
A MODELICA-BASED MODEL LIBRARY FOR BUILDING ENERGY AND
CONTROL SYSTEMS

Michael Wetter
Simulation Research Group, Building Technologies Department

Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA

ABSTRACT
This paper describes an open-source library with

component models for building energy and control
systems that is based on Modelica, an equation-based
object-oriented language that is well positioned to
become the standard for modeling of dynamic sys-
tems in various industrial sectors. The library is cur-
rently developed to support computational science
and engineering for innovative building energy and
control systems. Early applications will include con-
trols design and analysis, rapid prototyping to sup-
port innovation of new building systems and the use
of models during operation for controls, fault detec-
tion and diagnostics.

This paper discusses the motivation for select-
ing an equation-based object-oriented language. It
presents the architecture of the library and explains
how base models can be used to rapidly implement
new models. To demonstrate the capability of ana-
lyzing novel energy and control systems, the paper
closes with an example where we compare the dy-
namic performance of a conventional hydronic heat-
ing system with thermostatic radiator valves to an in-
novative heating system. In the new system, instead
of a centralized circulation pump, each of the 18 ra-
diators has a pump whose speed is controlled using
a room temperature feedback loop, and the tempera-
ture of the boiler is controlled based on the speed of
the radiator pump. All flows are computed by solving
for the pressure distribution in the piping network,
and the controls include continuous and discrete time
controls.

INTRODUCTION
To significantly reduce greenhouse gas emissions

associated with building operations, development
of building simulation programs along two parallel
tracks is needed: First, the usability of existing build-
ing simulation programs needs to be improved so that
they can better support the design of efficient build-
ings on a large scale. Second, to accelerate the inno-
vation of new HVAC components, systems and con-
trol algorithms, a modeling and simulation frame-

work needs to be developed that better meets the
functional requirements of such applications. This
paper deals with the second development. Typical
functional requirements include:

1. Faster implementation of models for equipment,
systems and control algorithms, at different levels
of abstraction.

2. Means for implementing models by tool users in
addition to tool developers.

3. Ability to share models among users.
4. Ability to model continuous time dynamics (for

physical processes), discrete time systems (for dis-
crete time controls) and state events (such as for
switching controls).

5. Extraction of subsystem models for use in isola-
tion from the total system model (such as for vali-
dation, for more refined analysis, for model reduc-
tion, or for use in operation).

6. Use of simulation models in conjunction with non-
linear programming algorithms that require the
cost function (such as energy use) to have little
numerical noise. This is important to efficiently
solve optimal control problems that may involve
state trajectory constraints and hundreds of inde-
pendent parameters that define the control func-
tion.

From these functional requirements result several
characteristic features of the software architecture
that such a modeling and simulation environment
should have. They include:

1. Object-oriented modeling to facilitate code reuse.
2. Use of an equation-based language to allow more

natural modeling.
3. Use of a standardized modeling language.
4. Support for interfacing computational models with

real experimental facilities at the component and
whole building level.

5. Support for hierarchical model composition to al-
low managing the complexity of large systems.

6. Use of a model connectivity framework that allows
a model builder to assemble models in a similar

 

Eleventh International IBPSA Conference 
Glasgow, Scotland 

July 27-30, 2009 

- 652 -



way to what an experimenter would do on a work-
bench (cf. theobject-oriented modeling paradigm
summarized in Cellier 1996).

7. Use of symbolic algebra tools to reduce the dimen-
sionality of the coupled systems of equations that
need to be solved for simultaneously.

8. Use of numerical solvers that can solve stiff dif-
ferential equation systems (which require implicit
solvers with adaptive step size, cf. Hairer and
Wanner 1996) that may contain boolean variables.

This list illustrates that such a computational envi-
ronment needs tosimultaneouslysatisfy new require-
ments with regard to graphical modeling environ-
ments, modeling language, symbolic and numerical
methods, and code translators (that convert a model
description into an executable program). It is not
likely that these requirements can be met by an in-
cremental evolution of an existing building simula-
tion program, which typically contains hundreds of
thousands of lines of procedural code that mix pro-
gram statements describing the physics with program
statements for control algorithms, data management
and numerical solution methods. Such program code
does not allow use of code generators that use sym-
bolic algebra for reducing the dimensionality of the
coupled equation systems, for automatic differentia-
tion and for index reduction of differential algebraic
equations. It also makes it impractical to use mod-
ern solvers that analyze equation systems for events
and differentiability. Both measures are used in mod-
ern system simulation programs to increase compu-
tational efficiency and robustness. To realize a mod-
eling and simulation environment that can meet the
above needs, we believe it is most efficient to start
with a new approach that builds on the latest ad-
vances in system modeling and simulation. How-
ever, such a new environment for modeling and sim-
ulation can still be used in conjunction with existing
building simulation programs using co-simulation,
for example using the Building Controls Virtual Test
Bed (Wetter and Haves 2008).

