

2.6 Conclusion and Future Steps

Several predictive control strategies based on a stochastic MPC have been applied
to the indoor climate control. The controllers make use of weather and internal
gain prediction to compute how much energy and which low/high-energy sources
are needed to keep the room temperature and illuminance in the required comfort
levels. A procedure for selecting the most promising controller has been provided:
first the stochastic MPC methods are compared in terms of energy use, violations and
computational effort. Then the chosen controller is compared to current practice and
the theoretical benchmark for assessing its performance. Different formulations of the
stochastic MPC are compared with standard commercial controllers via simulations.
The tested approximations of the problem were all showing that the performance loss
is quite significant for the SOC formulation. However it has been proved that the
approximation of the feedback disturbance matrix as a constant matrix (Mc-SMPC
controller) with a prediction horizon of N = 24 has very good performances both in
terms of energy consumption and violations and computational time as well. The
computational complexity of the control formulations based on SOCP (CLP-SMPC
and Mc-SMPC) is too high for online optimization, especially if a longer horizon is
to be used to improve the controller performance. Which controller is to be applied
depends mainly on the specific case, but the linear approximation Mc-SMPC seems
to be the most suitable controller to apply in most cases. In fact it has been proven to
achieve a good tradeoff between the too high computational burden of the formulations
based on SOCP and the larger performance loss of the formulations based on LP (Mc-
SMPC and OLP-SMPC). It has been also proved through a quantitative assessment
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(a) Mc-SMPC with α = 0.001
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(b) Mc-SMPC with α = 0.2
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(c) RBC

Figure 2.11: Room temperature for 2007

that the stochastic MPC controller can achieve better performances in terms of a
tradeoff between energy use and user comfort compared to industry controllers while
respecting the European comfort standards. Our results indicate that the stochastic
predictive controllers outperform the certainty equivalence MPC strategy. This also
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proves that the uncertainty in the weather prediction has a significant impact and
should be taken into account to improve the controller performance. Moreover SMPCs
perform better than the state of the art, non-predictive rule-based controller RBC
both in terms of energy use and violations. Finally, it has been proved the easy
tunability of SMPCs, which involves only one parameter. The probability level of
constraint violations can be changed in order to achieve a better tradeoff between
energy use and violations. The OptiControl Project is an ongoing project and several
future steps are going to be investigated and developed [38]:

• simplify the models used for the stochastic MPC to reduce the computational
effort;

• develop a building system state estimation algorithms for the stochastic MPC
strategies and also a tuning method for them.

• investigate how sensitive are the controllers to the uncertainty in the predictions
and in the model parameters;

• investigate the occupancy and internal heat gain predictions;

• adapt the MPC control strategies to the commercial applications for building
automation, which usually involve a hierarchical control scheme (high and low
level controller). A possible approach is just to replace the high-level controller
of the existing controller with the proposed control schemes;

• test the control strategies through a demonstrator.
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Table 2.1: Overview of the single optimization problems

OLP-SMPC: quadratic cost function, linear constraints, softened outputs (QP)

N=24 N=36 N=48 N=60 N=72

constraint number 596 884 1172 1460 1748

variable number 225 333 441 549 657

Computational times [s] 0.30 0.40 0.50 0.64 0.76

Mc-SMPC: quadratic cost function, linear constraints, softened outputs and inputs (QP)

N=24 N=36 N=48 N=60 N=72

constraint number 896 1328 1760 2192 2624

variable number 375 555 735 915 1095

Computational times [s] 0.45 0.67 1.05 1.58 2.36

Mb-SMPC (b = 2): linear cost function, linear and conic constraints, softened outputs (SOCP)

N=24 N=36 N=48 N=60 N=72

constraint number 596 884 1172 1460 1748

variable number 507 759 1011 1263 1515

Computational times [s] 1.57 8.38 34.58 81.98 326.44

Mb-SMPC (b = 8): linear cost function, linear and conic constraints, softened outputs (SOCP)

