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Abstract

Arti®cial neural networks (ANN's) are more and more widely used in energy management processes. ANN's can be very useful in

optimizing the energy demand of buildings, especially of those of high thermal inertia. These include the so-called solar buildings. For those

buildings, a controller able to forecast not only the energy demand but also the weather conditions can lead to energy savings while

maintaining thermal comfort. In this paper, such an ANN controller is proposed. It consists of a meteorological module, forecasting the

ambient temperature and solar irradiance, the heating energy switch predictor module and the indoor temperature-de®ning module. The

performance of the controller has been tested both experimentally and in a building thermal simulation environment. The results showed that

the use of the proposed controller can lead to 7.5% annual energy savings in the case of a highly insulated passive solar test cell. q 2000

Elsevier Science Ltd. All rights reserved.
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1. Introduction

The use of arti®cial neural networks in various applica-

tions related to the energy management has been growing

signi®cantly over the years. Current applications not only

are related to energy demand forecasting (Han, Xiu, Wang,

Chen, & Tan, 1997; Khotanzad et al., 1997), but also

include heating, ventilation and air conditioning systems

of buildings (Curtiss, Kreider, & Brandemuehl, 1993; Krei-

der, 1995). The results have revealed the potential useful-

ness of arti®cial neural networks for the energy management

of individual houses or small residential buildings (Bellas-

Velidis, Argiriou, Balaras, & Kontoyannidis, 1998; Kanar-

achos & Geramanis, 1998).

Arti®cial neural networks (ANN's) can be very useful in

optimizing the energy demand of buildings, especially those

having high thermal mass (and therefore an important time

constant) and systems that maximize the use of solar energy

for space heating. For the so-called solar buildings, a

controller being able to forecast the energy demand but

also the weather conditions can lead to energy savings,

while maintaining acceptable indoor conditions. The

controller decreases the potential of overheating, usually

observed in this type of building during days with highly

variable solar radiation availability and passive solar gains.

The aim of this paper is to investigate the performance of

ANN's, in order to control the indoor temperature of a solar

building. The following sections present an overview of the

design concept for the arti®cial neural network-based

controller and its theoretical and experimental performance

assessment.

2. Concept of the controller

Buildings consume about one third of the total ®nal

energy in the industrialized world, for heating, cooling,

ventilation, lighting and services. Therefore, worldwide

efforts have concentrated on developing new systems and

techniques to increase energy savings by the rational use of

energy in the building sector.

The controller presented in this paper is intended for

single-family solar houses. The term ªsolarº implies that

the house exhibits the following general characteristics,

compared to ordinary type of constructions:

² Reduced thermal losses, by improving the building

envelope thermal performance (i.e. increased thermal

insulation, double glazing, reduced air in®ltration).
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² Increased direct solar gains, through passive solar

features of glazed surfaces like windows and sunspaces,

that signi®cantly reduce the heating load by collecting

and storing solar thermal energy.

The energy consumption of a building to reach the desir-

able indoor thermal comfort conditions depends on the ther-

mal characteristics of its envelope and on the local climatic

conditions. However, not all the weather parameters have

the same impact on the heating energy consumption of a

building. Accordingly, the solar irradiance and the ambient

air temperature, rather than other weather parameters

mostly in¯uence solar houses, provided with the general

features described above.

Solar irradiance is a parameter that can vary signi®cantly

in time and space. The time scale of these variations can be

as short as of the order of some minutes. This variability is

usually observed during spring and autumn, depending on

the geographical latitude of the location. The majority of

heating systems in buildings operates by a simple thermo-

static control. This type of control can lead to overheating

periods during the day, since the controller can not forecast

neither the evolution of the weather conditions nor the reac-

tion of the building under a certain weather excitation. The

term overheating implies that the building indoor air

temperature exceeds the desirable thermal comfort levels

because of an increase of the solar heat gains. As a result,

there is a twofold negative impact causing indoor thermal

discomfort and energy waste from the operation of the heat-

ing system. Alternatively, a controller having the ability to

forecast, up to a certain extend, the weather parameters and

also their impact to the thermal behaviour of the building,

can reduce the energy required for maintaining the indoor

conditions within the thermal comfort zone. For example, if

properly accounted for, the predicted daily variation of solar

radiation availability in the morning can be used to control

the heating system in such a way as to avoid the anticipated

overheating in the afternoon. Neural networks exhibit

features that allow them to learn and reproduce the beha-

viour of data time series. This fact together with the adaptive

character of some of the ANN's provides them with the

necessary features that an intelligent controller should

have, that is achieve rational use of energy while maintain-

ing thermal comfort.

