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ABSTRACT 

Simulation based control schemes for a low-energy 
building system are introduced and compared in this 
paper. The simulation of a low-energy system is 
firstly constructed and a fast two-stage optimisation 
method is proposed to find the optimal control policy 
in short time. A Model Predictive Control (MPC) 
scheme and a Hierarchical Fuzzy Rule based Control 
(HFRC) scheme that is tuned online by a 
reinforcement learning (RL) agent are introduced. 
The MPC scheme runs the simulation online to 
predict the future behaviour in order to make long-
term optimal decisions. On the other hand, the 
HFRC+RL scheme run the simulation offline to 
generate prior knowledge for the RL agent. 

The performances of the different schemes are 
evaluated by comparing energy consumption, 
thermal comfort and computing time. 

INTRODUCTION 
In the last few decades, computer simulation has 
enabled more detailed analysis of building energy 
system that could not be achieved with theoretical or 
experimental methods. Various information about the 
building, such as thermal response, energy 
consumption and even occupancy behaviour, can be 
acquired conveniently using simulation. This 
valuable information can be used for system design, 
equipment sizing, energy audit, fault identification, 
etc. Particularly, building simulation is very useful in 
terms of optimising the operation and optimal control 
of building energy systems. The use of the 
information about the controlled system is crucial for 
the controller design. Different ways of using this 
information exist. The building simulation can be 
used online as a model of the building energy system 
therefore a MPC scheme can be constructed based on 
it. Otherwise, it can be used offline, thus the 
optimisation results can be used to generate rules or 
performance maps to control the system online, or 
can provide good initial values or policies for online 
learning methods. 

In this paper, different ways of using the information 
provided by a building simulation are discussed and a 
low-energy building system is used as an example to 
demonstrate the properties of the different 
approaches. Firstly, a low-energy building system 

and its simulation are described. Then a fast two-
stage optimisation method is introduced which can 
find optimal control commands given an associated 
cost function. Two different ways of using the 
simulation are described and compared: the 
simulation and two-stage optimizer is used online as 
a MPC scheme; or the simulation is used offline to 
generate a HFRC controller and an accelerated RL 
method is introduced to tune the HFRC online. The 
discussion and conclusions are given at the end of 
this paper. 

A TYPICAL LOW-ENERGY SYSTEM 

The low energy building system used for simulation 
is based on a real building in central England (Zhang 
& Hanby, 2006). The original system is a heating 
system using solar energy, heat recovery and thermal 
storage. To provide proper cooling for the summer, a 
solar driven absorption chiller and an evaporative 
cooling system, which uses the cooling tower as 
cooling source, are added (Yu and Dexter, 2008).  

The building has three different zones: an exhibition 
room (217.9m2), a dinning area (74.0m2) and a class 
room (178.6m2).  

The system composition is given in Figure 1 and 2. 
The building energy system is composed of a water 
circuit and an air circuit. The water circuit includes a 
heating source, a cooling source, a thermal storage 
system, a chilled water system, and a cooling tower. 
The air circuit is composed of a VPV unit, a heat 
recovery heat exchanger, an AHU, three heated zones, 
air supply fans, air dampers and an independent heat 
recovery unit. The heating and cooling coils of the air 
handling unit (AHU) act as the interfaces between 
the water circuit and the air circuit. 

A boiler, a solar water collector and a VPV 
(Ventilated Photovoltaic) panel can be used as 
sources of energy to heat the system. The hot water 
stored in the tank can be heated by the boiler using 
purchased energy or it can be heated by the solar 
collector if the solar radiation and outdoor 
temperature permit. When the VPV is not used to 
heat the inlet air, it is also possible to use the VPV to 
heat the hot water through an air-to-water heat 
exchanger. The choice of heat source depends on the 
water temperature in the storage tank, solar collector 
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and VPV panel, along with the solar radiation, 
heating and cooling load and outdoor air temperature. 

A stratified hot-water storage tank is used for thermal 
storage.  