Clearly, the development of such a computational
environment requires expertise from various research
disciplines such as computer science (for language
design and code generation), mathematics (for sym-
bolic and numerical methods) and engineering (for
creating modeling libraries). Hence, a tool for such
systems should not be developed by the building sim-
ulation community in isolation, but rather together
with other industrial sectors to share resources. This
is the approach that is followed by the Modelica
consortium which has been developing the Model-
ica modeling language since 1997. Modelica is an
equation-based, object-oriented language for model-

ing of systems that are described by algebraic equa-
tions, differential equations, and difference equa-
tions, and that may contain real variables, inte-
gers, boolean variables and strings (Mattsson and
Elmqvist 1997).

Models written in the Modelica language cannot
be executed directly. Rather, a simulation environ-
ment translates a Modelica model into an executable
program. Several commercial and freely available
modeling and simulation environments for Model-
ica that support textual and graphical modeling exist.
IDA ICE 4.0, to be released in spring 2009, appears
to be the first building simulation program that will
support Modelica.1 For a list of Modelica model-
ing and simulation environments, seehttp://www.
modelica.org/tools. While the performance and
price of the different tools vary, there has been signif-
icant progress in the development of these tools over
the last few years, and significant investments have
been made in Modelica. For example, in three Euro-
pean ITEA projects (EUROSYSLIB, MODELISAR
and OPENPROD), about 54 Million Euros for 370
person years are invested to further develop Model-
ica, Modelica tools, Modelica libraries and related
technology.2

However, what is missing in Modelica is a com-
prehensive library for building energy and control
systems. Thus, LBNL started an open-source devel-
opment effort with the aim of filling this gap. While
the library is currently used within LBNL projects,
it is our intention to broaden the development ef-
fort and collaborate with other developers to cre-
ate an open-source Modelica library that meets the
need for simulation-based innovation in building sys-
tems. This paper presents the current design of the li-
brary, which is available free of charge, including its
source code, fromhttp://simulationresearch.
lbl.gov.

TERMINOLOGY
To facilitate the discussion of our model library,

we will first introduce some terminology. For a
more detailed discussion see Tiller (2001) and Fritz-
son (2004). In Modelica, a general object is called
a class, which is typically restricted by the model
developer. Frequently used restricted classes are a
model, a connector, a block and afunction. (There
are other class restrictions, but these will suffice for
our discussion.) Amodel typically contains time-
dependent variables and parameters, which are time-
independent. An equation section is used to declare
algebraic and differential equations that relate param-

1Seehttp://www.equa.se/news/2008_16.html.
2See http://www.modelica.org/publications/

newsletters/2009-1.

- 653 -



eters, variables and their time derivatives. The equa-
tions are acausal and a Modelica translator sorts and
inverts them when generating executable code. To
expose interface variables, a model can contain in-
stances of a restricted class called aconnector. Con-
nectors cannot contain equations. For example, the
Modelica Standard Library 3.0 defines a connector
for a heat port, which has variables for temperature
and heat flow rate. Similarly, a connector for an
analog electrical port contains variables for voltage
and electrical current. These connectors declare the
variables for heat flow rate and current asflow vari-
ables, which will cause a model translator to auto-
matically impose conservation equations when mul-
tiple connectors are connected with each other. In
contrast to a model, ablock requires the causality
of its variables to be declared. Blocks are typi-
cally used to model signal flows such as in a con-
trol algorithm. Modelicafunction objects map in-
puts into outputs and contain analgorithm section
with procedural code. Functions cannot have mem-
ory and they cannot contain differential equations.
Functions can be recursive, and they can call other
functions that may be implemented in Modelica, C
or Fortran. A model, connector, function or block
can be declared to bepartial. Partial classes can-
not be instantiated. The partial keyword is typically
used to force a model developer to provide a com-
plete implementation before instantiating the class.
For example, the Standard Modelica Library imple-
ments for one-dimensional heat transfer elements the
partial modelElement1D that defines two heat port
connectors calledport a andport b, variables for
∆T andQ̇ and the equations∆T = Ta−Tb, Q̇a = Q̇
andQ̇b = −Q̇ where the subscripts refer to the port
names. The model is declared partial because the
equation that relates the temperatures with the heat
flow rate is not declared at this level of the object in-
heritance as it is different for heat conduction, radia-
tion or convection. To group similar classes, classes
are stored in apackagein a tree-like hierarchy. For
example, the Modelica Standard Library contains the
packageModelica.Electrical which contains the
packagesAnalog andDigital.