Having in mind that a controller to be widely used must

be reasonably priced, it has to have the strict minimum of

input requirements. Accordingly, the input parameters for

the new controller were selected to include the solar irradi-

ance (Sr), the ambient temperature (To), and the indoor

temperature (Ti), as illustrated in Fig. 1. These inputs are

measured in regular time intervals, set at 15 min. This time

interval allows the controller not to loose information even

in the case of a fast responding building. Based on the values

of the input parameters at a given time step and their history,

the controller output is an estimate of the status (ON or

OFF) of the heating energy system required by the building

during the next time interval. The controller optimally (e.g.

by minimizing some cost function (Cf) maintains the Ti

within the thermal comfort zone set by the user. An example

of such a cost function is linear combination of the energy

savings achieved and the thermal comfort obtained.

This paper presents the design and test results of an arti-

®cial neural network controller for a simple ON/OFF elec-

trical heating system. The controller has a modular structure

A.A. Argiriou et al. / Neural Networks 13 (2000) 811±820812

Nomenclature

Cf cost-function

Ea ®nal status (ON or OFF) of the heating energy system

Es heating energy system status prediction from the inverse model

Nd day of the year

Nh hour of the day

Sr global solar irradiance

Ti indoor air temperature

To ambient air temperature

Ts indoor air temperature setpoint

dT allowed maximum deviation for Ts

Superscripts

1 forecasted value

Fig. 1. Solar house heating system controller set-up (Cf: cost function; Ts:

indoor air temperature set-point; Nh: hour; Nd: day of the year; To: ambient

air temperature; Sr: Solar irradiance; Ti: indoor air temperature; E1
a : heating

energy required during the next time period).



illustrated in Fig. 2, with separate modules to perform the

various required tasks. Two modules perform the weather

forecasting; one predicts the Sr and the other the To, using

the values of these parameters at the previous time steps and

parameters characterising the speci®c time interval (hour

Nh, and day Nd).

A third module predicts the ON/OFF operation status of

the heating system, Es. It uses as inputs the measured actual

and the last six time-steps values of the solar irradiance,

ambient and indoor temperature, and status (on or off) of

the heating system. This module is trained to act as the

inverse model of the system, i.e. the combined thermal

behaviour of the building and the electrical heater. This

module forecasts if during the next time step, depending

on the values of the aforementioned parameters, the elec-

trical heaters will be set on or off.

The parameters Sr, To, and Es predicted by the above three

modules and their corresponding past values, as well as the

past Ti and Ea are passed to the fourth module that estimates

the indoor temperature Ti for the next time step. This module

is the internal model of the system.

These four modules are created by applying an Arti®cial

Neural Network (ANN) algorithm, namely the Feed

Forward Back Propagation (FFBP) model. Supervised train-

ing with the method of Back Propagation with Momentum

Term was used. The various ANN modules were developed

under the Stuttgart Neural Network Simulator software

package (Zell et al., 1995).

The last module de®nes the ®nal output from the control-

ler to the heating system, that is the Ea ON/OFF switch

position. The module uses the last and the predicted values

(Ti, Es) for the controller to decide on the next status Ea. The

decision is taken by applying the following simple logic

rules:

If Es1 � OFF and Ti1 , Ts 2 dT then Ea1 � ON

If Es1 � ON and Ti1 . Ts 1 dT then Ea1 � OFF

In all other cases Ea1 � Es 1 :

There is one additional module (not shown in Fig. 2) that

performs the necessary I/O functions and internal buffering

of the parameters. The input gives the last time interval

parameters, whereas the buffer keeps the six previous inter-

vals values, and the output is the control action for the next

time step (Fig. 3).

It should be noted that numerical test, during the devel-

opment of the various modules showed that a one-step

ahead forecast is satisfactory for the performance of the

particular controller. This was con®rmed during the in situ

experimental testing of various controller versions.
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Fig. 2. The modular structure of the developed ANN controller. (Sr: solar irradiance; Nh,d: Day and hour; To: ambient air temperature; Ti: indoor air

temperature; Ea: heating energy required by the building; Ts: indoor air temperature set-point; Cf: cost function; Es: operation status of the heating system.

The symbol (1) on the exponent of the above values, denotes their predicted values for the next time step).

Fig. 3. De®nitions of the input/output data sequences.