Active cooling is provided by a solar absorption 
chiller, which generates chilled water from the hot 
water in the storage tank. The cooling tower of the 
absorption chiller can also be used as a direct cooling 
source when the building needs cooling and the 
outdoor wet bulb temperature is low enough for 
evaporative cooling to be used. In evaporative 
cooling mode, a water-to-water heat exchanger is 
used to transfer heat directly between the chilled 
water and the water from the cooling tower, instead 
of using the absorption chiller for cooling.  

The system can operate in different modes according 
to the positions of the dampers and the use of the fans. 
For example, the main ventilation system can be run 
by turning on Fan 1 and Fan 2; or outside air alone 
can be supplied to the building through the fresh air 
heat recovery unit by turning on Fan 4. If the main 
ventilation mode is chosen, the inlet air can be 
preheated by the VPV panel, warmed by the heat 
recovery unit, heated by the AHU, or a combination 
of them, by selecting different positions of the 
dampers. The VPV unit can work in four modes: 
discharge mode, preheat mode, storage mode and 
bypass mode (Cartmell et al., 2004).  
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Figure 1 Water sub-system 
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Figure 2 Air sub-system 

An equation based simulation of the low-energy 
building is implemented in a Matlab/Simulink® 
environment. The simulation uses a simplified first-
order lumped-parameter room model , which is 
identified from measured data taken from the real 
building (Zhang & Hanby, 2006). Most of the 
equipment is modelled using component models 
from the library of an HVAC simulation toolbox 
(CSTB, 1998). The absorption chiller is modelled by 
fitting curves (Muneer & Uppal, 1985) to the 
manufacturer’s data (EAW, 2006). The expert rules 
are an extension of those used to control the heating 
only system studied previously (Zhang & Hanby, 
2006). A manual check was made to ensure that the 
rules are complete and consistent.  

TWO-STAGE OPTIMISATION 
Even after the control problem has been redefined 
and the output space has been greatly reduced, the 
optimisation search space is O(25)24 (the value when 
all of the control signals are assumed to be binary; 5 
is the number of outputs after redefinition; 24 is the 
number of the time steps), which is not feasible to be 
searched directly for optimal control commands. 
Besides, the simulation problem is stiff because some 
equipment has very small time constants compared to 
the building. The size of the search space, the 
nonlinearity of the system and the stiffness of the 
simulation result in an optimisation problem that 
exceeds the current capability of most computers. A 
method of simplifying the problem is needed. 

A two-stage optimisation scheme is proposed here to 
reduce the computational demands. Because the 
equipment can reach steady state much faster than 
the building, the control time step can be chosen so 
that the devices will have reached steady state at 
every step and the dynamics of building are 
represented adequately. On this time scale, the only 
linkage between the present and future is the energy 
stored in the building and the hot-water tank. One 
hour is often used as the time step by researchers for 
long term energy analysis of buildings (Braun, 1990, 
2003; Henze, 2005; Henze et al., 2004; Kintner-
Meyer & Emery, 1995; Nagai, 1999; Zhang & Hanby, 
2006). For short term device simulation, a 20 seconds 
time step is short enough. Thus the problem can be 
partitioned into maximizing the long term 
performance in terms of suitable sub goals and 
achieving the sub goals by optimizing the equipment 
control variables. The energy stored in the building 
and tank can be used as sub goals because they are 
the only linkages between the present and the future 
in the hourly analysis. Using this approach, the 
searching space of the problem can be reduced to 
O(224). 

MPC SCHEME 
The two-step optimisation is fast enough to be 
implemented online when the techniques described 
above are used.  A (Dynamic Programming) DP 
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algorithm uses the long-term information to calculate 
the optimum set points and a short-term optimisation 
program (and the local controllers) uses these set 
points together with the short-term information to 
determine the optimal mode of the operation of the 
equipment. The performance of this online 
optimisation based control scheme is compared to the 
performance of an expert rule based supervisory 
control scheme in the following part of this paper. 