USERS AND DEVELOPERS

Users of theBuildings library can loosely be
classified into model users, model developers, and li-
brary developers.

Model userswill typically graphically compose
system models using models that are already avail-
able in theBuildings library, theModelica Fluid
library (Casella et al. 2006) and the Modelica Stan-
dard Library. For model users, we are working to-
wards creating a comprehensive set of component

models that will allow modeling a variety of build-
ing energy and control systems.

Model developerswill typically copy and modify
existing component models, using a graphical and
textual editor, or they may implement new models by
using object-inheritance of an existing model. For
model developers, theBuildings library contains
partial models that implement basic functionalities,
such as access to states at the component ports or
conservation equations for the fluid streams, with a
variable, sayQ flow for a heat input into a medium,
which a model developer needs to assign when im-
plementing a model. Using such a partial model, a
model developer can implement a complete compo-
nent model with a small set of equations. For exam-
ple, an ideal heater or cooler with no flow friction is
completely defined by the code3

1 model H e a t e r C o o l e r P r e s c r i b e d
2 e x t e n d s F l u i d s . I n t e r f a c e s.
3 P a r t i a l S t a t i c T w o P o r t H e a t M a s s T r a n s f e r;
4 paramete r Model ica . S I u n i t s . HeatF lowRate
5 Q f low nomina l
6 ”Heat f l ow r a t e a t u=1” ;
7 Model ica . B locks . I n t e r f a c e s. R e a l I n p u t u
8 ” Con t ro l i n p u t ” ;
9 e q u a t i o n

10 Q flow = Q f low nomina l ∗ u ;
11 mXi f low = z e r o s ( Medium . nXi ) ;
12 end H e a t e r C o o l e r P r e s c r i b e d ;

Library developerswill typically develop the base
models that can be used by model developers, such as
PartialStaticTwoPortHeatMassTransfer in the
example above. For theBuildings library, basic
models of theModelica Fluid library have been
used and customized for buildings applications. De-
veloping base models requires a comprehensive un-
derstanding of Modelica and of the application do-
main to ensure that the models will be computation-
ally efficient and have a high degree of reusability.
Reusing modeling concepts fromModelica Fluid
allowed us to implement theBuildings library us-
ing the best practices that have been developed over
the last six years by theModelica Fluid working
group. By providing the partial models, ready-to-use
base classes are provided to model developers so they
can focus on higher level model implementations.

ARCHITECTURE
When browsing the model library, a user is ex-

posed to the class package view. To implement new
models, the object-inheritance view is also of impor-
tance to understand what models can be reused. Af-
ter a short discussion of theModelica Fluid library

3For brevity, annotations have been omitted.

- 654 -



Controls -- Continuous
Discrete
SetPoints

Fluids -- Actuators -- Dampers
Motors
Valves

Boilers
Chillers
Delays
HeatExchangers
MassExchangers
Media
MixingVolumes
Movers
Sensors
Storage

HeatTransfer
Utilities -- Diagnostics

IO
Math
Psychrometrics
Reports

Figure 1: Package structure of theBuildings li-
brary. Only the major packages are shown.

on which our library is based, we will describe both
views.

Modelica Fluid Base Library

TheModelica Fluid library contains component
models for one-dimensional thermo-fluid flow in
networks of pipes. Version 1.0, on which our
Buildings library is currently based, was released
in January 2009. It is intended to become part of the
Modelica Standard Library. It provides models that
demonstrate how to implement fluid flow component
models that may have flow friction, heat and mass
transfer. The models demonstrate how to deal with
difficult design issues such as connector design, han-
dling of flow reversal and initialization of states in
a computationally efficient way. While many models
of this library can be used for our application domain,
we provide in theBuildings library models that
reuse and augment models fromModelica Fluid
where applicable.

