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Abstract

An artificial neural network (ANN)-based controller for hydronic heating plants of buildings is presented. The controller has forecasting

capabilities: it includes a meteorological module, forecasting the ambient temperature and solar irradiance, an indoor temperature predictor

module, a supply temperature predictor module and an optimizing module for the water supply temperature. All ANN modules are based on

the Feed Forward Back Propagation (FFBP) model. The operation of the controller has been tested experimentally, on a real-scale office

building during real operating conditions. The operation results were compared to those of a conventional controller. The performance was

also assessed via numerical simulation. The detailed thermal simulation tool for solar systems and buildings TRNSYS was used. Both

experimental and numerical results showed that the expected percentage of energy savings with respect to a conventional controller is of

about 15% under North European weather conditions.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The range of applications of artificial neural networks

(ANNs) is constantly increasing. Their use in applications

related to energy management started in the early 1990s.

Kalogirou (2001) provides a comprehensive overview of

ANN applications in renewable energy systems and in

buildings. ANNs appear to be particularly suited to control

the heating systems of solar buildings. The thermal

behaviour of solar buildings is mostly influenced by the

solar irradiance and ambient temperature and it involves

large time constants. Therefore, a controller having the

ability to forecast up to a certain horizon these weather

parameters and also their impact to the thermal behaviour of

the building can reduce the energy required for maintaining

the indoor conditions within the comfort zone.

The need of forecasting is shown in Fig. 1 (Kummert,

2001), showing the typical behaviour of a building with

important solar and internal heat gains, during a sunny mid-

season day. This situation can be encountered in a passive

solar building or a modern commercial building with large

south-facing windows. If there is no cooling plant, over-

heating can occur during a sunny afternoon, despite the fact

that heating has been required in the morning. If overheating

occurs then it is too late to take a control decision for the

heating plant: the heat stored in the building structure cannot

be removed. A reduction of energy consumption would have

certainly been achieved if the temperature rise had been

forecasted, in order to prevent unnecessary heating during

the morning hours.

Argiriou, Bellas-Velidis, and Balaras (2000) presented

an ANN controller for buildings with such forecasting

capabilities. It consisted of a meteorological module,

forecasting the ambient temperature and solar irradiance, a

heating energy predictor module and the indoor tempera-

ture-defining module. The controller was applied to a simple

ON/OFF electrical heating system. The performance of
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the controller was tested experimentally, in the PASSYS

outdoor test facility (Vandaele & Wouters, 1994) and in a

building thermal simulation environment. It was found that

when applied to the PASSYS test building cell, a 7.5%

decrease of the annual heating energy consumption was

achieved, under the weather conditions of Athens, Greece.

The usefulness of that work was mainly to demonstrate the

feasibility and the importance of forecasting capabilities of a

heating system controller. In practice the applications of

such ON/OFF control devices are limited, since the majority

of residential buildings use hydronic heating plants. There-

fore, it would be interesting to extend the above control

concept to hydronic heating systems too. Kanarachos and

Geramanis (1998) proposed an ANN for the control of

single zone hydronic heating systems. The inputs and

outputs of this controller included parameters related to the

heating plant and the indoor set-point temperature. No

forecasting of either weather parameters or indoor con-

ditions was performed.

The present paper describes the further development of

the concept proposed by Argiriou et al. (2000) and its

application for the control of hydronic heating systems. The

controller was realized and tested experimentally in two

rooms of an office building. The following sections present

the design concept of the controller and its performance

assessment—experimental and in simulation environment.

The structure and the development of the controller is

presented in Section 2. Section 3 describes the criteria

applied for the performance assessment of the controller.

The performed experiments and their results are described

in Section 4. Since the experimental period could not cover

the complete operating season of the heating plant of a

building, numerical simulations were required in order to

assess the annual behaviour of the system. The simulation

results are presented in Section 5. The conclusions of this

work are given in Section 6.

2. Description of the controller

The inputs to the controller are: Nd (yearly normalized),

day number (1–365); Nh (daily normalized), hour (1–24);

Tamb; ambient air temperature; Gs; solar irradiance on the

south vertical plane (i.e. solar radiation impinging on a

south facing vertical plane); Ti; indoor air temperature; Ts;

water supply temperature (temperature of water supplied to

the radiators by the boiler of the heating plant); Tr; water

return temperature (temperature of water returning to the

boiler). The controller aims to maintain the indoor

conditions as defined by the user via some cost function

ðJÞ and the indoor air temperature set-point ðTuÞ: The set-up

of the controller and its modular structure are shown in

Fig. 2. It includes a meteorological module, forecasting the

ambient temperature and solar irradiance, an indoor

temperature predictor module, a supply temperature pre-

dictor module and a supply temperature optimizing module.

