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a b s t r a c t

HVAC (Heating, Ventilation and Air Conditioning) systems used for heating or cooling buildings, consume
a considerable amount of energy. To optimize the energy consumption, the behavior of occupants must
be changed. This can be achieved by providing information and suggestions to occupants. A first step is
developing of a less expensive and non-invasive measurement system and metering of the electricity
eywords:
uilding management systems
odeling

arameter estimation
odel based predictive control

and heat consumed. Based on collected experimental data, it can identify the parameters of a thermal
model of the house. The model obtained will be used to simulate different aspects that can help to
reduce the energy consumption. This paper presents a simple solution for thermal modeling of a house
which includes experimental identification of the model’s parameters. Such data are used to simulate
the thermal behavior of the house and to obtain solutions to reduce energy consumption. In simulation,

l syst
the control of the therma

. Introduction

Reducing and optimizing the energy consumption in the res-
dential sector is an important issue in the context of the global

arming effect. An essential step in this direction is the implemen-
ation of a measuring and monitoring system for the electrical and
hermal energy consumption.

This system can lead to a better usage of the different electrical
onsumers. In the same time are necessary strategies that take into
ccount the changing (optimization from the point of view of elec-
rical consume) of the user behavior. In this context, it is necessary
o create a simulator that will permit the study of different strate-
ies for reducing the thermal and electrical energy consumption
1]. As it is known, the main part of the energy consumption of a
ouse is represented by heating. For this reason, a first step is to
enerate the thermal model of the house. In the literature there are
resented many examples of modeling and simulation of energy
onsumption in a household [2–4]. The thermal model can be used
lso for the study of some HVAC (Heating, Ventilation and Air Con-

itioning) systems with electrical heating [5]. Also, the simulator

s needed to provide solutions in the implementation phase of the
roject (living houses) and can be used also by the final users. A sim-
lator can be used throughout the whole development phase. It can
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em is performed using a model based predictive control algorithm.
© 2010 Elsevier B.V. All rights reserved.

be used as well for the studies of control strategies (classical, fuzzy,
genetic, neural network, model based predictive etc.) as well as for
finding the solutions for reducing the electrical energy consump-
tion and for maintaining acceptable indoor air conditions related
to thermal comfort. Also, the reduction of the energy consumption
as well as the aspects that belong to the thermal comfort may be
included in the control laws, the main objective being maintaining
thermal comfort within an acceptable range [6].

The house model can have different levels of complexity: from
simple “well mixed” models with one air node representing the
whole air volume to complex computational fluid dynamic (CFD)
models that take into account the conservation equations of mass
and energy.

Another type of model is the lumped parameter model which
has the advantage of a low number of parameters. A set of
a few parameters describes the system. A lumped parameter
model can integrate all layers of one envelope element (wall,
floor, roof, etc.), all elements of the envelope of a room or the
whole room model (convection, conduction and radiation in a
room).

The latter is currently used to simulate rooms in controller
studies. In the same way, one or more envelope elements can be

modeled as a lumped parameter model. This modeling permits fast
simulations since the system is reduced to a first order system. The
model can be described as by thermal–electrical analogy.

Black box linear parametric models are used in Refs. [5–7]. This
approach involves the identification of parameters of the model

dx.doi.org/10.1016/j.enbuild.2010.10.023
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enbuild
mailto:radubalan@yahoo.com
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Fig. 1. Examples of output predictions.

Fig. 2. Parameter identification.

Fig. 3. Identification of the parameter Kf .
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Fig. 4. Param

ased on input and output data. The method is less expensive and
oes not require knowledge of detailed system.

In the control field there are used simplified models using
upplementary identifications or correlations. The necessary phe-
omena can be modeled by identification with measurements. The
ystem can then be represented as a state space model with the
arameters obtained by off-line or on-line identification.

In Ref. [8] control strategies with both feedback and feed-
orward are investigated and discussed. In order to compare
ifferent strategies for temperature control, one small experimen-
al building, with one room of 11 m2 is studied. The mathematical

odel of the room was obtained by a combination of theoretical
odeling and experimental identification.
In Refs. [9–11] are presented aspects regarding the use of control

ystems in residential buildings and also solutions for optimization
f the thermal energy consumption.