N=24 N=36 N=48 N=60 N=72

constraint number 596 884 1172 1460 1748

variable number 1209 1893 2577 3261 3945

Computational times [s] 2.96 19.89 65.42 172.49 635.21

CLP-SMPC: linear cost function, linear and conic constraints, softened outputs (SOCP)

N=24 N=36 N=48 N=60 N=72

constraint number 596 884 1172 1460 1748

variable number 2025 4329 7497 11529 16425

Computational times [s] 4.09 35.40 106.22 665.82 1009.72

Table 2.2: Mc − SMPC with different prediction horizons for January 2007

N=24 N=36 N=48 N=60 N=72

Energy Use
[

kWh
m2

]
4.9481 5.0054 4.7307 4.8244 5.0362

Number of violations 17 19 16 15 15

Amount of violations [Kh] 5.0690 5.8750 4.5220 4.1120 4.2370

Computational time [s] 1004.4 1495.4 2343.6 3526.6 5267.5
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(b) RBC

Figure 2.14: Heating and cooling for 2007
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Figure 2.15: Blind position for 2007
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zlast. 2005.

[6] International Energy Agency. Energy efficiency requirements in building codes.
2008.

[7] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical
Programming, Series B, 95:3–51, 2002.

[8] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual
interior-point method for conic quadratic optimization. Mathematical Program-
ming, 95(2):249–277, 2003.

[9] R. V. Andersen, B. Olesen, and J. Toftum. Simulation of the effects of occupant
behaviour on indoor climate and energy consumption. In Proceedings of Clima
2007 WellBeing Indoors, International Centre for Indoor Environment and En-
ergy, Department of Mechanical Engineering, Technical university of Denmark,
2007.

[10] Mosek ApS. The Mosek optimization tools manual.

97



REFERENCES

[11] J. E. Aronson. A survey of dynamic network flows. Annals of Operations
Research, 20:1–66, 1989.

[12] ASHRAE. ASHRAE Standard 55-2004 – Thermal Environmental Conditions
for Human Occupancy (ANSI Approved). ASHRAE, 2004.

[13] J. P. Aubin. Viability theory. Systems & Control: Foundations & Applications.
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Terrestrial Systems Ecology ETH Zürich, Switzerland and Building Technolo-
gies Division, Siemens Switzerland Ltd., Zug, Switzerland, 2009. In [38].

[47] D. Gyalistras et al. Control problem and experimental setup. Technical report,
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Appendix A

Background on Robust

Invariant Set Theory

This appendix has been extracted from [60,73,104] and provides the basic definitions
and results for robust invariant sets for constrained piecewise linear systems needed
for computing the maximal positive robust invariant set O∞ for the production laws
RLB and DPC.

A.1 Robust Invariant Sets for Piecewise Affine Sys-

tems

Given the set S ⊆ Rn, Sc denotes its complement in Rn.

Definition 3 (P-collection) A set C ⊆ Rn is called the P-collection (in Rn) if it is
collection of a finite number of n-dimensional polytopes, i.e.

C = {Ci}NC
i=1, (A.1)

where Ci := {x ∈ Rn | Cx
i x ≤ Cb

i }, dim(Ci) = n, i = 1, . . . , NC , with NC <∞.

In the following a PWA systems subject to an additive disturbance w(k) is defined:

x(k + 1) = fa(x(k), w(k)) = Ãrx(k) + g̃r + w(k), (A.2a)

if x(k) ∈ P̃r, r ∈ {1, 2, . . . , R}, (A.2b)

x(k) ∈ X, w(k) ∈ W, ∀ k ≥ 0. (A.2c)
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Background on Robust Invariant Set Theory

where the active dynamic r is defined by the polyhedron P̃r and R represent the
number of different dynamics. The sets X and W are compact and polytopic and
contain the origin in their interior. We will denote the set of states over which the
PWA system (A.2) is defined as S̃PWA =