This last module calculates the final output from the

controller to the heating system, i.e. the forecasted water

supply temperature for the next time step, taking into

account the user set point, Tu and the requirements for

energy savings as given by the cost function J: The

controller operates with a 15-min time step.

Supervised training with the method of Back Propagation

with Momentum Term was used. The various ANN modules

were developed under the Stuttgart Neural Network

Simulator software package (Zell et al., 1995). The various

modules were optimized via extensive off-line training.

The optimization procedure included the selection:

Fig. 1. Typical passive solar building behaviour on a sunny day.
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Fig. 2. Flow chart of the ANN controller: (a) weather forecasting, (b) prediction of heating system supply temperature, (c) prediction of indoor temperature,

(d) optimization of heating system supply temperature.
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(i) Between two classes of ANN architectures that are well

suited for the task of predicting the heating energy demand,

namely the Time Delay Neural Network and the Feed

Forward Back Propagation (FFBP). The FFBP model

(Kartalopoulos, 1996) was selected for all modules of the

controller, since it showed a lower prediction error and a

more stable error development in ANN training. (ii) The

selection of the appropriate number of layers (input, hidden

Fig. 2 (continued )

Table 1

Hydronic ANN controller: modules, input and output parameters (The architecture of each ANN is also defined (Example: i18 h32 h32 o4 ¼ 18 input units

followed by 32 hidden units followed by 32 hidden units followed by four output units))

Gs i18 h32 h32 o4 Solar irradiation forecasting ANN-module

Input Nð0Þ
h (Daily normalized) time value for the last time step

Input Nð0Þ
h (Yearly normalized) day number for the last time step

Input T ð0;21;22;…;27Þ
amb Last and seven previous values of the ambient temperature

Input Gð0;21;22;…;27Þ
s Last and seven previous values of the solar irradiance

Output Gðþ1;þ2;þ3;þ4Þ
s Solar irradiance for the next four time steps

Tamb i18 h32 h32 o4 Ambient temperature forecasting ANN-module

Input Nð0Þ
h (Daily normalized) time value for the last time step

Input Nð0Þ
h (Yearly normalized) day number for the last time step

Input T ð0;21;22;…;27Þ
amb Last and seven previous values of the ambient temperature

Input Gð0;21;22;…;27Þ
s Last and seven previous values of the solar irradiance

Output T ðþ1;þ2;þ3;þ4Þ
amb Ambient temperature for the next four time steps

Ts i52 h32 h32 o12 Supply temperature predicting ANN-module (inverse model)

Input T ð0;21;22;…;27Þ
amb Last and seven previous values of the ambient temperature

Input Gð0;21;22;…;27Þ
s Last and seven previous values of the solar irradiance

Input T ð0;21;22;…;27Þ
i Last and seven previous values of the indoor temperature

Input T ð0;21;22;…;27Þ
s Last and seven previous values of the supply temperature

Input T ð0;21;22;…;27Þ
r Last and seven previous values of the return temperature

Input T ðþ1;þ2;þ3;þ4Þ
amb Ambient temperature for the next four time steps

Input Gðþ1;þ2;þ3;þ4Þ
s Solar irradiance for the next four time steps

Input T ðþ1;þ2;þ3;þ4Þ
u User set temperature for the next four time steps

Output T ðþ1;þ2;þ3;þ4Þ
s Supply temperature for the next four time steps

Output T ðþ1;þ2;þ3;þ4Þ
r Return temperature for the next four time steps

Output Dðþ1;þ2;þ3;þ4Þ
t Difference between the supply and the return temperature

Ti i56 h32 h32 o4 Indoor temperature predicting ANN-module (internal model)

Input T ð0;21;22;…;27Þ
i Last and seven previous values of the ambient temperature

Input Gð0;21;22;…;27Þ
s Last and seven previous values of the solar irradiance

Input T ð0;21;22;…;27Þ
i Last and seven previous values of the indoor temperature

Input T ð0;21;22;…;27Þ
s Last and seven previous values of the supply temperature

Input T ð0;21;22;…;27Þ
s Last and seven previous values of the return temperature

Input T ðþ1;þ2;þ3;þ4Þ
amb Ambient temperature for the next four time steps

Input Gðþ1;þ2;þ3;þ4Þ
h Solar irradiance for the next four time steps

Input T ðþ1;þ2;þ3;þ4Þ
s Supply temperature for the next four time steps

Input T ðþ1;þ2;þ3;þ4Þ
r Return temperature for the next four time steps

Output T ðþ1;þ2;þ3;þ4Þ
i Indoor temperature for the next four time steps
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and output) for each module and the error development

when performing predictions for several steps ahead. The

finally adopted modules, their inputs and outputs are shown

in Table 1.