Other researchers present algorithms for calculating the refer-
nce temperature in the rooms of a building [12]. This aspect is
mportant if we have in mind that a home may be not continuously
ccupied.
. The thermal model of a house

The highest percentage of the energy consumed in a house is
sed for heating. For this reason it is important to create a thermal
entification.

model as detailed and precise as it can be, thus the simulator can
offer solutions for reducing the energy consumption. Sometimes, a
simple model can also offer good results.

In this paper it is used a simplified zone thermal model which
was originally introduced in Ref. [13]. The model has two dynamic
temperature nodes roughly representing the air and a lumped
structure node. Two dynamic heat balance equations are used [14]:

Ca
dTa

dt
= Q − Ki(Ta − Tw)− Kf (Ta − To) (1)

Cw
dTw

dt
= Ki(Ta − Tw)− Ko(Tw − To) (2)

where Ta is the air temperature (◦C); Tw is the mean wall tempera-
ture (◦C); To is the outside air temperature (◦C); Q is the heat input
to the air node (kW).

The model uses five parameters: Ca (kJ/K) is the thermal capacity
of the air in the zone, together with other fast-response elements,
Cw (kJ/K) represents the lumped thermal capacitance of the struc-
ture, Kf (kW/K) is the fast conductance ascribed to ventilation and
elements with little thermal capacitance, e.g. windows, Ki (kW/K)

is the conductance between the air and structure nodes, Ko (kW/K)
is the conductance between the structure node and the outside air.

These parameters can be estimated from the physical data of the
building, but also it is possible to obtain the values of parameters
using a parameter identification technique.
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To use the model represented by Eqs. (1) and (2) these equations
ust be rewritten in a numerical form. We use a simple approxi-
ation for the derivate:

˙ = x(t + T)− x(t)
T

(3)

here t is the time and T is the sampling period. In the following,
or simplicity, instead of (t− i · T), we will write (t− i).

It is obvious that Eq. (3) is an acceptable approximation only
nder certain conditions. As a result we can write:

a(t) = Ta(t − 1)+ T · (Q (t − 1)− Ki · (Ta(t − 1)− Tw(t − 1))− Kf · (T
Ca

w(t) = Tw(t − 1)+ T · (Ki · (Ta(t − 1)− Tw(t − 1))− Ko · (Tw(t − 1)−
Cw

The model represented by Eqs. (4) and (5) can be used to charac-
erize the house from thermal point of view. It is possible to provide
ome useful comparative data for the user:
comparisons with other similar users;
comparisons with past consumptions;
how the thermal consumption is changed if the temperature set-
point is changed with one degree;
nd estimate signals.

1)− To(t − 1)))
(4)

− 1)))
(5)

- how the thermal consumption is changed using different scenar-
ios of temperature setpoint evolution;

- other data.

Such information may lead to changing the user behavior.
The proposed system is dedicated only for the mea-

surement of the heat consumption (it is preferable to
not change the existing control system; the system is
designed to be non-invasive). For this reason, to test through

simulation an algorithm for parameters identification of the model
(1. . .5), it is possible to proceed as follows:
- it is considered that the process is in the form (4) and (5) with
parameters (Ca, Cw , Kf, Ki, Ko) known and constant;

- the existing control system will be simulated;
- the estimations of the parameters (Cae, Cwe, Kfe, Kie, Koe) will be

obtained using experimental input–output data.
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Fig. 6. The process and the model have different structures.
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. The control algorithm

A model based predictive control (MBPC) algorithm is described
y using a model to compute the predicted process outputs. The
arameters of the model are obtained through an identification
lgorithm. Also, a cost function related to the closed loop perfor-
ance of the system is defined, and the control signal is obtained

y means of minimization of the cost function. Finally, the first of
hese signals is applied to the process [15].

The extension of linear MBPC to nonlinear processes is straight-
orward at least conceptually. But there are some difficulties [16]:
he availability of nonlinear models due to the lack of identification
echniques for nonlinear processes, the computational complexi-
ies, the lack of stability and robustness results.

The purpose of the controller is typically to force the output
o follow the reference signal. If the reference is a constant, the
roblem is commonly referred to as setpoint regulation. When the
eference is time varying (but is known in advance), defining a con-
rol law to force the output to follow the reference signal is called
he positioning control.
In this paper a type of model based predictive control algorithm
s used. The basic idea of the algorithm is the on-line simulation
f the future behavior of the control system by using a few candi-
ate control sequences [17]. Then, using rule based control these
imulations are used to obtain the ‘optimal’ control signal. In Ref.
ation. Adaptive case.