3. Arti®cial neural network modules

3.1. Weather forecasting

The module forecasting the outdoor temperature uses a

simple ANN. It has 10 input neurons, one hidden layer of

eight and another of four neurons, and one output neuron.

The inputs to this ANN are:

N�11�
h the (daily normalised) time value for the next

interval;

T �0;21;22;23�
o the last and three previous values of the

outdoor temperature;

N�11�
d the (yearly normalised) day number for the next

interval;

S�0;21;22;23�
r the last and three previous values of the solar

irradiance.

Hourly values are normalised by dividing them by 24 and

the day number values by 365. Also all other parameters are

normalised to ®t in the interval [0,1].

The output is the one-step ahead prediction DTo �
T �11�

o 2 T �0�o This is the outdoor temperature difference for

the next time step. This ANN was trained using part of real

meteorological data for 1993 in Athens, Greece, collected

by the National Observatory of Athens. The rest of the data

were used for veri®cation during the training. Additional

data for three years, from 1994 to 1996, were also used in

off-line tests.

The solar irradiation forecast module uses similar FFBP

architecture and training procedure, but the number of

neurons is higher due to the more complicated behaviour

of this parameter. Also, test showed that the ANN performs

better when including time delay values for Nh and Nd. The
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Fig. 4. Results of the off-line tests for the forecasting of solar irradiance (Sr) and ambient temperature (To). (a) Measured values; (b) Error in To; (c) Error in Sr.



ANN has 28 input neurons, one hidden layer of 16 and

another of eight neurons, and one output neuron. The inputs

are the last and six previous values of the following para-

meters:

N�0;21;22;23;24;25;26�
h daily normalized time;

T �0;21;22;23;24;25;26�
o ambient temperature;

N�0;21;22;23;24;25;26�
d day of the year;

S�0;21;22;23;24;25;26�
r solar irradiance.

The output is the one-step ahead prediction

DSr � S�11�
r 2 S�0�r , that is the difference of the global

solar irradiance for the next interval.

The training/veri®cation/testing of this ANN were

performed using the respective data of the same time series

as for the ambient temperature forecasting module.

Representative test results of the two modules are shown

in Fig. 4. The difference between the real and the forecasted

(one-step ahead) outdoor temperature rises up to 1 K in just

a few cases (Fig. 4b). However, the prediction of solar irra-

diance is not so accurate. The difference (Fig. 4c) shows a

correlation with the hour of the day, the differences being

important at low solar angles, i.e. close to sunrise and

sunset. The prediction error is about 10±20% for clear sky

days. It should be noted that in any case most building

apertures would not even see the sun at these times so the

errors do not affect the controller much.

Given the limited number of input parameters of the

proposed controller, the performance of the weather fore-

casting modules can be considered acceptable, especially

when compared with results from previous works. Santa-

mouris, Mihalakakou, Psiloglou, Eftaxias, and Asimako-

poulos (1999) for example use an ANN model with a

considerably higher number of inputs, i.e. ambient air

temperature, ambient relative humidity, sunshine duration

and extraterrestrial irradiance. Despite the complexity of

their con®guration, they report errors up to 14%.

In addition, the on-line tests under real operating condi-

tions, discussed in Section 4, demonstrate that the indoor

temperature responds slowly to abrupt weather changes.

Therefore, the prediction errors of solar irradiance do not

jeopardise the overall performance of the controller.

3.2. The heating energy predictor module (inverse model)

This module is implemented by modifying the previously

investigated heating energy predictor (Bellas-Velidis et

al., 1998). This ANN has 35 input neurons, one hidden

layer of 15 neurons and an output layer of one neuron.

The data set used to train/verify/test this ANN was

prepared with the TRNSYS (a building thermal simula-

tion software) model of the PASSYS Test Cell and

weather data described above. The inputs to the ANN

module are the previous and last six values of the

following parameters:

N�0;21;22;23;24;25;26�
h daily normalized time;

S�0;21;22;23;24;25;26�
r solar irradiance;

T �0;21;22;23;24;25;26�
o ambient temperature;

T �0;21;22;23;24;25;26�
i indoor temperature;

E�0;21;22;23;24;25;26�
a real status of the heating system.

The single output is one-step ahead prediction E�11�
s

of the heating system status for the next time step.

3.3. The indoor temperature-de®ning module (internal

model)

It is an internal model of the system, i.e. it provides the

indoor temperature (Ti) for a given time step. For this, it uses
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the values of the external parameters (To, Sr, Ea) acting

on the system at the current and at previous intervals, as

well as the previous internal state. The ANN used in

this module has 12 input neurons, two hidden layers,

the ®rst of 12 and the second of six neurons, and one

output neuron. The data used to train/verify/test this

ANN module was taken from real measurements on

the PASSYS Test Cell (Vandaele & Wouters, 1994).

