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SUMMARY

Conventional control strategies of a building heating system such as weather-compensated
heating control cannot make use of the energy supplied to a building (e.g. solar gain in case
of sunny day). On the other hand, dropout of outside temperature can lead to underheating of
a building. Model predictive controller presented in the article combines weather forecast and
thermal model of a building and predicts trends of inside temperature. By this, it can utilize
thermal capacity of a building and minimize energy consumption. It can also maintain inside
temperature at desired level independent of outside weather conditions. The controller was
tested on a real building and results were compared with the present heating control.

1 INTRODUCTION

According to the U. S. Energy Information Administration, in 2005, buildings accounted
for 39 % of total energy usage, 12 % of the total water consumption, 68 % of total electricity
consumption, and 38 % of the carbon dioxide emissions in the U. S. A. [1]. Although the energy
efficiency of systems and components for heating, ventilating, and air conditioning (HVAC) has
improved considerably over recent years, there is still potential for substantial improvements.
This article deals with an advanced control technique, that can provide significant energy sav-
ings in comparison with conventional, non-predictive techniques.

Widely used control strategy of water heating systems is the weather-compensated control.
This feedforward control can lead to poor energy management or reduced thermal comfort even
if properly set up, because it utilizes current outside temperatures only. Weather conditions,
however, can change dramatically in few hours; and due to the heat accumulation in large
buildings, it can lead to underheating or overheating of the building easily.

During recent years, significant advances have been done for the HVAC control systems.
For instance, continuous adaptation of control parameters, optimal start-stop algorithms, or in-
clusion of free heat gains in the control algorithm are particular improvements of the building
heating system. The model predictive controller presented in this article introduces a differ-
ent approach to the heating system control design. As the outside temperature is one of the
most influential quantity for the building heating system, weather forecast is employed in the
predictive controller. It enables to predict inside temperature trends according to the selected
control strategy. The aims of the control can be expressed in natural form as thermal comfort
and economy trade off.
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Figure 1: The building of the Czech Technical University in Prague that was used for MPC
application

2 MODEL PREDICTIVE CONTROL

Model (Based) Predictive Control (MPC) is a method of advanced control originated in
late seventies and early eighties in the process industries (oil refineries, chemical plants, . . .)
([2, 3, 4, 5]). The MPC is not a single strategy, but a vast class of control methods with the
model of the process explicitly expressed trying to obtain control signal by minimizing objective
function subject to (in general) some constraints.

The minimization is performed in an iterative manner on some finite optimization horizon
to acquire N step ahead-prediction of a control signal that leads to the minimum value of the
criterion, subject to all constraints. This, however, carries lots of drawbacks such as no feed-
back, no robustness, no stability guarantee, etc. Many of these drawbacks can be overcome
by applying so-called receding horizon, i.e. at each iteration only the first step of the control
strategy is implemented and the control signal is calculated again, thus, in fact, the prediction
horizon keeps being shifted forward. Stability of the constrained receding horizon has been
discussed in [6, 7], or yet another approach using robust control design approach in [8].

There were several attempts made to utilize predictive control concept in HVAC in the last
decade [9, 10, 11]. Complex view into area of optimal building control gives the project Op-
tiControl1. Besides its own results, it also provides a wide range of references to the related
articles. Another project worth to mention is the Predictive Networked Building Control that
deals with predictive control of the thermal energy storage on the campus of the UC-Berkeley2.
Most of the articles devoted to the HVAC predictive control conclude results just by numerical
simulations. On the contrary, this article describes MPC being tested on the real eight-floor
building (see Fig. 1).

2.1 Model identification

One of the crucial contributors to the quality of the control is a well identified model which
will be later on used for control in MPC algorithm. There are several completely different
approaches to system identification including physical modeling, CFD modeling or statistical
identification. As traditional methods are rather time consuming for buildings, we have turned
towards statistical identification methods, and, more specifically, towards subspace methods
[12, 13, 14].

The objective of the subspace algorithm is to find a linear, time invariant, discrete time

1http://www.opticontrol.ethz.ch
2http://sites.google.com/site/mpclaboratory/research/

predictive-networked-building-control-1
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Figure 2: Comparison between classical and subspace identification methods

model in an innovative form

x(k+1) = Ax(k)+Bu(k)+Ke(k)
y(k) = Cx(k)+Du(k)+ e(k), (1)

where A, B, C, and D are system matrices, K is Kalman gain – derived from the Algebraic
Riccati Equation (ARE) [15], and e is a white noise sequence. This model is equivalent to the
well-known stochastic model

x(k+1) = Ax(k)+Bu(k)+w(k)
y(k) = Cx(k)+Du(k)+ v(k), (2)

with

cov(w,v) = E
([

w(p)
v(p)

][
wT (q) vT (q)

])
=

[
Q S
ST R

]
δpq ≥ 0, (3)

wherein matrices Q, S and R are covariance matrices of process and measurement noise se-
quences, respectively. Loosely speaking, the objective of the algorithm is to determine the
system order n and to find the matrices A, B, C, D and K.