[18] it was proposed an algorithm designed for setpoint regulation
problems (but setpoint can be arbitrary changed). The main idea of
the algorithm is to compute for every sample period:

- the predictions of the output over a finite horizon (N);
- the cost of the objective function, for all (hypothetic situation)

control sequences:

u(.) =
{

u(t), u(t + 1), . . . , u(t + N)
}

(6)

and then to choose the first element of the optimal control
sequence.

At a first look, the advantages of the proposed algorithm include
the following:

- the minimum of objective function is global;
- this algorithm can be easily applied to nonlinear processes;
- the constraints can be easily implemented.

The drawback of this scheme is an unrealistic computational

time, therefore, the number of sequences must be reduced. Of
course, this will lead to some difficulties in finding the global min-
imum of objective function. Choosing the sequences has to be
made with attention, so that through simulation the information
obtained is more helpful for computing the control signal.
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For the first stage, we used the next four control sequences:

u1(t) = {umin, umin, . . . , umin}
u2(t) = {umax, umin, . . . , umin}
u3(t) = {umin, umax, . . . , umax}
u4(t) = {umax, umax, . . . , umax}

(7)

here umin and umax are the accepted limits of the control sig-
al, limits imposed by the practical constraints. These values can
epend on context and can be functions of time.

Using these sequences results four output sequences y1(t), y2(t),
3(t), y4(t). The control signal is computed using a set of rules based
n the extreme values ymax0, ymax1, ymin0, ymin1 (Fig. 1 d is dead time,

1 = N, yr is setpoint) of the output predictions.
In the followings, considering processes with positive sign, it

an be underlined four usual cases:
Case 1: If ymax0 < yr (corresponding to u1(t) sequence) and

max1 > yr (corresponding to u2(t) sequence).
Then (using a linear interpolation):
(t) = umax − umin

ymax 1 − ymax 0
yr + uminymax 1 − umaxymax 0

ymax 1 − ymax 0
(8)

Case 2: If ymin0 < yr (corresponding to u3(t) sequence) and
min1 > yr (corresponding to u4(t) sequence).
als. Adaptive case.

Then (using a linear interpolation):

u(t) = umax − umin

ymin 1 − ymin 0
yr + uminymin 1 − umaxymin 0

ymin 1 − ymin 0
(9)

Case 3 : If ymax 0 > yr Then u(t) = umin (10)

Case 4 : If ymax 1 > yr Then u(t) = umin (11)

In Fig. 1, every output prediction curve is marked with a number
which corresponds to the number of control sequence from rela-
tions (7). Similar to case 3 and case 4, there are two similarly cases
if dy/dt < 0 for t < t0.

If the algorithm uses only these 6 rules, the variance of u(t)
will be large [18]. So, in the second stage, to limit this variance,
depending on the behavior of the control system, are used next
methods:

- an algorithm that modifies the limits of control signal:

umin ≤ umin st(t) ≤ u(t) ≤ umax st(t) ≤ umax �umin ≤�u ≤�umax (12)
For example:

umin st(t) = f1(umin st(t − 1), umax st(t − 1), y(t), yr(t)) (13)

umax st(t) = f2(umin st(t − 1), umax st(t − 1), y(t), yr(t)) (14)
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here f1, f2 are functions which decrease or increase (depending on
he behavior of the control system) the difference between umaxst(t)
nd uminst(t). In relations (7) and (11), the values of umax, umin are
eplaced with uminst(t), umaxst(t). In the following, when necessary,
he next relations are used:

min st(t) = umin st(t − 1)+ kst(ust − umin st(t − 1)) (15)

max st(t) = umax st(t − 1)− kst(umax st(t − 1)− ust) (16)

here kst is a weight parameter and ust is the estimated value
f control signal in steady state. But in some circumstances (per-
urbations, inaccurate model) the limits of control signal must
ncrease. Also, it is necessary to limit the minimum value of
maxst(t)−uminst(t) > dust > 0, where dust is a parameter of the con-
rol algorithm.

using the “variable setpoint“[17]:

r1(t) = yr(t)+ kref (y(t)− yr(t)) (17)

here kref is a weight factor;

using a filter to compute the control signal (especially in the
steady state regime).