Figure 3 is a block diagram of the online MPC 
control scheme. The feedback form the system is 
used to dealt with the uncertainty associated with the 
predictions. At every time step, only the first step in 
the optimal command trajectory is used. The 
optimisation runs once every hour with the updated 
long-term and short-term inputs and system state. 
This MPC based control scheme has been widely 
used by other researchers to study the optimal 
supervisory control problem of conventional building 
systems (Braun, 1990; Henze, 2003; Huang et al., 
2006; Zhang & Hanby, 2006). 
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Figure 3 A MPC scheme 
 

HFRC SCHEMES 

Non-adaptive HFRC scheme 

In the previous part, the online implementation of a 
dynamic optimisation based MPC control scheme 
becomes feasible by employing the two-stage 
optimisation approach. However, the computational 
demand of MPC is still high. It takes 2 minutes for a 
long-term optimisation and 10 minutes for a short-
term optimisation on a Pentium® 3.4GHz PC in 
Matlab/Simulink environment. Besides, the 
optimisation requires detailed models that generally 
take a long time to develop, which is often 
unacceptable in practical. On the other hand, fuzzy 
rule based controllers are widely used for systems 
with high uncertainties and can be interpreted 
linguistically. It should also be easier to adapt the 
rule base online rather than to identify an accurate 
system model online. 

However, since this task is a complex problem with a 
high dimensional input space, the number of rules is 
so large that the rules will be difficult to understand 
and generate. The inputs to the controller include the 
current state of the system, the current operating 
environment, as well as the future state and the future 

operating environment. Those inputs include time, 
date, occupancy load, building temperatures, tank 
water temperatures, outdoor dry bulb temperatures, 
outdoor wet bulb temperatures, and solar radiation. 
The results of simulation and optimisation are used to 
generate the fuzzy rules. Ideally, rules should be 
generated from optimisation results calculated for all 
combinations of values of the inputs at the centres of 
the input fuzzy sets, so that the accuracy of the 
consequence can be guaranteed for every possible 
input combination. In that case, even if it is assumed 
that each of the input variables is described by only 
three fuzzy sets, the total number of rules would still 
be extremely large (> 373) and the processing power 
required to generate them would far exceed that 
currently available. A hierarchical presentation of the 
fuzzy rules has been proposed to reduce the number 
of fuzzy rules and fuzzy decision tree has been used 
to study the sensitivity of rules further. In this way, 
the number of rules has been successfully reduced to 
less than 100 (Yu & Dexter, 2008). 
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Figure 4 A HFRC scheme 
 

As can be seen in Figure 4, the dynamic 
programming block in the MPC control scheme is 
replaced by the long-term fuzzy rule base, which is 
generated offline, and a short-term fuzzy rule base 
replaces the exhaustive search block in the MPC 
control scheme. By generating the fuzzy rules offline, 
the main computational demands are transferred from 
the online calculation to the offline optimisation. The 
employing of the hierarchical fuzzy rule 
representation make the offline generation of fuzzy 
rule base for a complex system feasible. 

Performance comparison 

The performance of the system is evaluated by a cost 
function Ri which takes account of both the energy 
consumption and the thermal comfort: 

iii tComfortCosEnergyCostR +=     (2) 

where, 
iEnergyCost  is the energy in kWh purchased 

from the supplier during the ith hour and 
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α is an application dependent comfort-to-energy 
conversion factor.  
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Three very cold days are chosen to show the 
differences in the behaviour of the three control 
systems in winter. Table 1 compares the comfort cost 
and energy cost of the three controllers over the three 
winter days. The ERC refers to the expert rule based 
controller. The HFRC outperforms the ERC in terms 
of both comfort and energy use although not as good 
as the MPC.  

As can be seen in Figure 5, the HFRC turns on the 
boiler to heat the hot water on most mornings no 
matter whether the water temperature in the hot water 
tank is low or high. This way of using boiler provides 
higher tank water temperature, which is essential to 
raise the room temperature in the cold mornings as 
quickly as possible. Similar decisions can also be 
found when the system is under control of the MPC. 
The benefit of this strategy can be seen is the lower 
comfort cost of these two control schemes in 
comparison with the ERC. 

The HFRC turns off the main ventilation system and 
uses only the dedicated ventilation system when the 
weather is warm and room temperature is higher, e.g. 
day 1 and 2. To make such a decision, the controller 
must consider the risk of discomfort if it turns off the 
main temperature control system. The expert rules 
are incapable of making such a decision. On the other 
hand, this kind of decisions is also frequently used by 
the MPC.  
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Figure 5 Comparison of room temperature, tank 
water temperature and energy consumption 

 

The simulation results show that the HFRC can 
handle the trade-off between the comfort and energy 
relatively well. The MPC generated the best results 
among the three but the decision of the MPC is very 
sensitive to the current building condition and 
weather information. The commands may vary a lot 
from day to day even if there are only small changes 
in the values of the inputs. In contrast, the behaviour 
of the HFRC is more regular and easier to understand 
and predict.  

