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a b s t r a c t

A predictive optimal control system for micro-cogeneration in domestic applications has been developed.
This system aims at integrating stochastic inhabitant behavior and meteorological conditions as well as
modelling imprecisions, while defining operation strategies that maximize the efficiency of the system
taking into account the performances, the storage capacities and the electricity market opportunities.
eywords:
redictive control
ptimal management
olygeneration

Numerical data of an average single family house has been taken as case study. The predictive optimal
controller uses mixed-integer and linear programming where energy conversion and energy services
models are defined as a set of linear constraints. Integer variables model the start-up and shut-down
operations as well as the load dependent efficiency of the cogeneration unit. The proposed control system
has been validated using more complex building and technology models to asses model inaccuracies.

or sto
in th
icro-cogeneration Typical demand profiles f
The system is evaluated

. Introduction

The integration of polygeneration systems in urban areas is
een as one of the promising routes for adressing CO2 mitiga-
ion problems. For example, decentralized combined heat and
ower production is foreseen in virtual power plant concepts
Management Summary Report of EU-Project No. NNE5-2000-208,
005). The design of polygeneration systems in urban areas lies on
he definition of the system management strategy that decides the
peration of the energy conversion equipment (cogeneration and
eat pumping) and of the energy storage system in order to provide
he energy services required at minimum cost.

The potential benefit of cogeneration technologies for domestic
pplications has been assessed by numerous studies (Dorer, Weber,
Weber, 2005; Entchev et al., 2004; Pearce, Zahawi, Awckland, &

tarr, 1996; Pearce, Zahawi, & Shuttleworth, 2001; Lamon, Gähler,
Gwerder, 2007; Laubacher, 2006). Some of these assessments

onsider the crucial question of operational control, and besides
imple on–off control (Entchev et al., 2004), they may use some

ind of predictive control strategy (Dorer et al., 2005; Lamon et
l., 2007). However, aside from Entchev et al. (2004) that was
n application on a real plant, the other works used identical
odels for the control strategy optimisation and the validation
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chastic factors have been used.
e perspective of its usage in Virtual Power Plants applications.

© 2009 Elsevier Ltd. All rights reserved.

of the controller. Furthermore, future conditions were known in
advance.

The design method is based on the definition of typical days from
which the ambient temperature and the demand profiles are taken
as reference. One key component of this strategy is the energy stor-
age equipment that is used to create a time shift between the energy
conversion and the demands allowing for equipment size reduction
and better profitability. When the management strategy is based on
optimisation methods such as those presented by Weber, Maréchal,
Favrat, and Kraines (2006), the design method lies on the defini-
tion of typical days during which the performances are computed
assuming a perfect knowledge of the temperature profiles and
energy demand. This assumption is, however, not acceptable when
implementing the management strategy for an existing system
since these profiles are stochastic and are not perfectly predictable.

The goal of this paper is to present a predictive control strategy
developed for the optimal management of a polygeneration sys-
tem in a complex multiservices system that is installed to deliver
heat, hot water and electricity to a residential building. The method
includes a predictive model of the energy demand of the build-
ing based on the prediction of the ambient temperature and an
Auto Regressive model with eXternal inputs (ARX) of the build-
ing heat losses, combined with a simplified simulation of the

heat distribution system. The optimal management strategy uses
a mixed-integer linear programming model to decide the start-up
and shut-down of the equipment and manage the heat storage.

The optimal control system developed has been validated by
connecting it with a detailed building simulation model that is

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:andres.collazos@epfl.ch
dx.doi.org/10.1016/j.compchemeng.2009.05.009
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Nomenclature

Lower indexes
b relative to the boiler
cg relative to the cogeneration unit
dhw relative to the domestic hot water tank
el relative to the electricity consumption
gas relative to the gas consumption
h relative to the building (house)
hs relative to the heat storage
vlv relative to the three-way valve

Upper indexes
+, − respectively incoming and outgoing energy, heat or

electricity (for disambiguation)
* denotes an optimal quantity
loss losses to the environment (variables)
max, min maximum and minimum values (parameters)
req requirements (parameters)