. Parameters identification

Usually, based on the characteristics of the building (dimensions
f the walls, windows, floor, ceiling, the parameters of the build-
ng materials, etc.) the thermal model of the building is created
2]. This model can be used for on-line simulations and therefore
sing the presented algorithm it can be computed the control signal
onsidered to be optimal.

Sometimes, the methodology used for the detailed thermal
odeling of the building is difficult to be applied. On one hand,

n the case of already built building, it can be hard to collect the
ata needed. On the other hand there are situations in which the
hermal characteristics have changed in time or, due to the disturb-
ng factors, the integration in the thermal model can be difficult or
ot precise enough (for example the solar radiation effect).

As a consequence, there are solutions that take into account a
umped formulation of the model [4,6,19,20].

A solution which from the practical viewpoint would be easier
o use (by avoiding the introduction of the model building param-
ters) and implement, is the approximation of the building model
ith a linear parametric model and usage of on-line identification

or renewal of the parameters.
The model may be as follows:

1y(t)+ . . .+ any(t − n) = b1u(t − 1− d)+ . . .+ bmu(t −m− d)(18)

here y(t) is the output signal (indoor temperature), u(t) is the con-
rol signal (energy consumption), m and n are the dimensions of the

odel, d is dead time, a1.n, b1.m are the parameters of the model
nd usually a1 = 1. Parameters (n, m, d) define the model struc-
ure. This black-box type model is easy to use but has the following
isadvantages:

the model does not use the physical parameters of the process;
as a result it is not possible to obtain further information using
these parameters;
this form of the model does not include the outside tempera-

ture (it is considered disturbance); as a result the identification
process will be slowly.

If a model which is described by Eqs. (1)–(5) is used, the iden-
ification of the 5 parameters allows us to obtain a direct physical
ings 43 (2011) 748–758 755

interpretation which leads to a strong advantage. Using the model
obtained the user can simulate different thermal scenarios. Also
it can be obtain information regarding solutions for reducing the
energy consumption.

In this paper, for simulating the existing control system, it’s used
the predictive control algorithm presented previously and a model
of a black-box type (18).

The parameters of the gray-box type model described by Eqs.
(1)–(5) will be identified based on the analysis of input–output data
(indoor and outdoor temperature, consumption). A hurdle might be
the fact that control signal is generated by the existing control sys-
tem. For the identification algorithms to be efficient it is mandatory
that the prescribed temperature varies sufficiently.

We will present two solutions that allows the identification of
parameters of gray-box type model represented by Eqs. (4) and (5),
respectively (Cae, Cwe, Kfe, Kie, Koe).

4.1. Obtaining the dependence relationship between parameters
(A1)

In the first variant, the aim is to seek relationships between
parameters of the model by choosing an appropriate reference sig-
nal. If the air temperature Ta remains constant for a sufficiently
long period and if it is possible to consider the wall temperature
constant, then we can write:

0 = Q − Ki(Ta − Tw)− Kf (Ta − To) (19)

0 = Ki(Ta − Tw)− Ko(Tw − To) (20)

Therefore, if are known the values of air temperature (Ta), mean
wall temperature (Tw), outdoor temperature (To) and consumption
Q then it is possible to obtain next intermediate parameters:

x1 =
Ko

Ki
= Ta − Tw

Tw − To
(21)

x2 =
Q

Ta − To
(22)

x3 =
Ta − Tw

Ta − To
(23)

Of course, in reality, the values of these intermediate parameters
x1, x2, x3 will be used with caution and it is necessary to use filtering
algorithms.