The data required for the off-line training of the

controller were produced using the TRNSYS simulation

code (Klein et al., 1994). This software allows the thermal

simulation of buildings and of their heating, ventilation and

air conditioning equipment. The simulation code was used

in order to model the experimental solar house and its

hydronic heating plant, belonging to the Institut fur

Solarenergieforschung GmbH, Hameln, Germany (Argiriou

& Bellas-Velidis, 2000). The simulation results produced,

using real weather data from the area of Hannover,

Germany, were used for the training and validation of the

produced ANN controller.

Fig. 3 shows the difference between the supply

temperature of the heating plant as calculated by the ANN

controller minus the ‘real’ (i.e. simulated) value. It can be

seen that the ANN controller is able to accurately calculate

the required supply temperature in general. Some points,

however, show important discrepancies. These occur during

daytime and in cases when the meteorological module

cannot predict fast variations of solar irradiance, like in

cases of clouds passing in front of the sun. However, the

average temperature difference equals 20.13 ^ 0.56 K.

3. Performance criteria

For the performance assessment of a water supply

temperature controller of a hydronic heating plant, several

criteria should be taken into account like thermal comfort,

operating costs and also environmental concerns (pollution

due to energy consumption, etc.). In optimal control theory

the above are combined in a so-called ‘cost function’ for

which a minimum is sought (Bryson & Ho, 1981). For the

purposes of the present work, this cost function is chosen as

an expression of the trade-off between thermal comfort and

energy consumption

J ¼ aJd þ Je ð1Þ

with Jd; the discomfort cost function; Je; the energy cost

function; a is the weighting factor between energy and

comfort.

The chosen indicators for thermal comfort are the widely

accepted ‘Predicted Mean Vote’ (PMV) and the ‘Predicted

Percentage of Dissatisfied’ (PPD) introduced by Fanger

(1972). The PMV is an estimation of the average vote of a

large group of persons subjected to a given thermal

environment, if they are asked to rate it using a scale

ranging from 23 to 3 (23 if too cold, 0 if neutral and 3 if

too hot). The PPD is an estimation of the percentage of

occupants who would not be satisfied by the thermal

environment.

The above indicators depend on six environmental

parameters, namely the air temperature, mean radiant

temperature, air velocity, relative humidity, specific meta-

bolic activity and the clothing thermal resistance. In the

discomfort cost, PPD is calculated with default values for

non-simulated parameters (air velocity, relative humidity

and metabolic activity). Furthermore, it is assumed that the

occupants can adapt their clothing to the zone temperature.

These indicators allow modelling a comfort range within

Fig. 3. Difference between ‘real’ water supply temperature and value calculated by the ANN.
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which the occupants are satisfied. With the selected

parameter values, the comfort zone covers operative

temperatures (i.e. a weighted sum of air and mean radiant

temperature; this is closer to the comfort feeling than the

air temperature alone (Athienitis, 1991)) between 21 and

24 8C. The PPD is also shifted down by 5% in order to give a

value of 0, since according to its definition, the minimum

value of PPD is 5% (Fanger, 1972). Thus, the discomfort

cost is:

Jd ¼
ð
ðPPD 2 5%Þ ð2Þ

The energy cost is considered to be proportional to the

energy consumption of the boiler ðQbÞ :

Je ¼
ð

_Qb ð3Þ

This is simply the energy consumption, expressed in

kilowatt-hour.

4. Experimental tests

The controller was experimentally tested at the passive

solar office building of the Fondation Universitaire

Luxembourgeoise, Arlon, Belgium. Two offices of 30-m2

floor area each and the adjacent south facing sunspace were

selected for these tests. The sunspace is 1 m deep and totally

glazed. It is separated from the offices by a mass wall (25-

cm thick heavy concrete) including 10 m2 internal windows.