Symbols
˛1, ˛2, � parameters for calculating the losses of the heat

storage tanks
a1, a2, b1, b2 ARX building model parameters
C operating costs (euro)
chour cost per hour of operation for maintenance (cogen-

eration unit) (euro/h)
cgon indicator if the cogeneration unit is on (binary vari-

able)
cgpw auxiliary binary variable for piecewise cogeneration

unit output
cgstart-up indicator if the cogeneration has started
cstart-up cost per start-up (cogeneration unit) (euro/start-up)
c cost per kilowatt (euro/kW)
cp specific heat capacity of water (kJ/ ◦C kg)
Ė electrical flow (kW)
Ḣ fuel energy flow (kW)
J resulting objective function (operating

costs + comfort penalty) (euro)
mel

1 , mel
1 , mgas

1 , mgas
2 slopes of the electrical output and fuel

consumption piecewise model
M comfort penalty weight (euro/ ◦C h)
ṁ mass flow (kg/h)
nmin

cg,on minimum number of hours the cogeneration unit
has to run once it has been started (h)

ñmin
cg,on minimum number of hours the cogeneration still

has to stay on (from past optimisations) (h)
pinf, psup comfort penalties (◦C)
Q̇ heat flow (kW)
Q stored heat (J)
Rh heat loss coefficient of the building (kW/h)
t0 initial (present) time (h)
�t time step between optimisations (h)
�tMH moving horizon time length (h)
�tsim simulation time step (h)
T temperature (◦C)
Text external temperature (◦C)
�T0, Text

0 , Tmin
0 , q minimum heat storage tank temperature

calculation parameters (refs.: Norme SIA 384/2,
1988; Zehnder, 2004)

U set of decision variables
u decision variables
V, h, D, d volume, height, external and internal diameter of a

storage tank (m3, m)
Fig. 1. Test case system studied.

assumed to represent the real non-linear and stochastic behavior
of the building in its environment.

Finally, as targeted in virtual power plants concepts, it will be
demonstrated that the management of the system can exploit the
variable prices of the electricity market by exploiting the heat stor-
age systems – including the building structure – to increase the
combined heat and power production, therefore increasing the ben-
efit of the system.

2. Energy system studied

The system under study, presented in Fig. 1 includes one cogen-
eration unit and a backup boiler, both fueled by natural gas. The
system supplies energy to two heat storage tanks: one for the heat-
ing system and the other for the domestic hot water (DHW). The
temperature in the heat distribution system (radiator system) is
controlled by a three-way valve and the temperature set-point is
determined as a function of the ambient and room temperatures
using a heat loss and a heat distribution model.

In Fig. 1 Th and Text are the room and outside temperatures of the
building. Tcg is the temperature of the water exiting the cogener-
ation unit, Tb is the temperature of the water exiting the backup
boiler, Tdhw is the temperature of the hot water going into the
domestic hot water tank, Ths is the temperature of the hot water
going into the heat storage tank and Tr is the nominal return tem-
perature of the water. ṁcg and ṁb are the mass flows entering the
cogeneration unit and the backup boiler, respectively. ṁhs and ṁdhw
are the mass flows sent to the heat storage and the domestic hot
water tank. Ėcg is the electrical power output of the cogeneration

unit, Ėbuy
el is the electrical power bought from the electricity grid,

Ėsell
el is the power sold to the grid and Ėreq

h is the electrical power
consumption of the building.

The decision variables, at every time t, are the load charge of
the cogeneration unit ucg(t) = Q̇cg(t)/Q̇ max

cg , the load charge of the

storage heat output uhs(t) = Q̇hs(t)/Q̇ max
hs , the load charge of the

backup boiler ub(t) = Q̇b(t)/Q̇ max
b , and the three-way valve control

uvlv(t) = Q̇hs(t)/(Q̇hs(t) + Q̇dhw(t)).
In the controller implementation, the decision variables will be

translated into valve positions or temperature set points.
The building characteristics correspond to the SIA 380/1 target

value single family building described by Dorer et al. (2005).
The sizes of the units in the system have been calculated using
the Queuing Multi Objective Optimizer (QMOO) (Leyland, 2002) in
combination with a linear programming problem as described in
Weber et al. (2006). The sizes of the units considered are presented
in Table 1.
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Table 1
System unit characteristics. Q̇ max = maximum heat output, � = efficiency, Ėmax = maximum electrical output, �el = electrical efficiency, �th = thermal efficiency, V = volume.