In a different scenario, using a trapeze reference signal, the air
temperature differs slightly from mean wall temperature for a suf-
ficiently long time (Fig. 2). In this case, Eqs. (1) and (2) can be
written:

Ca
dTa

dt
= Q − Kf (Ta − To) (24)

Cw
dTw

dt
= −Ko(Tw − To) (25)

To reach this situation, a trapezoidal reference temperature was
chosen, with the observation that the negative slope value should
be chosen accordingly. Following intermediate variables can be
estimated as follows:

x4 =
Cw

Ko
= −Tw − To

dTw/dt
(26)

x5 =
Q

dTa/dt
(27)

Therefore, we can write the following relationships:
Ko = x1 · Ki

Kf = x2 − x3 · Ki

Cw = x4 · Ko = x1 · x4 · Ki

Ca = x5 − x6 · Kf = x5 − x6 · x2 + x6 · x3 · Ki

(28)
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To obtain the estimations of the parameters it should be found a
pecific situation to allow estimation of a parameter. One solution
s to control the thermal system to obtain the conditions from Fig. 3:

the air temperature is constant;
the initial wall temperature is higher than the air temperature
and then it drops below the air temperature.

In this case Eqs. (1) and (2) becomes:

= Q − Kf (Ta − To) (29)

w
dTw

dt
= −Ko(Tw − To) (30)

The first equation allows to determine the value of Kf parameter
nd then, using relations (28), to obtain the other parameters. This
ariant of calculation is very sensitive to noise and, from practical
oint of view, if a filtering solution is not used, is not feasible. In
articular, the method of determining the parameter (29) is difficult
o apply.

.2. Search based on simulation and optimization (A2)

The second option involves knowing every step of sampling the
ollowing values:

a(t), Tw(t), To(t) and Q (t) (31)

These data are memorized for a number of nsim previous steps
f sampling. Therefore at each sampling step will be possible to
imulate the evolution of the process, using as initial data the infor-
ation of (t−nsim · T) sampling. The simulation will use the current

alues of estimated parameters (Ĉae, Ĉwe, K̂fe, K̂ie, K̂oe). A perfor-
ance index is defined to compare the evolution of the measured

nternal temperature Ta(t) and measured energy consumption Q(t)
y the evolution obtained by simulation based on estimated param-
ters (Ĉae, Ĉwe, K̂fe, K̂ie, K̂oe).

If temperatures Ta(t), Tw(t), To(t) and the estimations of the
arameters of the model are known, then the model of the pro-
ess can be used to obtain estimation of the energy consumption.
his estimate is important when the heat consumption is not mea-
ured or, even if it is measured, this consumption is read from time
o time, usually one month, and instant readings are not avail-
ble. Unlike the measurement of electrical consumption (which
nvolves using a hardware interface components which is cheap
nough), instantaneous measurement of gas consumption can be
ore expensive and usually involves invasive solutions.
Performance index can be chosen as:

sim =
i=nsim∑

i=0

(abs(Ta(t − i)− Tae(t − i))

+�(t) · abs(Q (t − i)− Qe(t − i))) (32)

here �(t) is a weight factor.
Another issue which is considered is the quantification of the

ype of regime at a certain time. Some parameters of the model
Cae, Cwe) cannot be estimated in steady state. One possibility to
uantify the type of the regime is:

rans =
∑i=nsim

i=2 abs(Q (t − i)− Q (t − i− 1))

at +
∑i=nsim

i=1 Q (t − i)
(33)

here a is a positive number (it is possible to choose:
t

t = Qmax/nsim).

Algorithm for simulation and calculation of performance index
ACost)
ings 43 (2011) 748–758

Step 1: Initialization:

- parameters of the model: Ĉae, Ĉwe, K̂fe, K̂ie, K̂oe

- temperatures:

Twe(t − nsim − 1) = Tw(t − nsim − 1)
Tae(t − nsim − 1) = Ta(t − nsim − 1)
To(t − i)|i=1..nsim+1

- energy consumption Q(t− i)|i=1. . .nsim
- performance index Jsim = 0.

Step 2: Simulation of the evolution of the process for nsim steps
and compute the performance index:

For i = nsim.0 do:

Tae(t − i) = Tae(t − i− 1)+ T

Ĉae

· (Q (t − i)− K̂ie · (Tae(t − 1)

− Twe(t − 1))− K̂fe · (Tae(t − 1)− Toe(t − 1))) (34)

Twe(t − i) = Twe(t − i− 1)+ T

Ĉwe

· (K̂ie · (Tae(t − i− 1)

− Twe(t − i− 1))− K̂oe · (Twe(t − i− 1)− Toe(t − i− 1)))

(35)

Qe(t − i) = (Ta(t − i)− Ta(t − i− 1)) · Cae

T
+ Kie · (Ta(t − i− 1)

− Twe(t − i− 1))+ Kfe(Ta(t − i− 1)− To(t − i− 1)) (36)

Jsim = Jsim + (abs(Ta(t − i)− Tae(t − i))+ �(t) · abs(Q (t − i)

−Qe(t − i))) (37)

4.3. Identification algorithm

A bank of models will be used (i.e. sets of parameters (Cae, Cwe,
Kfe, Kie, Koe)); the models are numbered 0. . .nb. The models will
be introduced/removed from the bank using specific performance
criteria.