The main difference between classical and subspace identification is, given the sequence of
input data u(k) and output data y(k), as follows:
• Classical approach. Find system matrices, then estimate the system states, which often

leads to high order models that have to be reduced thereafter.
• Subspace approach. Use orthogonal and oblique projections to find Kalman state se-

quence (see [15]), then obtain the system matrices using least squares method.
The differences in the approaches can be seen in Fig. 2[16]. The entry point to the algorithm
are input-output equations as follows:

Yp = ΓiXd
p +Hd

i Up +Y s
p

Yf = ΓiXd
f +Hd

i U f +Y s
f

Xd
f = AiXd

p +∆
d
i Up, (4)

where Yp and Yf are the Hankel matrices of past and future outputs, Up and U f are the Hankel
matrices of past and future inputs, Xd

p and Xd
f are the deterministic Kalman state sequences,

Y s
p and Y s

f are the stochastic Hankel matrices of past and future outputs, Hd
i is the lower block

triangular Toeplitz matrix for the deterministic subsystem (which contains all matrices A, B,
C and D), Γi is the extended system observability matrix (which contains the system matrices
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A and C) and ∆d
i is the deterministic reversed extended controllability matrix (which contains

system matrices A and B). More details about constructing said matrices can be found in [12,
16, 17]. Using combined algorithm described in [17], we get[

X̃i+1
Yi|i

]
=

[
A B
C D

][
X̃i

Ui|i

]
+

[
ρw
ρv

]
, (5)

with X̃i = X̃iX̂0,P0
, where X̂0 is oblique projection defined by [17] as:

X̂0 = Xd
p/U f Up, (6)

where P0 is state covariance matrix, and we can determine noise sequence covariance matrices
Q, S and R from the residuals, which are defined by Eq. (3). Solving Eq. (5) using least squares
methods, we get the state space system description of the system, namely the system in the
innovation form (Eq. (1)) with matrices A, B, C, D and K.

2.2 Predictive controller

MPC strategy. The MPC strategy comprises two basic steps:
• The future outputs are predicted in an open-loop manner using the model provided in-

formation about past inputs, outputs and future signals, which are about to be calculated.
The future control signals are calculated by optimizing the objective function, i.e. chosen
criterion, which is usually in the form of quadratic function. The criterion constituents
can be as follows:

– errors between the predicted signal and the reference trajectory r(k)
– control effort
– rate of change in control signals

• The first component of the control sequence u(k) is sent to the system, whilst the rest of
the sequence is disposed. At the next time instant, new output y(k+ 1) is measured and
the control sequence is recalculated, first component u(k+1) is applied to the system and
the rest is disposed. This principle is repeated continuously (receding horizon).

The reference trajectory r(k), temperature in the room in our case, is known in advance
as a schedule. The major advantage of MPC is the ability of computing the outputs y(k) and
corresponding input signals u(k) in advance, that is, it is possible to avoid sudden changes in
control signal and avoid the undesired effect of delay in system response.

MPC problem formulation. For given linear, time invariant, discrete model

x(k+1) = Ax(k)+Bu(k)
y(k) =Cx(k)+Du(k) (7)

find the optimal control sequence on the horizon of prediction (length T ) by minimizing the
objective function

J =
T−1

∑
k=0

q(t)(y(k)− r)2 + r(k)u(k)2, (8)

subject to

umin ≤ u ≤ umax

(y− r)min ≤ (y− r) ≤ (y− r)max

∆minξ ≤ ∆ξ ≤ ∆maxξ (9)

where constraints umin, (y−r)min, ∆ξmin and umax, (y−r)max, ∆ξmax are minimum and maximum
values of the control signal, error of the output signal from reference and a rate of change of
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control signal or error of the output signal from reference, respectively. J is the value of the
objective function, r is the reference trajectory, y and u are output and control signal (denoted
without specification of a time instant k). The criterion (Eq. (8)) can be rewritten into a matrix
form

J = (y− r)T Q(y− r)+uT Ru, (10)

where Q and R are weighting matrices of output error and control effort, respectively. The
trajectory of the output is given as:

y(0)
y(1)

...
y(T −1)

 =


C

CA
...

CAT−1

x0 +


D

CB D
... . . .

CAT−2B . . . CB D




u(0)
u(1)

...
u(T −1)

 , (11)

i.e.
y = Γx0 +Hu, (12)

where Γ is observability matrix and H is matrix of impulse responses. Using Eq. (12), we can
rewrite Eq. (10) as follows:

J = (Γx0 +Hu− r)T Q(Γx0 +Hu− r)+uT Ru. (13)

If the constraints (Eq. (9)) are not taken into account, model of the system is linear, and the
criterion is quadratic, minimization problem Eq. (8) can be solved analytically – using methods
such as completing the square or Lagrange multipliers, etc., leading to the optimal control
sequence in the form of

u =−(HT QH +R)−1HT Q(Γx0 +Hu− r), (14)

otherwise iterative methods have to be used. In the case of quadratic criterion and constrained
optimization problem, a quadratic programming is one of the most popular solutions built in the
most of the modern optimization packages. Alongside to the many commercial software, such
as APC Library (Siemens), Pavilion8 (Pavilion Technologies), ADMC & DMCX1 (Cutlertech),
RMP(Honeywell), etc., there is also a free software, e.g. Scilab3 and its optimization routines.