Boiler Cogeneration engine Heat storage DHW tank

Q̇ max ˙ max ˙ max kW] 3 ˙ max 3
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[kW] �b Ecg [kW] �cg,el Qcg [

.17 0.8 2.25 0.2–0.25 6.83

For an expected annual consumption of 8.2 MWh of space heat-
ng, 3.3 MWh of domestic hot water consumption and 2.6 MWh
f electricity, the overall estimated operating costs reduction is in
he order of 25%. In particular, the amount of electricity bought
rom the grid is 35% less for the system with a cogeneration
nit.

The size of the cogeneration unit corresponds to an overall full
oad operating time of 3962 h per year. The variable thermal and
lectrical efficiencies used are based on the manufacturer’s techni-
al data (Solo Stirling, 2005).

. The predictive controller

Several types of optimal control strategies have been developed
o improve residential and non-residential building performance in
erms of energy consumption: a stochastic controller to take into
ccount significant solar gains (Nygard-Ferguson, 1990), neural net-
orks for high thermal inertia buildings (Arigiriou, Bellas-Velidis, &
alaras, 2000), optimal control strategy for hybrid systems applied
o domestic hot water production using solar energy (Prud’Homme,
002), “soft computing” techniques for residential fuel cell energy
ystems optimisation (Entchev, 2003), a predictive and adaptive
eating control system (Morel, Bauer, El-Khoury, & Krauss, 2001),
genetic algorithm that takes into account user wishes in an

dvanced control system (Guillemin, 2003) or predictive control
or integrated room automation (Gwerder & Tödtli, 2005) applied
o concrete core conditioning systems (Güntensperger et al., 2005),
o cite a few.

For this work, a predictive control strategy that calcu-
ates the optimal values of the decision variables U(t) =
ucg(t), ub(t), uhs(t), uvlv(t)) for t = t0, t0 + �t, . . . , t0 + �tMH is
roposed. It aims to minimize the operating costs satisfying the
omfort constraints for this period. t0 is the time at which the strat-
gy is calculated, and �tMH is the length of the moving horizon. The
trategy is re-evaluated after every time step �t.

To calculate these values, a Mixed Linear Integer Program (MILP),
escribed in Eqs. (1)–(47), is solved. The objective of the MILP

s to minimize the sum of the operating costs combined with a
enalty term that is proportional to the time during which the
oom temperature does not comply with the comfort range. In
rder to give a priority to comfort, a significant relative weight
M) is assigned in the objective function to the comfort penal-
ies.

The operating costs are the sum of the gas consumption in the
ogeneration unit and backup boiler, added to cost of the imported
nd the benefit of the exported electricity. Varying electricity price
s considered to take into account the possibility for the owner to
ccess the electricity market price.

The backup boiler is modelled as a zero order model with a con-
tant efficiency. The losses in the storage tanks are modelled using
tandard heat loss equations. The minimum required temperature
or space heating water is calculated using the normalized equation

rom SIA (Société, 1988) applied to the nominal outlet tempera-
ure Text,0 and the nominal heating water supply temperature Tmin,0
Zehnder, 2004). The room temperature of the building is calculated
y a second order ARX model with the space heating delivered as

nput
�cg,th Vdhw [m ] Q
hs

[kW] Vhs [m ]

0.7–0.75 0.45 10 0.12

3.1. Mixed-integer and linear programming model

3.1.1. Objective function

U∗(t0) = min
U(t)

t0+�tMH∑
t=t0

J(U(t)) (1)

where U∗(t0) = (u∗
cg(t0), u∗

hs(t0), u∗
dhw(t0), u∗

vlv(t0)) is the set of opti-
mal values of the decision variables at t0, and

J(U(t)) = Cop(U(t)) + (pinf(t) + psup(t)) �t, (2)

is the combined cost function subject to the operating costs, the
comfort penalties and the energy model of the system studied,
described in the following sections.