The data were collected during a two-month period

(January 1st to February 28th, 1999).

The inputs of this ANN-based internal model are:

S�11�
r solar irradiance at the next time step (predicted);

T �11�
o outdoor temperature at the next time step

(predicted);

E�11�
s heating system status at the next time step

(predicted);

DS�11�
r � S�11�

r 2 S�0�r predicted difference in solar

irradiance;

DT �11�
o � T �11�

o 2 T �0�o predicted difference in the outdoor

temperature;

DE�11�
a � E�11�

a 2 E�0�a predicted change in the status of

the heating energy system;

T �n�0;21�
i the last and the previous values of indoor

temperature;

DT �0�i � T �0�i 2 T �21�
i last difference of the outdoor

temperature;

DS�0�r � S�0�r 2 S�21�
r last difference of solar irradiance;

DT �0�o � T �0�o 2 T �21�
o last difference of the outdoor

temperature;

DE�0�a � E�0�a 2 E�21�
a last difference in the heating system

status;

E�0;21;22;23;24;25;26�
a last and six previous values of the

heating system status.

A.A. Argiriou et al. / Neural Networks 13 (2000) 811±820816

Fig. 5. Of¯ine test results for the forecasting of the indoor temperature.

Fig. 6. The PASSYS test cell: outdoor view of the cell (left) Ð indoor test room (right).



The single output is the one-step ahead prediction of the

indoor temperature difference for the next time step, DTi �
T �11�

i 2 T �0�i :

The of̄ ine tests showed very good performance of the

ANN-based internal model. Using real data, the difference

between the indoor temperature given by the ANN-module

and the real one (illustrated in Fig. 5, but note that the

difference is shifted to 358 for illustration purposes) shows

an error of about ^0.2 K.

4. Controller implementation and on-line tests

The prototype neural controller has been tested in the

PASSYS test cell, located at the premises of the National

Observatory Athens in Pendeli. The experimental facility is

shown in Fig. 6. The test room is heated via an air heating

system that has four electric resistances and a fan. During

the actual operation mode, a controller activates or deacti-

vates these resistances. The thermal mass of the test cell was

altered in order to perform the experiments under more

realistic conditions.

The data acquisition system was connected to the follow-

ing sensors:

² Seven Pt 100 platinum resistance thermometers measur-

ing the indoor temperature at various points inside the

test room.

² One Pt 100 thermometer measuring the ambient tempera-

ture. All the thermometers are shielded against radiation.

² A CM3 Kipp and Zonen pyranometer, measuring the

global horizontal solar radiation on top of the test cell.

For the needs of the current experiment, the data acquisi-

tion system controls also the heating system. All sensors are

interrogated every minute and 15-min averages are stored

and fed to the neural controller. The controller then decides

whether the heating system should be activated or not. The

data acquisition system records also the controller decision,

the status of the switch that activates the heating system and

the energy consumed by the heating system. The acquisition

of all these parameters allows the detection of possible fail-

ure of the hardware to follow the instructions of the control-

ler (this event occurred only twice within an almost three-

month testing period and was due to power failure).

The data acquisition and control (DAC) is programmed

for the above-described tasks, using an object oriented

programming software. This software allows the user to

easily implement other custom made applications. The

controller was implemented by translating the controller

algorithms into a C-code. The DAC software launches the

executable of this code every 15 min. The acquired data is

provided as an input to the controller code. The result of the

controller activates a switch that turns the power supply of

the electrical resistances on or off accordingly.

All the described ANN modules (see Section 2) are indi-

vidual routines, called by a main program. A very helpful

feature for this case is the ability of the Stuttgart Neural

Network Simulator to transfer the trained neural networks

in the form of C-functions. Without applying any optimisa-

tion of the code, the size of the executable is 233 KB. It

executes almost instantly giving the necessary output.

The controller was tested in situ for three months (from

December 22nd 1998 to March 30th 1999). Part of the

obtained results is shown in Fig. 7. This ®gure shows the

variation of the indoor and ambient temperature, solar irra-

diance and the status of the heating system (ª9º indicates

that the heating system is ON and ª1º that the system is
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Fig. 7. Results of the in situ testing of the ANN controller (Heating System Status: 1 � OFF; 9 � ON�:



OFF). The desirable indoor temperature range was set at

18±208C. Accordingly, one can conclude that the developed

controller maintains well the indoor temperature within the

desired interval. Although the forecasts of the ambient

temperature and solar radiation are not so accurate, as

discussed in Section 3.1, the impact on the performance of

the controller is not signi®cant, since the set temperature

range is maintained.