Packages of the Buildings Library

TheBuildings library is organized into the pack-
ages shown in Fig. 1. Components in these pack-
ages augment components from the Modelica Stan-
dard Library and from theModelica Fluid library.

The packageControls contains models of con-
trollers that are frequently used in building energy

systems. The packageFluids.Actuators contains
models of valves and air dampers, as well as of mo-
tors that can be used in conjunction with the actu-
ators. InFluids.Delays, there is a transport de-
lay model that can be used in fluid flow systems.
A dynamic boiler model is inFluids.Boilers
and different heat and mass exchanger models
can be found inFluids.HeatExchangers and in
Fluids.MassExchangers. Various medium models
are implemented in the packageMedia, such as for
dry air, moist air and water. These medium mod-
els augment the medium models that are already
available fromModelica.Media. Fan and pump
models are stored inFluids.Movers. Sensors that
can be connected to a fluid stream are stored in
Fluids.Sensors. The packageFluids.Storage
contains models of stratified storage tanks. The pack-
ageUtilities contains psychrometric models and
blocks to format and print results to files. In the
future, an interface will be added that allows link-
ing Modelica models to the Building Controls Vir-
tual Test Bed (Wetter and Haves 2008), and hence to
EnergyPlus.

Most packages include a package called
Examples. The example files in these pack-
ages are used to illustrate the model use and to
conduct unit tests. Currently, there are around 60
example files.

Class Inheritance

We will now explain how some models are imple-
mented in the library. While a comprehensive expla-
nation of the whole library implementation is outside
the scope of this paper, we include this section to il-
lustrate how object-oriented modeling allows reusing
the same base classes for various model implementa-
tions. While using object-oriented class definitions
requires more planning when designing a library, it
provides the following advantages:

1. The same code is used in many models which
makes it more likely to detect model errors.

2. Code is easier to maintain since features that are
shared by different models can be declared once
and propagated by object-inheritance, as opposed
to being copied into different source code sections.

3. Complex models can be implemented using a se-
ries of models of increasing complexity. This fa-
cilitates conducting unit tests for isolated model
features, thereby increasing the chance to detect
model errors earlier when they are easier and
cheaper to fix.

4. Connectors and variables of similar models share
the same name if they are declared in a common
base class. This facilitates post-processing of sim-
ulation results. For example, because of object-

- 655 -



PartialTwoPortTransport

PartialResistance

FixedResistanceDpM PartialActuator

PartialTwoWayValve

TwoWayLinear TwoWayExponential TwoWayQuickOpening

PartialDamperExponential

Exponential VAVBoxExponential

Figure 2: Object-inheritance for pressure drop elements with two fluid ports.

inheritance, a user knows that a flow resistance el-
ement always has a public variabledp that reports
the pressure drop.

5. Inside a system model, component models can be
constrained to belong to a certain base class. They
can then be redeclared to assign an instance of a
particular model inside a system model. This al-
lows treating instances of component models in
a similar way to a parameter, thereby allowing
changing the behavior of a model. For example, a
model for heat transfer in a wall can be propagated
into a building heat transfer model, thereby allow-
ing the creation of a building model with different
model structure as described in Wetter (2006).

We will now illustrate how object-inheritance
was used to implement two-way valves and air
dampers. Figure 2 shows the object-inheritance
tree. For the base model, we used the partial
modelPartialTwoPortTransport from the library
Modelica Fluid. This partial model can be used to
implement models that transport a fluid between two
ports while conserving enthalpy, mass and species
concentration. It defines two instances of a fluid
port which are calledport a and port b. It also
defines a variable that requires a model user to de-
clare with what medium this model is used (such as
dry air, moist air or water). The model also imple-
ments the enthalpy balance as 0= Ḣa + Ḣb, the mass
flow rate balance 0= ṁa + ṁb, the species flow rate
balance 0= ṁX,a + ṁX,b and the pressure balance
∆p = pa − pb. Note that how∆p is computed as a
function of the flow rate is not yet specified, since
the equation will be different for different models.