3.1.2. Operating costs
Cop(U(t)) = Ccg(t) + Cb(t) + Cel(t), (3)

Ccg(t) = (Ḣcg(t) · cgas + cgon(t) · chour) �t + cstart-up · cgstart-up(t),

(4)

Cb(t) = Ḣb(t) · cgas · �t, (5)

Cel(t) = (Ėbuy
el (t) · cbuy

el (t) − Ėsell
el (t) · csell

el (t)) �t, (6)

For simplicity, the link between the costs Ccg, Cb, Cel and the
decision variables in U(t) is not explicited.

The electricity costs cbuy
el and csell

el are

cbuy
el =

{
0.07[euro/kWh], if 10 p.m. < t < 6 a.m.
0.18[euro/kWh], otherwise

csell
el = 0.06 euro/kWh

3.1.3. Comfort penalties

pinf(t) ≥ M(Tmin
h (t) − Th(t)), (7)

psup(t) ≥ M(Th(t) − Tmax
h (t)), (8)

pinf(t), psup(t) ≥ 0 (9)

Tmin
h (t) =

{
16 ◦C, if 11p.m. < t < 7 a.m.

20 ◦C, otherwise
(10)

Tmax
h (t) = 21 ◦C. (11)

where in Eqs. (7) and (8)M was 106 to make the temperature com-
fort a priority. In other words, the comfort penalties dominate the
optimisation in case of a comfort violation, otherwise, the costs
dominate, since the comfort penalties are equal zero. Note that to
use a more balanced weighting, making costs and comfort penal-
ties in the same order of magnitude, results in a broadening of the

comfort range.

In Eq. (11), the maximum temperature Tmax inside the build-
ing was introduced to avoid overheating due to free gains or
extra-heating due to attractive prices on the electricity market con-
sidering that the system does not have a cooling system.
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.1.4. The system model
Backup boiler:

˙ b(t) = ub(t) · Q̇ max
b , (12)

b · Ḣb(t) = Q̇b(t). (13)

Cogeneration unit:

˙ cg(t) = ucg(t) · Q̇ max
cg , (14)

˙ cg(t) = cgon(t) · Ėmin
cg + cgstart-up(t) · �start-up

cg,el · Ḣmax
cg �t

+ cgpw(t)[mel
1 (Q̇cg(t) − Q̇ min

cg ) + Ėmin
cg ]

+ (1 − cgpw(t))[mel
2 (Q̇cg(t) − Q̇cg,pw)

+ mel
1 (Q̇cg,pw − Q̇ min

cg )], (15)

˙ cg(t) = cgon(t) · Ḣmin
cg + cgstart-up(t) · Ḣmax

cg �t

+ cgpw(t)[mgas
1 (Q̇cg(t) − Q̇ min

cg ) + Ḣmin
cg ]

+ (1 − cgpw(t))[mgas
2 (Ḣcg(t) − Q̇cg,pw)

+ mgas
1 (Q̇cg,pw − Q̇ min

cg )], (16)

gon(t) ∈ {0, 1}, (17)

gpw(t) ∈ {0, 1}, (18)

˙
cgmin · cgon(t) ≤ Q̇cg(t) ≤ Q̇ max

cg · cgon(t)

+ cgstart-up(t) · �start-up
cg,th · Ḣmax

cg �t, (19)

gstart-up(t) ≥ 0 (20)

gstart-up(t) ≥ cgon(t + �t) − cgon(t) (21)

+nmin
cg,on∑

i=t+�t

cgon(i) �t ≥ cgstart-up(t) · nmin
cg,on, (22)

0+ñmin
cg,on−�t∑

cgon(i)�t ≥ ñmin
cg,on. (23)
i=t0

Eqs. (15, (16) and (18) describe the piecewise approximation of
he electrical output Ėcg and gas input Ḣcg of the cogeneration unit
s a function of the heat output Q̇cg (Fig. 2). These approximations

ig. 2. Piecewise approximation schematics for the electrical output of the cogen-
ration unit as a function of the heat output. mel

1 and mel
1 are the slopes of the linear

egments.
l Engineering 33 (2009) 1584–1592 1587

have been calculated using the efficiency charts provided by the
manufacturer in Solo Stirling (2005), and converting the nominal
power on these charts to the value given in Table 1 by a proportion
rule.