The offices have also 2 m2 external windows in the roof,

which can be operated by the occupants. The heating system

includes a boiler, a three-way valve and a radiator. The

control variable is the water supply temperature Tws:

The controlled variable is the operative zone temperature

in the offices ðTopÞ:

The ANN controller was compared to a conventional

existing controller. The latter is a classical feed-forward

controller (PID) based upon the ambient temperature, which

adapts the supply temperature by means of a three-way

valve according to a value calculated by the ‘heating curve’.

The ANN controller was implemented in a non-intrusive

way in order to allow an easy fallback solution if needed.

For this reason ambient (external) temperature sensor of the

conventional controller was removed and replaced by a

software sensor representing the fictitious ambient tempera-

ture corresponding to the optimized supply temperature as

calculated by the ANN controller. This fictitious tempera-

ture is calculated from a reverse use of the heating curve

(Fig. 4). Tws is the set point for the water supply

temperature. The software sensor is implemented through

a voltage-controlled resistor (a JFET transistor). The control

voltage (which fixes the resistance value) is applied by a

conventional AD/DA board installed on the personal

computer.

The two controllers were not tested in parallel but in

different time periods, since only one controller can be

implemented to the hydronic system. Traditional heating

control strategies include a feed-forward action on water

supply temperature by the so-called ‘heating curve’ and a

feedback action on water flow rate by a thermostatic valve.

Two heating curves are used for ‘day’ (occupied building)

and ‘night’. The heating curve gives the value of Tws as

Fig. 4. Physical implementation of the ANN and conventional controllers.
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a function of the ambient temperature, Tamb:The value of Tws

for a given Tamb is calculated using the static properties of the

building. The desired temperature in the reference zone

(15 8C during night time, 21 8C during daytime) should be

maintained if the building was subjected to the given ambient

temperature for a long period, without any solar radiation.

In common practice, the ‘day’ heating curve is slightly

overestimated in order to allow a faster warm-up of the

building, while the ‘night’ heating curve can be slightly

underestimated in order to take into account the dynamic

behaviour (the initial building temperature is always higher

than the desired value).

Thermostatic valves are traditionally combined with

heating curves. These valves can reduce the flow rate in

the radiators in order to prevent overheating. The role of

the valves is thus very important since neither the

internal gains nor the solar radiation are taken into

account by the heating curve. The thermostatic valves

have a proportional band of 2 8C and a hysteresis of

0.5 8C, which is representative of commercially available

models. The valve temperature depends on the zone

temperature but also on the water supply and radiator

temperatures. This problem is taken into account by the

model used in the simulations (IEA, 1988). The valves

are supposed to be maintained at the desired ‘Day’ set

point all the time. Switching between ‘Day’ and ‘Night’

heating curves is decided according to a fixed schedule

throughout the heating season.

A summary of the climatic conditions, energy

consumption and comfort during the testing periods the

conventional and the ANN controller is shown in Table 2.

It can be seen that although the weather conditions were

in average much colder when the ANN controller was

tested, the energy consumption is practically identical to

the one when the conventional controller was used, with

much better comfort results. As shown also in Table 2,

the average measured heating power over a two-week

period using the conventional controller was found to be

0.422 kW. The use of the ANN controller over a similar

(cold and sunny) two-week period required 0.345 kW.

Therefore the ANN controller achieved in average about

18% energy savings.

Fig. 5 shows two-day typical profiles of a series of

variables during the operation of the ANN controller. These

variables are: operative temperature in the two offices ðTopÞ;

water supply temperature ðTwsÞ; water return temperature

ðTwrÞ; ambient temperature ðTambÞ and the solar irradiance

on the south vertical plane ðGsouthÞ: Grey rectangles

represent the comfort temperature range (21–24 8C) during

the occupancy period of the building (08:00–18:00). The

discomfort cost is zero in this temperature range. The lower

light grey rectangles indicate the zone where the comfort is

still very low (i.e. 0.5 8C below the lower limit or above the

upper limit).

From these graphs it can be seen that the operative

temperature is within the comfort range (darker grey

rectangle) during the occupancy period of the building

except at the very beginning of this period, where the

temperature reached the zone of very low discomfort cost

(light grey area). The second day shows that the ANN

controller is able to react to sunshine to prevent

overheating.

5. Simulation results

The performance of the ANN controller over a complete

heating season and its comparison with a conventional

controller was performed using the detailed thermal

simulation code TRNSYS (Klein et al., 1994), combined

with the MATLAB software (The Mathworks, 1999). The

simulation environment, shown in Fig. 6, includes the

following components:

† Building model (TRNSYS TYPE 56 module): This

model has been validated by the IEA (Lomas et al.,

1994).