Step 1: execute ACost algorithm for the current values of param-
eters (Ĉae, Ĉwe, K̂fe, K̂ie, K̂oe); results the performance index Jsim.

Step 2: execute the algorithm ACost for all models of the bank;
results the performance index Jsim,0..nb

Step 3: Choose the best model in term of performance index:

Jsim =min{Jsim, Jsim, 0...nb} (38)

and up-date the parameters of the model:

(Ĉae, Ĉwe, K̂fe, K̂ie, K̂oe)← (Cae, Cwe, Kfe Kie, Koe) (39)

Step 4: Calculate the value of the index trans (relationship 33);
Step 5: If trans > trans1 (transitory regime), then it will be gen-

erated new models as:
(Cae +�Cae, Cwe +�Cwe, Kfe +�Kfe, Kie +�Kie, Koe +�Koe) (40)

Otherwise if trans < trans2 (stationary regime) then it will be
generated new models as:

(Cae, Cwe, Kfe +�Kfe, Kie +�Kie, Koe +�Koe) (41)
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The values of trans1, trans2 parameters will be determinate
xperimentally (may be chosen in wide limits).

Step 6: For each generated model, using the algorithm ACost it
ill be computed the performance index; if the value of the perfor-
ance index is lower than the present value of cost function (step

) then the current parameters of the model will be updated:

Ĉae, Ĉwe, K̂fe, K̂ie, K̂oe)← (Cae, Cwe, Kfe, Kie, Koe) (42)

nd update the value of the cost function.
Step 7: If the parameters of the model were updated according

o (42) then it will be tested if the new model will be introduced or
ot in the model bank. It must be sufficiently different from those
odels which already exist in the bank and will replace the least

fficient model of the bank.

Comments:

. The role of the bank of models. The use of a bank of models and
of the presented algorithm generates some obvious advantages:
- significantly improves the speed of the identification of the

parameters of the model;
- most important aspect: the risk for a divergent identification

process decreases very much;
- the risk of a local minima decreases also very much;
- in the case of nonlinear systems, the method permits to obtain

piecewise models;
Difficulties:

- the computing time increases;
- to find optimal solutions for introduction/removed of a model

in the bank; if the model which is inserted is too much closer
to one existing model from the bank then the method effec-
tiveness decreases.

. The values of parameters trans1 and trans2 are obtained experi-
mentally. The minimum value of the parameter trans1 is chosen
so that the control signal Q(t) can vary sufficiently (obviously
transitory regime); the maximum value of the parameter trans2
is chosen so that the control signal Q(t) is sufficiently constant
(obviously steady state regime).

. The generation of the new models (step 5) can be done by differ-
ent methods. In this paper it is adopted a simple search around
the actual parameters Ĉae, Ĉwe, K̂fe, K̂ie, K̂oe.

For example, the variation of the parameter Ĉae can be chosen
s follows:

Cae = ns · Cae

ks
(43)

here ns gets all the integer values
−s, −s+ 1, . . . , 0, 1, . . . , s− 1, s

}
and ks can be chosen in

he interval (10. . .1000). An acceptable value at the beginning of
he identification process is ks = 100; this value can be increased
urther to obtain more accurate values of parameters. As a result,
sing the algorithm ACost, at every sampling step, will be done
2 · s + 1)5 simulation calculations. Tests show that the search
lgorithm works well even for s = 1. In conditions (41) the number
f calculations is (2 · s + 1)3. Of course there are solutions to reduce
he number of calculations. At the same time, it will be considered
he case of local minimum. To avoid reaching of a local minimum,
ne practical solution is that every step of sampling to test a

imited number of random variations of the parameters (Ĉae, Ĉwe,
ˆ fe, K̂ie, K̂oe). Obviously, based on physical considerations, it will be

ccepted a range for the values of the parameters Ĉae, Ĉwe, K̂fe, K̂ie,
ˆoe, respectively maximum and minimum values.
ings 43 (2011) 748–758 757