The second term of the right hand side of Eqs. (15) and (16)
as well as the last term of the upper bound of Eq. (19) are both
derived from the assumption that during start-up, the cogener-
ation unit runs at full regime. However, most of the power is
used to heat up the unit, and only a fraction of electrical output
(cgstart-up(t) · �start-up

cg,el · Ḣmax
cg �t) and thermal output (cgstart-up(t) ·

�start-up
cg,th · Ḣmax

cg �t) is produced. These values have been calibrated
using field tests of similar equipment (Ferguson, 2005; Knight &
Ugursal, 2005).

Eqs. (20) and (21) define the variable cgstart-up(t) that has the
value 1 at the times t when the cogeneration unit is started. Since
it is related to integer variables, it only takes the values 0 or 1, but is
defined as a real variable. Eq. (22) constrains the cogeneration unit
to run for at least nmin

cg,on hours.
Furthermore, ñmin

cg,on in Eq. (23) accounts for the hours the cogen-
eration unit sill has to operate from t0 (if it was started less than
nmin

cg,on hours ago, ñmin
cg,on > 0, otherwise ñmin

cg,on = 0).
Domestic hot water tank:

Qdhw(t + �t) = Qdhw(t) + (Q̇+
dhw(t) − Q̇−

dhw(t) − Q̇ loss
dhw(t)) �t (24)

Q̇ loss
dhw(t) = �

(1/2�) log(Ddhw/ddhw) + (1/˛1ddhw) + (1/˛2Ddhw)

× hdhw(Tdhw(t) − Tdhw,room), (25)

Tdhw(t) = Qdhw

cpVdhw
+ Tmin

dhw (26)

0 ≤ Q̇dhw(t) ≤ Q̇ max
dhw . (27)

Heat storage tank:

Ths(t + �t) = Ths(t) + (Q̇+
hs(t) − Q̇−

hs(t) − Q̇ loss
hs (t))

�t

cpVhs
(28)

Qhs(t) = (Ths(t) − Tmin
hs (t))cpVhs, (29)

Q̇ loss
hs (t) = �

(1/2�) log(Dhs/dhs) + (1/˛1dhs) + (1/˛2Dhs)

× hhs(Ths(t) − Ths,room), (30)

Tmin
hs (t) = Tmin

h (t) + �T0

2
+ Tmin

h (t) − Text(t)

Tmin
h (t) − Text

0

+
(

Tmin
0 − �T0

2
− Tmin

h

)(
Tmin

h (t) − Text

Tmin
0 − Text

0

)1/q

(31)

0 ≤ Q̇−
hs(t) ≤ Q̇ max

hs · Tmin
hs (t) ≤ Ths(t) ≤ Tmax

hs . (32)

Eqs. (25) and (30) model the losses of the storage tanks according
to Rietschel and Raiss (1973). Eq. (31) is used to calculate the mini-
mal temperature required for the heat storage tank Tmin

hs according
to the normalized equation from Swiss Engineers and Architects
Handbook (norme SIA 384/2, 1988) applied to the nominal external
temperature Text

0 and the nominal heating water output tempera-

ture Tmin

0 (Zehnder, 2004).
For the storage tanks (heat and DHW), it has been assumed that

the volume of the water contained in the storage tanks is constant,
the temperatures are homogeneous, the mixture is instantaneous,
and the losses from radiation are negligible.
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Building temperature model:

Th(t + 2�tsim) = T0
h (1 + a1 + a2) − a1Th(t + �tsim) − a2Th(t)

+b1Q̇+
h (t̃) + b2Q̇+

h (t),
(33)

˙ +
h (t) = Q̇−

hs(t) + Q̇ gains
hs (t) − Q̇ loss

h (t), (34)

˙ gains
h (t) = Q̇sun(t) + Q̇vent(t), (35)

˙ loss
h (t) = (Th(t) − Text)Rh (36)

Eq. (33) is the second order model for the inside temperature of
he building Th. This model was estimated using an Auto Regres-
ive eXternal inputs (ARX) method. The parameters a1, a2, b1 and
2 are estimated using the measurements of the system to be con-
rolled. Note that it is the temperature difference �T(t) = Th(t) −
0
h that is modelled, thus the term T0

h (1 + a1 + a2). In this study
0
h = 18 ◦C.