Next, there is a model called
PartialResistance. This model implements a
function that computes the mass flow rate as a func-
tion of pressure drop, ˙m = f (k,∆p). The function
f (·, ·) is an approximation to ˙m= sign(∆p)k

√

|∆p|
with regularization near zero for numerical reasons
and to capture the laminar flow region. Howk
is computed is not specified at this level of the

object-inheritance tree.4

There are two different models for specifyingk.
The modelFixedResistanceDpM is a model for a
fixed flow resistance in which the user can specify
the point on the curve that relates mass flow rate with
pressure drop. Given a nominal mass flow rate ˙m0

and a correspondingpressure drop∆p0, the model as-
signsk = ṁ0/

√
∆p0. There are also parameters that

allow a model user to specify where the transition be-
tween turbulent and laminar flow occurs. In contrast
to this model, the modelPartialActuator does not
define howk is computed, because different actuators
require different equations. Instead, it simply instan-
tiates a connector for an input signal whose value is
equal to the actuator opening, withy = 0 defined as
closed andy = 1 defined as open.

Next, the modelPartialActuator implements
a partial model for a damper, i.e., the model
PartialDamperExponential, and a partial model
for a two-way valve, i.e.,PartialTwoWayValve.
The model PartialTwoWayValve defines that a
valve implementation needs to specify a flow func-
tion φ(y) = k(y)/k(y= 1) that relates the valve open-
ing y with the actual flow coefficientk(y) and the
flow coefficient for a fully open valve,k(y = 1). It
also specifies a parameter for the valve leakagel , i.e,
l = k(0) so thatφ(0) = l/k(y = 1).

All these partial models are stored in packages
calledBaseClasses that a typical model user does
not need to browse when assembling a system model.

Next, there is a package calledValves with
the model TwoWayLinear which implements
the linear characteristicsφ(y) = l + y(1 − l),
and the modelsTwoWayEqualPercentage and
TwoWayQuickOpening that implement valve open-
ing characteristics for equal percentage and for
quick opening valves. There is also a package called
Dampers that implements models for an air damper
and a variable air volume flow box with exponential

4We used mass flow rate instead of volume flow rate as this
leads to simpler equations. However, it would be easy to imple-
ment a model in which a user can specify the volume flow rate
instead of the mass flow rate.

- 656 -



Figure 3: Schematic view of the DP system. Each
radiator has a pump in its return pipe.

damper opening characteristics based on the partial
modelPartialDamperExponential. For example,
the implementation of the two-way valve with linear
opening characteristics is as follows:

1 model TwoWayLinear ”Two−way v a l v e w i t h
2 l i n e a r f l ow c h a r a c t e r i s t i c s ”
3 e x t e n d s BaseC lasses. Par t ia lTwoWayValve;
4 e q u a t i o n
5 ph i = l + y ∗ (1 − l ) ;
6 end TwoWayLinear ;

For brevity, the documentation has been omitted in
the above code. The documentation is html format-
ted text that can be translated into a documentation
that displays textual documentation together with the
Modelica code.

Similar object-inheritance trees are used to imple-
ment other models such as for three-way valves, for
heat exchanger models and for measurement sensors.

APPLICATION
We will now show simulations that compare a con-

ventional hydronic space heating system with ther-
mostatic radiator valves (TRV system) to a hydronic
space heating system with decentralized pumps at
each radiator (DP system). The DP system is simi-
lar to the system Geniax, which the company Wilo
presented to the European market in March 2009.
Wilo reports that promises of the Geniax system in-
clude about 20% reduction in heating energy use
and faster room temperature change during and af-
ter night setback. Fig. 3 shows schematically the
DP system, with a pump at each radiator outlet. The
TRV system has the same configuration, except that
there is one central circulation pump at the boiler
outlet, and thermostatic radiator valves are used for
each radiator instead of the radiator pumps. We
modeled both systems using the Modelica libraries
Buildings 0.5.0, Modelica Fluid 1.0 and the
Modelica Standard Library 3.0. The models
were built and simulated in the Modelica modeling
and simulation environment Dymola 7.1.

Our system was a model of a hydronic heating
system of a building with three floors. Three verti-

cal distribution pipes served 18 radiators. All mass
flow rates were computed based on the pressure dis-
tribution in the piping network, which depends on
the pump curves, the flow friction in the individual
branches and the pump speed. All pumps had vari-
able frequency drives that can reduce the pump speed
to one third of the nominal speed. Below that value,
the pumps were switched off. The heat losses of the
rooms were modeled using a finite volume method to
solve for the transient heat conduction through walls
and floors, which we selected to be lightweight con-
structions. There was also steady-state heat transfer
to the outside to account for heat losses due to venti-
lation and heat conductance through the window. In
every other room, we added convective and radiative
heat gains during the day to resemble people and so-
lar heat gains. The room air was modeled as com-
pletely mixed with one state variable.