⋃
r∈R P̃r, where S̃PWA is a P-Collection. We

will also consider PWA systems subject to the input u(k) and the disturbance w(k):

x(k + 1) = f(x(k), u(k), w(k)) = Arx(k) + Bru(k) + gr + w(k), (A.3a)

if [x(k)T u(k)T ]T ∈ Pr, r ∈ R, (A.3b)

x(k) ∈ X, u(k) ∈ U, w(k) ∈ W, ∀ k ≥ 0. (A.3c)

where the active dynamic r is defined by the polyhedron P̃r and R represent the
number of different dynamics. The sets X and W are compact and polytopic and
contain the origin in their interior. The set Pref (S) defines the set of system (A.3)
states which can be robustly driven into the target set S in one time step. Similarly,
for the autonomous PWA system (A.2), we use Prefa(S) to denote the set of the states
that robustly evolves to S ⊆ X0 in one step. The two different types of invariant sets,
the Robust Positive Invariant Set O and the Robust Control Invariant Set C ⊆ X,
are defined for PWA systems as well. The set O∞ is the maximal robust invariant
set of the autonomous PWA system (A.2) if 0 ∈ O∞, O∞ is robust invariant and O∞
contains all robust invariant sets that contain the origin. The set C∞ is said to be
the maximal robust control invariant set for the PWA system in (A.3) if it is robust
control invariant and contains all robust control invariant sets contained in X.

Remark 15 The condition that O∞ must contain the origin is added because PWA
systems may have multiple equilibrium points and thus multiple robust invariant sets
which are disconnected (i.e. F∞ = ∅). Furthermore, if these sets are used as target
sets in control problems, they should only contain one equilibrium point in order to
get predictable closed-loop behavior.

Next, the computation of Prefa(Ωk, W) for PWA systems is detailed. More details
can be found in [60,73].

Computation of Prefa(S, W)

The set Prefa(S, W) can be computed for autonomous PWA systems as described by
the following Proposition.

Proposition 1 Consider autonomous PWA system (A.2). Let S ⊆ X0 be a P-
collection, then the set Prefa(S, W), defined in (1.8), is a P-collection.
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A.1. Robust Invariant Sets for Piecewise Affine Systems

Proof: Since S is a P-collection by properties of the Pontryagin difference, S∗ = S.W
is also a P-collection so that S∗ =

⋃
y=1,...,Y S∗y for some finite integer Y . It trivially

follows from the definition of fa(x, w) that Prefa(S, W) =
⋃

(y,j)∈{1,...,Y }×R0
S+

y,j ,
where S+

y,j ! {x ∈ X | Ãjx + g̃j ∈ S∗y}. Since each S+
y,j is polyhedral, the set

Prefa(S, W) is a P-collection. !

In order to compute the set S∗ =
⋃

y=1,...,Y S∗y the following operations need to
be performed on the set S =

⋃
y=1,...,L Sy. First compute the complement of S

in order to get a P-collection Sc of open polyhedra Φj , Sc =
⋃

y=1,...,T Φy. Then

S∗ = S .W =
[⋃

y=1,...,T (Φy ⊕ (−W))
]c

.
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Appendix B

Robust Invariant Set

Computation

Two Matlab toolboxs, the Multi-Parametric Toolbox [77], [76] and the Invariant Set
Toolbox (InvSetBox) [73], has been used for the computation of the invariant sets
described in the Chapter 1. They can be downloaded from the authors’ Internet sites:

• http://www-control.eng.cam.ac.uk/eck21/ for the Invariant Set Toolbox

• http://control.ee.ethz.ch/ mpt/ for the the Multi-Parametric Toolbox

The toolboxes provide an implementation of the Algorithm 1.3.1 for discrete-time LTI
and autonomous PWA systems and, as a consequence, of the robust one-step set com-
putation. For this purpose, either vertex-based method or projection method such as
Fourier-Motzkin elimination, used in the proof of Theorem 1, has been implemented.
We refer the reader to [73] for more details and references about these methods. The
basic idea of vertex-based methods is to find all the vertices of the corresponding
sets and computing the convex hull of their sums. However, as the dimension of the
system n grows the number of vertices increases quite rapidly compared to the num-
ber of hyperplanes required to describe the various sets. The vertex-based method
can therefore become impractical for large systems. The Fourier-Motzkin elimination
method is very popular because it is simple and easy to be implemented. The basic
idea of Fourier elimination algorithm is to choose a variable and then to eliminate it
by projection its constraints onto the rest of the system, resulting in new constraints.
The projection forms a new problem with one variable fewer, but possibly more con-
straints. This is done recursively, until all variables but one have been eliminated.
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This method might still be not efficient, because number of redundant constraints
could increase exponentially in the worst case.

B.1 Computation of C∞
The maximal robust control invariant set C∞ described in the Chapter 1 has been
numerically computed using Matlab and the Invariant Set Toolbox. The basic object
of the toolbox is the n-dimensional polyhedron given in the augmented form

[H K]

and converted from the standard form

Hx ≤ K

to the augmented form by the function STD2AUG. The toolbox can handle the
discrete-time LTI system subject to polytopic uncertainty and state disturbances:

x(k + 1) = Ax(k) + Bu(k) + Ew(k) (B.1)

subject to control and states constraints, u(k) ∈ U and x(k) ∈ X, for all k ≥ 0, and
polytopic uncertainty. The sets U and X are n-dimensional polyhedron. The distur-
bances vary within the polytope (compact polyhedron) W. The function KINFSET
computes the maximal robust control invariant set for the system B.1, providing X
as target set. Hence the function KINFSET is used for computing the set C∞ for our
model (1.1)-(1.2), where A = B = E = In and the sets U, X and W are those defined
in the constraints 1.2.

B.2 Computation of O∞
The maximal robust positive invariant set O∞ described in the Chapter 1 has been
numerically computed using Matlab and the Multi-Parametric Toolbox (MPT). The
Multi-Parametric Toolbox is a free Matlab toolbox for design, analysis and deploy-
ment of optimal controllers for constrained linear, nonlinear and hybrid systems
[77], [76]. The toolbox allows to compute the invariant sets for systems with additive
and polytopic uncertainties. In particular, we are interested in computing the set O∞
for autonomous PWA systems subject to an additive disturbance w(k). This kind
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of systems have been defined in Appendix A (see A.2). The function INFSETPWA
computes the maximal robust positive invariant set for the PWA system

x(k + 1) = Aix(k) + fi + w(k). (B.2a)

where the active dynamic i is defined by the polyhedron Pi, R represent the number
of different dynamics and the additive uncertainty w(k) vary within the polytope
W. As a matter of fact, given a feedback control law, the system (1.1) subject to
constraints (1.2) under the control law is rewritten as an autonomous PWA system
over R polyhedral regions and subject to an additive polytopic uncertainty. We will
show through a simple example how to rewrite the system (1.1)-(1.2) under either the
RLB or DPC feedback policy as an autonomous PWA system.

Example 7 (PWA system under the RLB Feedback Policy)
Let n = 2, Pmax = Dmax = 1, dmax = [0.8; 0.6] and pmax = [0.9; 0.8]. The

system (1.1)-(1.2) under the RLB feedback policy can be rewritten as follows:

x(k + 1) =






x(k) +

[
0.9
0

]
+ d(k) if (x1(k) ≤ x2(k)) and (x1(k) ≤ 2.1)

x(k) +

[
0

0.8

]
+ d(k) if (x2(k) < x1(k)) and (x2(k) ≤ 2.2)

x(k) + d(k) if (x2(k) > 2.1) and (x2(k) > 2.2)
(B.3)

The PWA system B.3 is defined over 3 regions depicted in figure B.1(a) (M = 3).