There are large differences between the computing 
times required by the different approaches. The MPC 
has high computational demands associated with 
running the online optimisation. In contrast, the 
computational demand of HFRC is very low and the 
time required by the controller is negligible 
compared to the time required to run the building 
simulation. The high computational demands of MPC 
not only make the design and validation of the 
controller near impossible, but also increase the field 
cost of the control system and make the maintenance 
and tuning of the MPC based control system difficult.  

Table 1 
Performance comparison over a 72-hour period 

during winter  
 
 

Method ERC HFRC MPC 

Energy Cost (kWh) 656 574 540 

Comfort Cost (kWh) 416 317 63 

Total Cost (kWh) 1072 891 602 

Computing Time <120s <120s 5 hours 

 
 

HFRC scheme with online learning 

The redefinition of the input and output space and the 
adoption of a hierarchical fuzzy rule-base are very 
effective in reducing the number of fuzzy rules (Yu 
et al., 2007). The control task is divided into 
supervisory control and the local control. The 
supervisory control focus on define the longer term 
energy profile by deciding the room temperature set 
point (STroom), the tank water temperature set points 
(STtank) and the working mode of the plant (Mode). 
After simplification, the number of inputs used by the 
supervisor is reduced to five: time (Time), indoor air 
temperature (Troom), tank water temperature (Ttank), 
an estimate of the current temperature increase 
(DTnow), and an estimate of future temperature 
increase (DTfuture). Therefore, the problem can be 
reduced to a 5 inputs / 3 outputs problem (Yu & 
Dexter, 2008).  

Although the above simplification is successful in 
making the generation and implementation of a fuzzy 
rule based controller feasible, it is still impossible to 
adapt those fuzzy rules in the limited time that is 
available for the online adaptation. Even if every 

- 1565 -



input variable is described by only two fuzzy sets, 
there are still 25=32 rules and the correct values of 
Mode, STroom and STtank must be found for every 
single one of these 32 different input conditions. The 
problem is a mixed integer and nonlinear problem. If 
an exhaustive search is used, the time need to try all 
possible values of the outputs will be at least 25 
(Number of Rules)*8 (Number of Mode )*5 (Number 
of STroom)*5 (Number of STtank) days = 6400 days 
> 17 years.  

Hence, the direct use of Mode, STroom and STtank as 
actions will lead to a large learning space and long 
learning time that will make the problem infeasible. 
To accelerate the learning process, a new two-stage 
approach based on the use of an indirect learning 
variable is proposed. 

1. Use off-line optimisation to generate sets of 
supervisory rules for each of five different values of 
α (the Energy-Comfort trade-off parameter). Here the 
five values are chosen: 10, 50, 100, 150 and 200. 

2. Use the RL scheme to find the optimal value of α 
given the current state of the system and select the 
rules that produce the best performance from the five 
pre-generated rule bases.  

By changing the target of the learning from the rule 
consequences to a parameter representing the 
different rule bases, the learning time can be reduced 
significantly to 25*5=125 days. The structure of the 
proposed tuning process is shown in figure 6. 
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Figure 6 RL online tuning process with indirect input 

and output variables 
 

Tests are performed to see whether the algorithm can 
achieve better performance by tuning the energy-
comfort trade-off parameter α. A value of 200 is used 
for α when the “real” system is simulated. It 
represents the case when the occupancy is more 
concerned about the comfort than had been assumed  
when the controller was designed. 

Firstly, three of the five template fuzzy rule bases are 
used to control the simulated plant. The 
performances of the fuzzy rule bases are compared to 
that of an expert rule based controller in Table 2. It 
can be seen that the rules generated with the correct 
value of α  produce the best performance. However, 
the default rules still perform better than the expert 

rule based controller even when the design parameter 
of α is very different to the actual one. The rules of α 
=10 perform worst in the table. It is because they 
give a low priority to the comfort, which is not the 
case in the real situation.  