In the TRV system, each radiator had a thermo-
static valve with a proportional band of 0.5K. The
boiler set point was computed as a function of the
outside temperature, using a heating curve with night
setback that corresponds to a reduction of the room
temperature from 20◦C to 16◦C. In the early morn-
ing, the heating curve was increased to allow faster
recovery from the night set back temperature. The
centralized pump had a variable frequency drive that
regulates the pump head.

In the DP system, each radiator had a pump that
varied its speed to draw as much water as needed for
tracking the room temperature setpoint. The con-
trol sequence specification was not available from
the manufacturer. Based on the available litera-
ture (Baulinks 2009), we implemented the following
control algorithm. A proportional controller deter-
mined the speed for each radiator pump based on the
current room temperature control error. The room
set point was 20◦C during the day and 16◦C during
the night. To keep the boiler temperature as low as
possible (for example to maximize the efficiency of
a condensing gas boiler), the boiler temperature set-
point was adaptive based on the room temperature
control error.

In both systems, the boiler temperature setpoint
was tracked using a P-controller with hysteresis. The
hysteresis was used for switching the boiler on and
off. The boiler switches off if the output signaly of
the boiler controller isy < 0.3. If y > 0.5, the boiler
switches on and then modulates between 0.3≤ y≤ 1.
A time relay was used to avoid excessive short cy-
cling at very low load. All circulation pumps could
reduce their speed to 30% of the nominal speed. Be-
low this threshold, the pump switched off and re-
mained off until its controller requested 50% of the
nominal pump speed.

- 657 -



Figure 4: View of the two-room model in the graph-
ical model editor of Dymola.

Fig. 4 is a view of a subset of the system model
as displayed by the graphical model editor of Dy-
mola. Each icon encapsulates a model, which may
encapsulate additional models to enable a hierarchi-
cal model definition. In Fig. 4, on the left are in-
put signals for the room temperature setpoint and the
outside air. Next, there are vertical lines to connect
fluid ports at the bottom and top of the floor. (For the
top floor of the building, the model translator will set
the mass flow rates in these pipe segments to zero,
as the top ports are not connected.) In the left pipe,
we placed a model that computes flow friction. The
grey boxes in the fluid lines are finite volume mod-
els for the radiators. To the right of the radiators are
the circulation pumps, and on top of the radiators are
the room models. The room models contain finite
volume models for computing the transient heat flow
through the building constructions. Input to the room
models are the outside temperatures and heat gains.
The heat gains were defined by a time table for the
left room, but they were set to zero for the right room.
The red connection lines connect the room models
to the radiators. They equate the temperatures and
balance the convective and radiative heat flows, re-
spectively, between radiator and rooms. There is also
a heat flow connection between the rooms for inter-
zonal heat transfer. Above the room models are the
pump controllers. This two-room model is then in-
stantiated nine times to form a three-storey house
with three vertical distribution lines, and the distri-
bution lines are connected to a plant model that con-
tains the boiler and the centralized system controller.
The total system model is composed of 2400 compo-
nent models that form a differential algebraic equa-
tion system with 13,200 equations. After the sym-
bolic manipulations, there were 8700 equations with
300 state variables. Building the system models for
the TRV and the DP systems, including the models

0 2 4 6 8 10 12 14 16 18 20 22 24
20

40

60

T
 [°

C
]

Boiler set point, supply and return temperatures

0 2 4 6 8 10 12 14 16 18 20 22 24

18

20

T
 [°

C
]

Room temperatures

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1
Boiler and radiator valve signals

y

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2
Normalized radiator mass flow rates

m
 / 

m
0

(a) TRV system

0 2 4 6 8 10 12 14 16 18 20 22 24
20

40

60

T
 [°

C
]

Boiler set point, supply and return temperatures

0 2 4 6 8 10 12 14 16 18 20 22 24

18

20

T
 [°

C
]

Room temperatures

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1
Boiler and radiator pump signals

y

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2
Normalized radiator mass flow rates

m
 / 

m
0

(b) DP system

Figure 5: Comparison of the dynamic system re-
sponse of the TRV and DP systems for a lightweight
building. The lower three subfigures show the trajec-
tories of the four rooms that are closest and farthest
away from the boiler, with the solid lines correspond-
ing to the rooms with heat gains.

for the room, the radiator, the boiler and a first ver-
sion of the controllers, took about a week of labor.