† Radiator and thermostatic valve (TRNSYS Types 182

and 183): these are based on the IEA Annex 10 models

(IEA, 1988).

† Boiler and three-way valve: the boiler is supposed to

have a constant set point (70 8C). This is the maximum

water supply temperature ðTwsÞ value. The three-way

valve can adjust the water supply temperature between

Table 2

Comparison between the conventional and ANN controller

Conventional ANN

Global summary Similar periods Global summary Similar periods

Tamb (8C) (average) 5.4 24.1 2.8 23.6

Gh (W m22) (average) 86 56 68 68

Jd (%) (max) 14.3 1.6 2.5 2.5

Jd (%) (average) 0.30 0.05 0.04 0.04

Heating power (kW) 0.338 0.422 0.339 0.345
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a lower bound defined by the return water temperature

ðTwrÞ; and an upper bound is defined by the maximum

boiler power: if all available power is used, the boiler

cannot reach its set point and the maximum supply

temperature is reduced. These constraints are taken into

account by simple equations. The circulating pump

is assumed to run continuously, as it is common in

office-type buildings.

† User behaviour and natural ventilation (TRNSYS Type

201): The building has windows that can be operated by

the occupants. The user behaviour concerning windows

opening is modelled as follows:

Fig. 5. Profiles of Tambp
; Tws; Twr; Qr; Tamb and Gsouth: Gray rectangles represent the comfort temperature range (21–24 8C) during the occupancy period

(08:00–18:00). Discomfort cost is zero in this temperature range.

Fig. 6. Flow chart of the TRNSYS simulation environment.
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* If the temperature is higher than the upper comfort

limit, occupants open the window.
* If the temperature is below the lower comfort limit,

they close the window.
* If the temperature is within the comfort range, the

window is left in its current position.
* The windows are closed when the occupants leave the

building in the afternoon.

† Controller call (TRNSYS TYPE 152): The controllers

are implemented in MATLAB. For the controllers for

which an executable program is available, the file data

transfer and the call to executable routine are also

implemented in MATLAB. The TYPE 152 is not a

standard TRNSYS routine but was developed specifi-

cally for the needs of this research.

The simulation used real weather data from Uccle

(Brussels, Belgium) for the period from September 28,

1985 to April 25, 1986. Real data were preferred instead

of a Typical Reference Year, in order to allow a

full testing of the forecasting features of the ANN

controller.

The occupancy profile was selected in order to allow the

study of the heating start-up period problems. The building

is supposed to be occupied from 08:00 to 18:00 from

Monday to Friday. No occupants are present during the

weekend. The night set point temperature is 15 8C. The day

set point was determined by the comfort considerations

described in Section 3 of this paper.

The heating system is controlled using a fixed schedule;

heating starts early enough so that the desired temperature is

achieved upon the arrival of the occupants. The heating

schedule has a strong influence on the comfort and energy

performance. If the heating system starts too late, the

discomfort will be high during the beginning of the

occupancy period. On the other hand, if the heating starts

too early, energy is wasted and the overheating risk during

the afternoon is more important since the building structure

will be warmer. In order to investigate this influence, three

heating schedules were tested. The start time of the heating

system for these schedules is shown in Table 3. The heating

system stops at 18:00 in all cases.

In Fig. 7 the average PMV values over the heating season

are shown. The PMV indicates that both controllers achieve

thermal comfort conditions; the conventional controller

gives values slightly positive values while the ANN

controller gives slightly negative ones.

Fig. 8 shows the variation of the energy cost against the

discomfort cost for the two controllers and the various

heating schedules. The conventional controller curves have

several points for each schedule, obtained by several

thermostatic valve settings, while with the ANN controller

Table 3

Heating start time for different schedules

Heating schedule No. Start time

(Sunday)

Start time

(Monday)

Start time

(Tue–Fri)

5 – 0 3

6 21 0 2

7 16 0 1

Fig. 7. Predicted Mean Vote (annual averages) using the ANN controller, as a function of the heating schedule.
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the thermostatic valve is constantly open. It can be seen that

for a given discomfort cost value (i.e. identical comfort

conditions in the building) the ANN controller presents

always a lower energy cost compared to the conventional

controller. The relatively high discomfort cost values

occurring when the ANN controller is used with heating

schedules 5 and 6, are due to the fact that this controller has

no ‘boost’ period implemented in order to cope with ‘cold

mornings’ occurring on Mondays. This problem is

not observed with heating schedule 7, where a longer

pre-heating time is available in order to reach the comfort

temperature before the building occupants arrive.