Example 8 (PWA system under the DPC Feedback Policy)
Let n = 2, Pmax = Dmax = 1, dmax = [0.8; 0.6] and pmax = [0.9; 0.8]. The

115



Robust Invariant Set Computation

system (1.1)-(1.2) under the DPC feedback policy can be rewritten as follows:

x(k + 1) =






x(k) +

[
0.8− x1(k)
0.2 + x1(k)

]
+ d(k) if (x1(k) ≤ x2(k))

and (x1(k) + x2(k) < 0.4)

x(k) +

[
0.4 + x2(k)
0.6− x2(k)

]
+ d(k) if (x2(k) < x1(k))

and (x1(k) + x2(k) < 0.4)

x(k) +

[
0.8− x1(k)
0.6− x2(k)

]
+ d(k) if (x1(k) < 0.8) and (x2(k) < 0.6)

and (x1(k) + x2(k) ≥ 0.4)

x(k) +

[
0.8− x1(k)

0

]
+ d(k) if (x1(k) < 0.8)

and (x2(k) ≥ 0.6)

x(k) +

[
0

0.6− x2(k)

]
+ d(k) if (x1(k) ≥ 0.8)

and (x2(k) < 0.6)

x(k) +

[
0
0

]
+ d(k) if (x1(k) ≥ 0.8)

and (x2(k) ≥ 0.6)
(B.4)

The PWA system B.4 is defined over 6 regions depicted in figure B.1(b) (M = 3).

Hence the function INFSETPWA is used for computing the setO∞ for our model (1.1)-
(1.2) under either the RLB or DPC feedback policy, once the autonomous PWA sys-
tem has been derived from the original model by applying the designed control law.
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Figure B.1: SPWA under both RLB and DPC control laws.
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Appendix C

Sequential Linear

Programming

Sequential Linear Programming (SLP) is a popular standard method for solving non-
linearly constrained optimization problems. This method uses linear programming as
a search technique. SLP consists of linearizing the objective and constraints around
a starting point by a Taylor series expansion. The resulting linear programming sub-
problem is then efficiently solved by standard methods such as the Simplex (see [40])
or the Interior-Point methods (see [58]). The procedure is repeated by linearizing the
nonlinear problem around the new point. A sequence of approximations is computed
this way, hopefully converging to the solution of the original problem. The method is
easy to implement and requires only 1st order derivatives. The basic formulation of
SLP algorithm is described next.

C.1 Basic SLP Algorithm

Consider a generic constrained optimization problem:

minx f(x)
s.t.

gi(x) ≥ 0 ∀i = 1 . . . ng

(C.1)

Algorithm C.1.1 (Algorithm SLP)

1. Choose a starting point x0. Set k = 0.
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2. Terminate if xk satisfies the convergence condition or if k > kmax, where kmax

is the maximum iteration number.

3. Obtain linear approximations around xk using 1st order Taylor expansion of f
and g. Then solve the LPk problem:

minx f(xk) + ∆xT∇f(xk)
s.t.

gi(xk) + ∆xT∇gi(xk) ≥ 0 ∀i = 1 . . . ng

(C.2)

Denote the solution by xk.

4. Set k = k + 1 and goto 2.

For a detailed description of this method we refer the reader to [61].
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Appendix D

Background on Linear Model

Predictive Control

This appendix has been extracted from [83], [63], [102], [88], [17], [91], [101], [33] and
provides the basic definitions and results on Model Predictive Control (MPC) we have
applied in indoor climate control. The system model is a critical piece of the MPC
controller. Several types of models can be considered in MPC schemes. We will focus
on linear system model, which is the most common model type. This is the only one
that will result in a convex and easily solvable optimization problem.