Table 3 gives the performances of the control policy 
after it has beeen updated using RL learning over 
different training times. Before the online learning 
process begins, the initial policy uses the rule base 
which is generated with an α value of 100. It can be 
seen that, at first, the performance improves as the 
agent continues to learn. The best performance is 
achieved after only three years. However, it is 
interesting to note that the policy after four years of 
training is not as good as the policy which only has 
three years of training.  

 

Table 2 
Performance of different rule set when α =200 is 

used to calculate the cost 
 

  
Comfort 

Cost 
Energy 

Cost 
Total 
Cost 

Cost/Cost
(α =100) 

Expert Rules 14836  5288  20123  158% 

Rules of α =10 68184  3395  71579  561% 

Rules of α =100 8230  4531  12761  100% 

Rules of α =200 2678  5186  7864  62% 

 
Table 3 

Performance of the updated control policy after 
different training time  

 

  
Comfort 

Cost 
Energy 

Cost 
Total 
Cost 

Cost/Cost
(α =100) 

After 1 year 3187  4786  11160  87% 

After 2 years 2057  4954  9069  71% 

After 3 years 1481  5200  8163  64% 

After 4 years 2750  5011  9511  75% 

 

Figure 7 shows the costs produced by the control 
policy for different years of training. The costs are 
normalized to the cost produced by the initial policy. 
After 3 years of training, the policy had already 
become 64% of the initial cost. From the third year to 
the twelth year, the cost oscillates between 60%-70%. 
It shows that the further training is unnecessary and 
the optimal learning time is two to three years. 

Figure 8 gives the average α value during different 
training periods. Because the comfort in the real 
building is more important than the designer 
estimated, online learning increases the frequency of 
using the rules that are generated with higher α 
values. This trend slows after three years and the 
average value of α begins to oscillate around a 
relatively constant value. 
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Figure 7 Relative cost of the control policy after on-
line training 
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Figure 8 Changing of the average α value 
 

DISCUSSION 
It is difficult to guarantee that a simulation of a 
building energy system is of good quality. An 
attempt was made to validate the simulation used 
here by comparing it to results presented in the 
literature.   Usually, only limited data can be found 
and the operation records are often incomplete. It is 
therefore nearly impossible to decide how reliable the 
simulation is under different operational and weather 
conditions. In addition, to describe the degree of the 
uncertainty associated with the simulation results is 
another near impossible task. 

The MPC approach produced very good performance 
results compared to the ERC approach because of its 
efficient use of the information provided by the 
building simulation (see table 2). When the models it 
used are of acceptable quality, the MPC approach 
also outperformed the HFRC approach although the 
HFRC approach is better than the ERC. However, it 
is extremely difficult to know whether the models are 
good enough. The uncertainty associated with the 
results of the simulation must be taken into account. 

On the other hand, a RL method can be used to tune 
the HFRC. Few candidate fuzzy rule bases of 
different possible building models are generated 
using building simulation. The RL agent learns 
online to find proper choice of the rule bases 
according to operational experience. The learning 
process is transparent and quick in comparison to the 
online identification of a complex system, which has 
large number of parameters to learn. 

CONCLUSIONS 
Different control schemes are designed tested and 
compared using computer simulation for a low-
energy building system. It has been shown that the 
building simulation can be used in different ways to 
construct different controllers for energy systems. 
The simulation results show that the  information 
provided by the computer simulation is essential for 
good performance of the controller. 

A MPC approach is designed by using the computer 
simulation online as the model of the controlled 
system to predict future response. The approach 
produces excellent performance if the building 
simulation is of reasonable quality. On the other hand, 
the computational demands, the black-box nature of 
the controller, and the reliance on an accurate 
simulation are inherent problems of the MPC 
approach. 

The proposed HFRC+RL approach uses the building 
simulation offline to provide initial knowledge about 
the operation of the low-energy system. The RL 
based online tuning of the controller enable the 
system to perform well although an inaccurate 
building simulation was used. This approach also 
requires very small computational demand and can 
be understood by domain experts because of its rule-
based presentation. 
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