5. Off-line performance assessment

The performance of the neural controller over a

complete heating season and its comparison with a

conventional controller was performed via numerical

simulation. The thermal performance of the PASSYS

test cell was simulated using the well-known transient

simulation code for solar systems and buildings,

TRNSYS (Klein, 1994). The advantage of TRNSYS is

its modularity. It is therefore possible to create a new

routine with the ANN controller algorithms and apply it

to the heating system of the cell. The simulation time

step is identical to the actuation interval of the control-

ler (i.e. 15 min). The meteorological data used is the

Typical Meteorological Year for Athens, Greece (Argir-

iou et al., 1999). Two annual simulations were made:

one assuming that the temperature inside the test cell

has to be maintained within the range 18±208C by a

conventional controller and a second during which the

temperature is kept within the same range using the
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Fig. 8. Test cell performance simulation with the ANN controller.

Fig. 9. Test cell performance simulation with the conventional controller.



ANN controller. The goal of these simulations is to test

whether the implementation of the ANN controller

reduces the energy consumption, while maintaining the

indoor temperature within the desirable range.

Fig. 8 shows the indoor temperature variation for the ®rst

four simulation days (solid black line) with the ANN

controller. The dashed line shows the variation of the global

solar irradiance on a horizontal plane and the grey line

shows the status of the heating system of the cell (ª0º indi-

cates that the heating system is OFF and ª25º that the

system is ON). Fig. 9 shows the corresponding data using

the conventional controller for the simulation.

The comparison of the two ®gures leads to the following

observations:

1. In both cases the lower set point of 188C is well main-

tained.

2. Although the conventional controller stops the heating

system at 208C, the indoor temperature always exceeds

this value. This is due to the fact that the conventional

controller cannot predict and therefore it does not take

into account the thermal inertia of the test cell. In some

cases, the indoor temperature exceeds 218C, even at

times when solar irradiance is zero or very low. The

neural controller switches-off the heating system at

about 198C, when the solar irradiance is zero or very

low, ªknowingº that the temperature will increase to

the upper set-point of 208C, due to the thermal inertia

of the system. When the ANN controller forecasts also

the increase of solar radiation, it might stop the heating

system even at 18.68C.

3. The conventional controller maintains the heating system

on for about three time steps (i.e. 45 min in average),

while the ANN controller does the same for about two

time steps in average.

The above observations explain why the ANN controller

can reduce heating energy consumption. Simulations

showed that the total annual energy consumption of the

test cell is 771 MJ with the conventional controller and

713 MJ with the ANN controller. Accordingly, the use of

the neural controller can lead to a 7.5% decrease of the

annual heating energy consumption of the PASSYS

test cell.

The controller has been designed for solar buildings, i.e.

for buildings that have large south oriented openings and a

signi®cant thermal mass. However, these kinds of features

are also characteristic in many Southern European build-

ings. Surveys for the heating energy consumption in real

buildings have shown that the average annual value is

about 300 MJ m22. Assuming that a single house has an

average ¯oor surface of 150 m2 and that the neural control-

ler would result to the same percentage of energy savings as

for the test cell, this leads to a reduced annual heating

energy consumption of about 3.4 GJ. Taking into account

that the European average electricity tariff for domestic use

is about 0.18 Euro kWh21, this leads to a payback period of

the complete system in about 4 years. This payback period

is of the same order of magnitude as that of various

proposed retro®t actions, for energy savings in buildings.

Accordingly, it can be justi®ed that the proposed controller

can be also cost effective.

6. Conclusions

Experimental analysis and numerical simulations have

shown that arti®cial neural networks can be used for a better

control of the heating system in solar houses. In order to

produce a low cost system, the number of input parameters

was kept to a minimum and limited to the indoor and ambi-

ent temperature and horizontal solar irradiance. However,

the resulting annual energy savings can be signi®cant. This

is due to the fact that the forecasting capabilities of neural

networks, related to both the weather parameters and the

thermal behaviour of the building, allow the shut down of

the heating system prior to the actual overheating period,

thus achieving optimum energy use. The application of this

technique for the control of hydronic heating systems in

individual houses appears to also be promising, but needs

a similar analysis to quantify the anticipated results.
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