5. Simulations

We will consider the next values of the process parameters:

Ca = 1400, Cw = 2200, Kf = 0.02, Ki = 1.4, Ko = 0.02

and the initial estimate:

Cae = 2500, Cwe = 500, Kf = 0.05, Ki = 2, Ko = 0.1

These values correspond to a type of small studio apartment. It
is considered that the maximum power is 4 kW. Chosen sampling
period is T = 60 s. The results are presented in Fig. 4 (parameter
identification) and Fig. 5 (the evolution of temperatures Ta(t),
Tw(t), To(t), control signal Q(t) and control signal estimation Qe(t)).

Comments:

- it is used a model based control algorithm, the algorithm pre-
sented in Section 4. The model used by the algorithm is black-box;

- reference of the indoor temperature is adjusted from time to time
in order to produce a change in control signal which contributes
to improve the identification process;

- after initialization, a number of sampling periods (in Fig. 4 after
midnight for 40 min), the parameter identification algorithm is
not used; the reason is to avoid obtaining of incorrect results
because of the possible differences in the initialization of the
process parameters, for example Tw(t);

- it may be observed that up-dating of estimated parameters values
is made only if the control signal has a certain type of variation;

- to simulate the evolution of the outdoor temperature it is used a
sine variation;

- in a real case it is possible to appear difficulties due to variation of
the contribution of the secondary heat input (due to solar radia-
tion energy, electrical equipment, the presence of occupants, etc.).
An acceptable solution would be to find the parameters of the
model by one or more experiments in different conditions: at
night, in the day with or without any input of solar energy, and
other cases where secondary heat input exists. In this way, it is
possible to obtain a set of models which characterize the house.

- this set of models will be used later to find the best model at a
certain time;

- based on identified parameters it is estimated the energy con-
sumed (Fig. 5) by using Eq. (36). Initially, the estimation is
imprecise; however, with increasing accuracy of estimating the
parameters of the model, the estimation of the energy consump-
tion becomes more precise;

- in the present paper the process and the model have the same
structure thus leading to simplifying of the algorithms testing.
For the case in which the process and the model have different
structures, there have been realized multiple tests that show a
good behavior of A2 algorithm, the identified parameters of the
model being used both by the predictive control algorithm as well
as for estimation of the energy consumption. For example, if the
process has Eq. (1) in the form:

Ca
dTa

dt
= Q − Ki(Ta − 0.95 · Tw)− Kf (0.5 · Ta − To) (44)

and the model is described by Eqs. (1) and (2), then choosing

umax = 6 the control system has the behavior from Fig. 6.

Figs. 7 and 8 present the results obtained as a result of the change
of process parameters. First, it is changed the value of parameter
Kf = 0.02 to Kf = 0.05 (at 3 a.m.) and then it is changed the value of
parameter Ko = 0.02 to Ko = 0.01 (at 13:15 p.m.).
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58 R. Bălan et al. / Energy an

. Conclusions and future work

For reducing of the thermal energy consumed in a house by
hanging the behavior of the occupants, it is necessary to create a
imulator which includes different scenarios of using of the thermal
nergy and also to provide users with solutions to reduce the energy
sage. This paper presents solutions for the modeling and for the
xperimental identification of the parameters of the model and also
olutions for the estimation of energy consumption. As a result,
he model can be used to provide information and suggestions on
uestions such as:

how to reduce energy consumption if the average temperature in
the home falls with a given number of Celsius degrees;
how big is the decrease of the energy consumption if the ther-
mal profile associated to a day (e.g. stop heating when nobody is
home) is changed;
what is the effect of changing the parameters of the model asso-
ciated with the house (five parameters characterizing the house).

The developed simulator also includes a control algorithm based
n the model. Control signal is derived from a set of rules.

The solutions presented to identify the parameters of the model
equire the measurement of the external mean wall temperature.
iven the need for non-invasive measurement systems, it is nec-
ssary to find solutions that do not require measuring of this
emperature. This is a future work. Some tests show that, without

easuring the external mean wall temperature, it is possible to
stimate energy consumption and some parameters of the model.
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