In Eq. (33), �tsim is the building simulation time step, that is a
raction of or equal to �t to have a better resolution of the building
ynamics. Parameters a1, a2, b1 and b2 depend on this parameter.

In Eq. (34),

=
{

t, if t + �tsim < t + �t
t + �t, if t + �tsim ≥ t + �t

,

ince Q̇−
hs(t) is constant during �t, as well as the gains.

The three-way valve balance:

˙ cg(t) + Q̇b(t) = Q̇+
dhw(t) + Q̇+

hs(t). (37)

Eq. (37) comes from energy conservation, since there is no heat
ccumulation between the cogeneration unit, the boiler and the
nput of the storage tanks. Losses in the pipes are considered to be
egligible.

The link equations:

˙ req
h (t) = Ėbuy

cg (t) + Ėbuy
el , (38)

˙ sell
el (t) = Ėsell

cg , (39)

˙ cg(t) = Ėbuy
cg + Ėsell

cg , (40)

˙ req
dhw(t) = Q̇−

dhw(t). (41)

The initial conditions, for the temperatures and energy stor-
ge tanks:

h(t0) = Th,0, (42)

h(t0 − �tsim) = Th,−1, (43)

h(t0 − 2�tsim) = Th,−2, (44)

hs(t0) = Ths,0, (45)

dhw(t0) = Qdhw,0, (46)

here the values Th,0, Ths,0, Qdhw,0 correspond to the state of the
ystem at t0.

The cyclic constraints, for all variablesAi:

i(t0 + 1 + 24) = Ai(t0 + 1), (47)

Eq. (47) is added to so that the state of the system in the opti-
isation model should be recovered after 24 h of operation, by

mposing that one day will resemble to the next. For instance, the
torage tanks temperature should be similar at the same time every

ay.

However, the state of the system at t0 may not be a “good” state,
f it is outside the temperature comfort range, therefore, it is not
easonable to aim at attaining the same state after 24 h. It is how-
ver assumed that the system can recover to a “good” state (inside
Fig. 3. Real and predicted external temperatures Text at different times t0 (not con-
secutive).

the comfort temperature range) within one hour. In consequence,
the cycling is done between t0 + 1 and t0 + 1 + 24.

3.2. Prediction

The optimal control strategy model requires four input param-
eters:

• The equipment and building characterisation parameters that
define the performances of the technical equipment.

• The set points and market conditions that represent the energy
services demand from the users such as comfort temperature at
a given time of the day, hot water requirement, electricity prices,
. . ..

• The measured variables that define the state of the system at a
given time

• The predicted values that are needed to model the energy require-
ments for the next 25 h.

Parameters like the external temperature, the hot water
consumption, electricity requirements, gains from inhabitants,
electrical appliances and solar gains are unknown for t > t0 and
need to be predicted.

The outside temperatures Text(t) for t > t0 were predicted using
the mean values of the variation of the temperature of the last 30
days (Henze, Kalz, Felsman, & Knabe, 2004). The estimated temper-
ature rise between t0 and t0 + �t is estimated by

Text(t0 + �t) − Text(t0)

= 1
N

N∑
n=1

Text(t0 + �t − 24n) − Text(t0 − 24n) (48)

therefore, for N = 30 and for k = 1, 2, . . . , �tMH/�t

Text(t0 + k �t)

30∑

= Text(t0) + 1

30
n=1

Text(t0 + k �t − 24n) − Text(t0 − 24n) (49)

here, the temperatures T(t), for t ≤ t0, are known since they have
been measured and stored.
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the controller re-evaluates the strategy and adapts it at every time
interval allowing it to compensate the perturbations and the inac-
curacies of the predictions.

Fig. 5 illustrates the behavior of the controller when the energy
stored in the domestic hot water tank is not sufficient to fulfill the
A. Collazos et al. / Computers and Ch

Fig. 3 shows an example of the results obtained for the prediction
f the external temperature using this technique. The figure shows
hat the predictions follow the general trend of the temperature
rofile.