Fig. 9 shows the annual heating energy savings in percent

between the conventional and ANN controller. This ranges

between 13 and 17%, depending on the heating schedule

type. These figures are consistent with the 18% of energy

savings achieved experimentally (Section 4). The relative

performance of the two controllers is better illustrated when

focusing to specific time periods. For this purpose, two

periods were chosen: a cold week and a sunny mid-season

Fig. 8. Variation of the energy cost as a function for the discomfort cost for the conventional and ANN controller.

Fig. 9. Estimated percentage of annual energy savings due to the ANN controller. Comparison is made against a conventional controller.
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week. Figs. 10 and 11 show the ambient temperature and

global horizontal irradiance for these two periods.

Figs. 12 and 13 show the behaviour of the conventional

and of the ANN controller during the cold week, for

different heating schedules and different thermostatic valve

settings. The comparison of these figures shows that the

temperature during the night is higher when the conven-

tional controller is used. This is due to the fact that the

conventional controller uses a heating curve designed to

maintain the night set point constant (15 8C) in steady-state

conditions. The building is always coming from a higher

temperature and the heating curve overestimates the

required supply temperature. The thermostatic valves do

not have any effect to correct this overestimation at night

since they are left on the ‘Day’ set point (21 8C). Also the

proportional band of the thermostatic valves makes that

the heating power is decreased when the zone temperature

reaches the set point, but the heating power is not zeroed.

The ANN controller has a slower response and this may lead

to high discomfort on some mornings, as on the first day of

the plot. This implies the use of rather conservative heating

schedules. On the other hand, the set point is well maintained

and the heating power is zeroed when necessary, contribut-

ing to the energy savings.

The behaviour of the controllers during the sunny mid-

season period is shown in Figs. 14 and 15. It can be noted

that during this period, the building is significantly warmer

with the conventional than with the ANN controller. This is

again due to the use of fixed set points for thermostatic

valves combined with a steady-state heating curve. The use

of a fixed heating schedule leads to a pre-heating of

the building, which is also unnecessary during this rather

Fig. 10. ‘Cold week’ simulation period. Ambient temperature (top graph) and global horizontal solar irradiance (bottom graph).

Fig. 11. ‘Sunny mid-season’ simulation period. Ambient temperature (top graph) and global horizontal solar irradiance (bottom graph).
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Fig. 12. Performance of the conventional controller during the ‘cold week’ (top graph: operative temperature; bottom graph: heating power).

Fig. 13. Performance of the ANN controller during the ‘cold week’ (top graph: operative temperature; bottom graph: heating power).
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Fig. 14. Performance of the conventional controller during the ‘sunny mid-season week’ (top graph: operative temperature; bottom graph: heating power).

Fig. 15. Performance of the ANN controller during the ‘sunny mid-season week’ (top graph: operative temperature; bottom graph: heating power).
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warm week. Energy is wasted and the overheating risk

during the afternoon is more important. These problems are

avoided with the ANN controller.

The problem posed by such a controller is that it

requires training in each new site. In the frame of this

work, the training was performed off-line using existing

data sets both for the weather parameters and also for

the thermal performance of the heating plant and

building. For commercial applications the on-line

adaptation possibility offered by the neural networks

should be used. In order to investigate this possibility an

additional module was developed and tested off-line in

the numerical simulation environment. The results

demonstrated that the controller trained with this module

showed the same behaviour as the modules trained with

the SNNS.

6. Conclusions

This paper demonstrated the potential of an ANN

controller for the control of hydronic heating systems

towards energy savings while maintaining thermal

comfort. The use of ANNs provides the controller

with forecasting capabilities of both weather parameters

and indoor conditions. The operation of the controller

has been tested both experimentally, on a real-scale

office building and via numerical simulation. The

implementation of the ANN controller revealed that

the absence of ‘boost’ module able to cope with step

changes in the set point temperature (i.e. from 15 to

21 8C) in the mornings resulted often to discomfort.

Implementing an additional module trained in such a

way to enable the fast warm-up of the building can

solve this problem. For the needs of this study adopting

long pre-heating schedules in the beginning of the week

faced the problem.

Experimental testing showed that the ANN controller

leads to 18% of energy savings over the test period

with respect to the conventional one. Simulations

showed that energy savings over the heating season

range from 13 to 17%, depending on the heating

schedule used. Therefore, an expected percentage of

energy savings under North European conditions of

about 15% can be claimed.
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