3 CASE STUDY

The methods described in the previous section were tested in spring 2009 at the building of
the Czech Technical University in Prague. All algorithms were implemented in Scilab.

3.1 Description of the Building

The building of the Czech Technical University in Prague uses a “Crittall” [18] type ceiling
radiant heating and cooling system. The “Crittall” system, invented in 1927 by R. G. Crittall
and J. L. Musgrave, was a favorite heating system in the Czech Republic during 1960’s for large
buildings. In this system, the heating (or cooling) beams are embedded into the concrete ceiling.
The control of individual rooms is very complicated due to the technical state of the control
elements in all rooms. The control is therefore carried out for one entire building block, i.e. the
same control effort is applied to all rooms of the building block. There are three building blocks
with the same construction and orientation. Therefore, this situation is ideal for comparison of
different control strategies, as depicted in Fig. 4.

3Open source scientific software package for numerical computations

(http://www.scilab.org/)
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Figure 3: Simplified scheme of the ceiling radiant heating system.

A simplified scheme of the ceiling radiant heating system is illustrated in Fig. 3. The source
of heat is a vapor-liquid heat exchanger, which supplies the heating water to the water container.
A mixing occurs here, and the water is supplied to the respective heating circuits. An accurate
temperature control of the heating water for respective circuits is achieved by a three-port valve
with a servo drive. The heating water is then supplied to the respective ceiling beams. There is
one measurement point in a reference room for every circuit. The setpoint of the control valve
is therefore the control variable for the ceiling radiant heating system in each circuit.

3.2 Description of the model

The ceiling radiant heating system was simplified into a linear, time invariant mathematical
model. Outside temperature prediction and heating water temperature were used as the model
inputs. Prediction of the outside temperature is composed of two values, Tmax and Tmin, defining
a confidence interval. The only output of the model was the inside temperature. This can be
formalized according to Eq. (7) as

x(k+1) = Ax+B

 Tmin
Tmax
Thw

 ,Tin =Cx+D

 Tmin
Tmax
Thw

 , (15)

where Thw is the temperature of the heating water and Tin denotes the inside temperature. The
state x has no physical interpretation, when identified by means of the subspace identification.
System order is determined by the identification algorithm.

Modeling of the heating system of the CTU building is discussed in detail in [19].

3.3 Results

Two nearly identical blocks of the CTU building were used for testing. The first block was
controlled by the weather-compensated controller, while the second one by predictive controller.
The current weather compensated control is well tuned up thanks to long term experience with
the building. Testing was performed from March 24 to March 30, 2009, which was the end
of the heating season in the Czech republic. That highlights the advantages of the predictive
control, because there are days when there is no need of heating at all. The model predictive
controller was able to identify those gaps where no control was needed, thus save energy. This
can be seen in Fig. 4.

The efficiency of the predictive control was superior to the weather-compensated controller.

4 REMARKS TO FUTURE DEVELOPMENT

As already stated, subspace identification represents one of the black-box approaches to
system modeling. This, alongside with its advantages, carries also some drawbacks:
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Figure 4: Measured trends of the heating water temperature controlled by the weather compen-
sated control and the predictive controller

• The system might not be excited enough [12], i.e. the input of the system does not ex-
cite the system on satisfactory number of frequencies, thus identification algorithms lack
considerable amount of information.
• User may have knowledge of some key feature or characteristics of the physical essence

of the system, which is “lost” in the number of data.
• Natural characteristics of the data might pose considerable statistical problem.
Future development of the identification algorithm will try to remedy the above-mentioned

problems. One way which is still not full discovered4 is incorporating of prior information. This
approach make use of Bayesian approach [20] to the system identification and changes nature
of the subspace identification method towards grey-box identification.

Another aspect of the identification is the persistency of the excitation or the excitation
itself. Data gathered from the measurement lack some important physical characteristics of
the building. One of the possible approaches how to deal with this weak point is to generate
artificial data that already contain the desired properties. There is also another possibility, more
expensive though – a specially proposed experiment on real building, which is about to be done
in the beginning of 2010.
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6 CONCLUSION

It is obvious, that predictive control has a great potential in the area of building heating
control. Especially in case of buildings with great heat accumulation capabilities. The results
from one week testing in spring 2009 are very encouraging. Testing confirmed our empirical

4Some methods (SWLRA) algorithms are capable of handling incorporation of prior

information to SISO system, but algorithm for MIMO system is still missing
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experiences and the efficiency of the predictive controller was superior to the present well tuned
weather compensated controller. However, it is a complicated technique and launching of the
predictive controller requires deep knowledge of identification methods and predictive control.
It is questionable, whether this drawback can be overcome in the future and the tuning of the
predictive controller would be feasible for wide range of practitioners.
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