Fig. 5 shows the trajectories computed by the two
system models. In the TRV system, the radiator
valves open at night since the room temperature falls
below their set point temperatures of 20◦C. This
causes the radiators to release heat to the room, al-
though at a lower rate because of the lower supply
water temperature. However, in the DP system, the
radiator valves and the boiler switch off while the
room temperature is above the night setback temper-
ature, which causes a larger reduction in room tem-
perature at night.

- 658 -



CONCLUSIONS

Model-based system-level analysis of the dynamic
performance of building energy and control systems
promises to reduce both research and development
expenditures and time to market of new systems.
Such a research and development process requires
a flexible modeling and simulation environment that
allows users to rapidly add new models of physi-
cal equipment and of continuous and discrete time
controls. We showed how object-oriented equation-
based modeling allows addressing some of the re-
quirements that model-based system-level analysis
imposes on the modeling and simulation environ-
ment. To better support this process, we started the
development of a library of component models for
building energy and control systems. The models
are developed using Modelica, an open-source mod-
eling language that has considerable support in the
system-simulation community, as well as in various
industrial sectors. This broad support allows sharing
resources for the development of tools that are com-
mon across many engineering domains, as well as
sharing domain-specific models within the building
simulation community.

We discussed the software architecture of our
open-source Modelica library of component models
for building energy and control systems. We also
demonstrated how the models can be used to com-
pare the dynamic performance of a hydronic heating
system, with circulation pumps at each radiator, to a
conventional hydronic heating system with thermo-
static radiator valves. Modeling both hydronic sys-
tems, including implementing dynamic models for a
boiler, a radiator and a simplified room with transient
heat conduction took about a week of labor. This
is considerably shorter than it may have taken with
many conventional building simulation programs, as
modeling pressure driven flows and testing different
local loop and supervisory control algorithms are of-
ten outside their capabilities.

Technical challenges remain, however, in the nu-
merically efficient and robust simulation of such sys-
tems, and in the creation of libraries with robust mod-
els. These items are the subjects of future research
and development.

ACKNOWLEDGMENTS

This research was supported by the Assistant Sec-
retary for Energy Efficiency and Renewable Energy,
Office of Building Technologies of the U.S. Depart-
ment of Energy, under Contract No. DE-AC02-
05CH11231.

REFERENCES
Baulinks. 2009, February. Wilo startet in

ein ”neues Zeitalter der Heizungssysteme”.
http://www.baulinks.mobi/news/2009/0204.htm.

Casella, Francesco, Martin Otter, Katrin Proelss,
Christoph Richter, and Hubertus Tummescheit.
2006, September. “The Modelica Fluid and
Media Library for Modeling of Incompress-
ible and Compressible Thermo-Fluid Pipe Net-
works.” Edited by Christian Kral and Anton
Haumer,Proc. of the 5-th International Mod-
elica Conference, Volume 2. Modelica Asso-
ciation and Arsenal Research, Vienna, Austria,
631–640.

Cellier, François E. 1996. “Object-Oriented Mod-
eling: Means for Dealing With System Com-
plexity.” Proceedings 15th Benelux Systems and
Control Conference. Mierlo, The Netherlands,
53–64.

Fritzson, Peter. 2004.Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1.
John Wiley & Sons.

Hairer, E., and G. Wanner. 1996.Solving ordinary
differential equations. II. 2nd. Springer series in
computational mathematics. Berlin: Springer-
Verlag.

Mattsson, Sven Erik, and Hilding Elmqvist. 1997,
April. “Modelica – An international effort
to design the next generation modeling lan-
guage.” Edited by L. Boullart, M. Loccufier, and
Sven Erik Mattsson,7th IFAC Symposium on
Computer Aided Control Systems Design. Gent,
Belgium.

Tiller, Michael M. 2001. Introduction to Physi-
cal Modeling with Modelica. Kluwer Academic
Publisher.

Wetter, Michael. 2006, September. “Multizone
Building Model for Thermal Building Simula-
tion in Modelica.” Edited by Christian Kral and
Anton Haumer,Proc. of the 5-th International
Modelica Conference, Volume 2. Modelica As-
sociation and Arsenal Research, Vienna, Aus-
tria, 517–526.

Wetter, Michael, and Philip Haves. 2008, August.
“A modular building controls virtual test bed
for the integration of heterogeneous systems.”
Proc. of SimBuild. IBPSA-USA, Berkeley, CA.

- 659 -