D.1 MPC and Receding Horizon Policy

Model predictive control is a technique that has been successfully applied in many
constrained deterministic optimal control problems. MPC is also referred as Receding
Horizon Control (RHC). The receding horizon strategy introduces a feedback mech-
anism and helps to reduce the effect of uncertainty due to model mismatch, model
parameter errors, external disturbances. Figure D.1 illustrates the basic idea of RHC.
The fixed horizon optimization leads to a control sequence {uk . . . uk+N}, which be-
gins at the current time k and ends at some future time k+N . Something unexpected
may happen to the system at some time over the future interval {uk . . . uk+N}. The
receding horizon strategy copes with this issue:

• At time k and for the current state xk, solve an optimal control problem over a
fixed future interval [k, k + N ].
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Figure D.1: Receding horizon control strategy.

• Apply only the first step in the resulting optimal control sequence.

• Measure the state reached at time k + 1.

• Repeat the fixed horizon optimization at time k + 1 over the future interval
[k + 1, k + N + 1], starting from the current state xk+1.

D.2 Linear MPC

Consider the linear discrete-time prediction model:

xk+1 = Axk + Buk

yk = Cxk
(D.1)

where xk ∈ Rn is the state, uk ∈ Rm is the input and yk ∈ Rp the output at time k.
In the classical MPC framework, at each time instant k the following finite-horizon
optimization problem is solved for the current state x:
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Problem 9 (Linear MPC)

min
uk|k,...,uk+N−1|k

f(xk+N |k) +
N−1∑

i=0

l(xk+i|k, uk+i|k)

s.t.

system dynamics (D.1)

xk|k = x

ymin ≤ yk+i|k ≤ ymax i = 1, . . . , N

umin ≤ uk+i|k ≤ umax i = 0, . . . , N − 1

(D.2)

where N is the prediction horizon and [uk|k, . . . , uk+N−1|k] ∈ RNm is the sequence of
decision variables to be optimized. The prediction of xk+i and yk+i made at time k

are denoted respectively by xk+i|k and yk+i|k, inputs The upper and lower bounds
in the component-wise inequalities D.2 and D.2 define the constraints on inputs and
outputs. Several common cost functions are in use, the majority of which are convex,
which results in simple optimization problems to solve. Typical choices for f and l

are quadratic functions of the form:

f(xk+N |k) =xT
k+N |kPxk+N |k

l(xk+i|k, uk+i|k) =xT
k+i|kQxk+i|k + uT

k+i|kRuk+i|k i = 0, . . . , N − 1
(D.3)

where P and Q are semidefinite positive matrices and R is a definite positive matrix.
The relative weighting between the states and the inputs provide a trade-off between
regulation quality and input energy. More generally f and l are of the form:

f(xk+N |k) =‖Pxk+N |k‖p

l(xk+i|k, uk+i|k) =‖Qxk+i|k‖p + ‖Ruk+i|k‖p

(D.4)

where the p-norm can be equal to 1, 2, . . . ,∞. The stability of the closed loop system
will be guaranteed by choosing the structure of the cost function such that the optimal
cost forms a Lyapunov function ( [26, 97]). In practice, this requirement is generally
relaxed for stable systems with slow dynamics, such as buildings, such that it is
possible to focus on performance when the cast has to be selected.

D.2.1 Linear MPC with Soft Constraints

In the MPC framework, infeasibility might occur when the hard-constrained opti-
mization problem is solved. A strategy for dealing with the possibility of infeasibility
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is to ”soft” the constraints by adding new nonnegative variables to the problem, called
”slack variables”. The size of the slack variables correspond to the size of the asso-
ciated constraints (see [83]). It is desirable that the solution to the soft constrained
MPC problem be the same as the solution to the original hard constrained MPC
problem, if the latter is feasible. Therefore, the slack variables are nonzero only when
the boundaries described by the original ”hard” constraints have to be crossed and
they must be heavily penalized in the cost function in order to keep violations as
small as possible. Hence the violation penalty is some order of magnitude larger than
the input and output weights. Usually a quadratic penalty for constraint violations
is added in the cost, hence a quadratic program with a larger number of decision
variables is to be solved. The input constraints cannot be softened due to physical
limitations of the actuators. The optimization problem 9 solved at each time step in
MPC scheme with soft constraints is the following:

Problem 10 (Linear MPC with Soft Constraints)

min
ε,uk|k,...,uk+N−1|k

f(xk+N |k) +
N−1∑

i=0

l(xk+i|k, uk+i|k) + ρ‖ε‖2

s.t.

system dynamics (D.1)

xk|k = x

ymin − ε ≤ yk+i|k ≤ ymax + ε i = 1, . . . , N

umin ≤ uk+i|k ≤ umax i = 0, . . . , N − 1

(D.5)

The slack variable are denoted by ε and the cost of violations is ρ. The term ρ‖ε‖2 is
added to penalize violations of the original hard constrains in the cost function.

D.3 Stochastic Linear MPC

Consider the linear stochastic discrete-time prediction model:

xk+1 = Axk + Buk + Bwwk

yk = Cxk + Dwwk
(D.6)

where x(k) ∈ Rn is the state and x(k) ∈ Rm is the input at time k. The distur-
bance at time k is denoted by wk. As the model involves uncertainty, process output
predictions, as well as states, are also uncertain. This would result in output con-
straint violations in 9 and then infeasibility in the optimization routine. Two possible
strategies for facing stochastic models in the MPC framework will be illustrated next.
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D.3.1 Certainty Equivalence MPC

A straightforward way for facing stochastic models in the MPC framework is to make
the control action neglect the uncertainty and to solve the certainty equivalence MPC
(CE-MPC) problem at every time k, where the future disturbances are replaced with
deterministic estimates. The current and future disturbances [wk, . . . , wk+N−1] are
predicted given the state information available at time k. The simplest choice is the
conditional mean, i.e. E [wk|w0, . . . , wk−1]. We denote the disturbance predictions
over the prediction horizon N by [ŵk|k, . . . , ŵk+N−1|k]. Then the CE-MPC optimiza-
tion problem to be solved at every time instant is the deterministic problem 9 where
the dynamic constraints are replaced with:

xk+1 = Axk + Buk + Bwŵk

yk = Cxk + Dwŵk
(D.7)

Therefore the future values of disturbances are exactly as predicted, there is no future
uncertainty in the controller. Despite this rough approximation, CE-MPC might work
well in some cases (see [110]).

D.3.2 Chance Constrained MPC

A more realistic strategy to cope with the infeasibility problem illustrated above
is to consider ”feasible” a solution such that all random inequalities are satisfied for
restricted subsets with prescribed probability levels (see [99]). The performance index
is the expected value of the usual cost function. The constraints on outputs can be
formulated as probabilistic constraints, called ”chance constraints”. The resulting
optimization problem to be solved in the stochastic MPC scheme is:

Problem 11 (Linear Chance Constrained MPC)

min
uk|k,...,uk+N−1|k

E

[
f(xk+N |k) +

N−1∑

i=0

l(xk+i|k, uk+i|k)

]

s.t.

system dynamics (D.7)

P
{
ymin ≤ yk+i|k ≤ ymax

}
≥ 1− α i = 1, . . . , N

umin ≤ uk+i|k ≤ umax i = 0, . . . , N − 1

(D.8)

where 1 − α is the predefined level of confidence. These models ensure that a loss
may occur with a small probability without providing any control when a loss occurs.
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The optimization problem 11 is nonconvex in general, because the sets described
by the probabilistic constraints in Problem 11 are nonconvex in general. The main
challenge lies in the computation of the multivariate integration os the density func-
tion of the uncertain variables. Most of the approaches try to avoid the ”exact”
numerical integration and either to relax the probabilistic constraints or to find a
deterministic equivalent if exists. Since any affine linear transformation of normally
distributed variables has a multivariate normal distribution, if the random variables
have a multivariate normal distribution, the optimization problem 11 will be convex.
The interested reader is referred to [25, 92, 99] for an overview. Exploit a classical
results by Prékopa, a deterministic equivalent formulation of chance constraints will
be provided in the appendix E.
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Appendix E

Chance Constrained Linear

Stochastic Programs

This appendix has been extracted from [70,99] and introduces a well known method
in the literature for obtaining a deterministic reformulation of the chance constraint.
Consider the following optimization problem:

min
x

cT x

s.t.