The same prediction method is used to predict the energy
equirements Ėh and Q̇ req

dhw as well as the solar gains Q̇sun.

. Validation

The predictive controller has been validated by testing the
esponse of the control strategy using a dynamic building simu-
ation model.

The procedure described in Sections 4.1 and 4.2 is repeated alter-
atively for t0 = tstart, tstart + �t, . . . , tend. The resulting objective

unction and operating costs are calculated as shown in Section 4.3.

.1. Optimisation

Giving an initial state of the system at t0, the MILP problem
resented in Section 3 is solved to find the optimal values of the
ecision variables ucg(t), uhs(t), udhw(t) and uvlv(t) for t0 ≤ t ≤

0 + �tMH.
The optimal set-points resulting from this optimisation (u∗

cg(t0),
∗
hs(t0), u∗

dhw(t0) and u∗
vlv(t0)) are applied to the detailed simulation

odel of the building and the energy conversion system in order
o model the dynamic response of the system for the period t0 to
0 + �t.

AMPL (Fourer, Gay, & Kernighan, 2003) was used for the mixed-
nteger linear programming, and solved using the CPLEX 9.0 solver
ILOG, 2003), which uses the branch and bound algorithm to solve
he MILP problem.

.2. Simulation

The set-points resulting from the optimisation (u∗
cg(t0), u∗

hs(t0),
∗
dhw(t0) and u∗

vlv(t0)) are applied to the detailed simulation model
f the building and the energy conversion system in order to
odel the dynamic response of the system for the period t0 to

0 + �t.
The model is built using a Matlab/Simulink model of the build-

ng’s thermal behavior adjusted to correspond to the SIA 380/1
arget value single family home (Dorer et al., 2005), the heat dis-
ribution system and a non-linear cogeneration engine using the
fficiency charts on Solo Stirling (2005).

Standard and stochastic profiles of outside temperature, solar
ains, internal free gains, electricity consumption and DHW
onsumption were used to simulate the environment and the
nhabitants’ behavior. The simulation was done using the real val-
es to validate the behavior of the control system when there are
iscrepancies between the predicted values and the observed val-
es.

The discrepancies between the predicted and real values of the
nputs and outputs of the cogeneration unit are taken into account
nd adjusted to calculate the real costs of operation (electricity
ought and sold, gas consumption).

The storage tanks are simulated using the first order mod-
ls described in Eqs. (24)–(27) for the domestic hot water tank,
nd Eqs. (28)–(32) for the heat storage tank in Section 3 with-
ut the boundary constraints for Qdhw and Ths (Eqs. (27) and
32)).
When the energy or temperature of the storage tanks is below
he allowed range Qdhw < 0 or Ths < Tmin

hs , the energy required for
= 0 and Ths = Tmin

hs is produced by a backup boiler. This additional
nergy gives an estimation of the reserve needed for the storage
anks.
l Engineering 33 (2009) 1584–1592 1589

On the other hand, if these values are above the upper limit,
Q̇dhw > Q̇ max

dhw or Ths > Tmax
hs the additional energy is assumed to be

evacuated and lost to the environment.

4.3. Optimal costs

The system performance costs J̃
∗

and C̃
∗
op for a given period

tstart ≤ t ≤ tend are given by

J̃
∗ =

tend∑
t=tstart

J̃(U∗(t)) (50)

and

C̃
∗
op =

tend∑
t=tstart

C̃op(U∗(t)) (51)

J̃ and the C̃op differ from that of Eqs. (1) and (3) because they take
into account the real operating costs and penalties that result from
the simulation model described in the previous section.

5. Results

The controller strategy and simulation was tested during five
days in spring. In fact, this season is more interesting for validating
the control strategy, because mild temperatures will result in more
modulation of the cogeneration unit load charge. During summer,
the cogeneration would stay off most of the time, since there is no
need for space heating, and during winter it will run mostly at full
power.

During the spring period, the operating costs for the system with
the cogeneration unit are found to be 13% lower than the operating
costs of the system using a boiler and importing the electricity from
the grid and considering the same storage strategy.