G(w)x− g(w) ≥ 0

x ∈ X

(E.1)

where x ∈ Rn is the vector of decision variables, X is a polyhedral set, G(w) : Rr 3→
Rs×n and g(w) : Rr 3→ Rs are functions of the random vector w : Ω 3→ Rr. In the
Stochastic Linear Programming an affine linear dependance on the random variable
is assumed:

G(w) = G +
r∑

j=1

Gjwj

g(w) = g +
r∑

j=1

gjwj

(E.2)

where G, Gj ∈ Rs×n and g, gj ∈ Rs are respectively deterministic matrices and vec-
tors. Therefore the constraints in E.1 can be regarded as an affine linear combination
of random vectors. We can act on the constraint distribution through the decision
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variables, which are the coefficients in the linear combination. The stochastic con-
straints in E.1 may be also written in a row-wise form:

GT
i (w)x− gi(w) ≥ 0 i = 0, . . . s (E.3)

The chance constrained version of the problem E.1 involves probabilistic constraints
of the form:

P {G(w)x− g(w) ≥ 0} ≥ 1− α (E.4)

where 1 − α is the prescribed probability level. The constraint E.4 is called a joint
chance constraint, meaning that all of the s inequalities have to hold simultaneously.
It can be necessary to consider separately the s inequalities in E.3 both because joint
chance constraints are in general non-convex in x and because this could be required
by the specific application. As a consequence, define the separate chance constraint:

P
{
GT

i (w)x− gi(w) ≥ 0
}
≥ 1− αi i = 0, . . . s (E.5)

where the probability levels 1− αi are specified for each individual rows.

E.1 Deterministic Equivalent of Chance Constraints

If we assume that each (n + 1)-dimensional vector [Gi(w) gi(w)]T , i = 0, . . . s has
a multivariate normal distribution, the random variables in E.3 are also normally
distributed. Define for i = 0, . . . s:

Gi(w) ∼ N (µ̄i,ΣiΣT
i )

gi(w) ∼ N (µi, σ
2
i )

Each constraint GT
i (w)x− gi(w) can be rewritten as:

w̃T (ΣT
i x− σi) + µ̄T

i x− µi (E.6)

We obtain from E.6 via standardization:

P
{
GT

i (w)x− gi(w) ≥ 0
}

= 1−P
{
GT

i (w)x− gi(w) ≤ 0
}

=
= 1−P

{
GT

i (w)x−gi(w)−µ̄T
i x+µi

‖ΣT
i x−σi‖

≤ −µ̄T
i x+µi

‖ΣT
i x−σi‖

}
=

= 1− Φ
(
−µ̄T

i x+µi

‖ΣT
i x−σi‖

)
= Φ

(
µ̄T

i x−µi

‖ΣT
i x−σi‖

)

where Φ is the standard cumulative distribution function. In conclusion a separate
chance constraint of the form described above can be reformulated as a deterministic
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E.1. Deterministic Equivalent of Chance Constraints

second order cone (SOC) constraint:

P
{
GT

i (w)x− gi(w) ≥ 0
}
≥ 1− α⇔ Φ−1(1− α)‖ΣT

i x− σi‖2 − µ̄T
i x ≤− µi

P
{
GT

i (w)x− gi(w) ≤ 0
}
≥ 1− α⇔ Φ−1(1− α)‖ΣT

i x− σi‖2 + µ̄T
i x ≤µi

If (1 − α) > 0.5 the sets described by the chance constraints are convex, otherwise
they are non-convex (see [70], Theorem 2.5).
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