Fig. 4 compares the room temperature Th with its set-point
and the temperature predicted by the controller for three non-
consecutive strategy re-evaluation times. This picture shows that
Fig. 4. Resulting and predicted strategies for the room temperature, cogeneration
unit load charge and heat storage tank load charge for different times (not consec-
utive).
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Fig. 7. Inside temperature Th, cogeneration unit load charge ucg and the heat storage
tank load charge uhs for different time sampling intervals.

Table 2
Operating costs C̃

∗
op and cost function value J̃

∗
as well as calculation time �tcalc for

time steps �t = 0.25 [h] and �t = 1 [h]. Simulation for 5 days in spring (starting at
day 46). Horizon length �tMH = 24 [h].

�t

˜

Fig. 5. Resulting and predicted strategies for domestic hot water tank.

equirements. This is the case because the prediction method used
esults in a flat and long domestic hot water consumption from 1135
o 1150, while, the real consumption presents a peak between 1136
nd 1138 resulting in a consumption that will empty the tank. In
hese cases, the energy required is accounted as if it was produced
y the backup boiler.

Fig. 6 illustrates the controller performance when the predic-
ions of the inside temperature Th differ from the real one and the
emperature goes below the required temperature. In such a case,
he strategy is adapted automatically in order to reach the comfort
emperature set-point as quickly as possible. As Fig. 6 shows, the
trategies for the ucg, and uhs are adapted in order to produce more
eat and increase the amount of heat that is delivered for space
eating.

.1. Analysis of the strategy re-evaluation frequency

Fig. 7 shows the results for calculations with a different value

or �t. For �t = 0.25 [h] the strategy modulates considerably

ore than when the strategy is re-evaluated every hour. This
ay not be an advantage in real applications. Moreover, as the

gure shows, there is not a considerable difference on the gen-

ig. 6. Resulting and predicted strategies for the building inside temperature.
0.25 [h] 1 [h]

C̃
∗
op[euro] 29.11 28.33

J
∗ × 10−6 1.24 2.49

eral aspect of the resulting inside temperature or on the strategy
for uhs.

As Table 2 shows, the resulting strategy for �t = 0.25 [h] has a
lower cumulative value of the resulting objective function J̃

∗
, since

the strategy is re-evaluated at shorter intervals and can compensate
earlier for prediction and model imprecisions.

For �t = 0.25, higher operating costs are obtained since com-
fort is the priority of the control strategy. Furthermore, for �t =
0.25 [h], more calculation time is required. In fact, the size of the
problem (in particular integer variables) and the number of strat-
egy calculations are multiplied by a factor 4. Table 3 compares the
computing time for �t = 1 h and �t = 15 min. When �t = 1 h the
calculation time is very small.

In average, the time for writing files, simulation and communi-
cation between Matlab and AMPL corresponds to 1.3 s per iteration
(not included in the values shown in Table 3). This time is inde-

pendent from the re-evaluation time �t. In real applications, this
will correspond to reading and storing the acquired data from the
sensors and the database.

This shows that it would be possible to centralize the calcula-
tion of the strategies in a single calculation unit that will send the

Table 3
Size of the problem (number of variables and constraints) and mean, maximum and
minimum calculation times �tcalc per optimisation for different re-evaluation times
�t.

Time step �t in [h]

0.25 1

Variables (total) 4560 1176
Binary 192 48

Constraints 3879 999
Mean �tcalc [s] 16.98 0.30
max �tcalc [s] 91.27 0.54
min �tcalc [s] 0.50 0.04
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Fig. 9. Constant and time dependent electricity price. Regular day.
ig. 8. Energy stored in the storage tanks with and without the cyclic horizon
pproach.

trategies to many buildings, instead of a local calculation unit for
ach building, that will only work for a fraction of a second every
our.

.2. Cyclic model analysis

Fig. 8 compares the energy management with and without the
yclic constraint (Eq. (47)).

Two horizon lengths have been considered, �tMH = 24 [h] for
n open horizon and �tMH = 25 [h] for a cyclic horizon.

The strategy that uses the cyclic constraint features a better
anagement of the storage tanks avoiding to store heat in the tanks

or longer periods and therefore reducing the storage losses. Table 4
hows that the operating costs for the cyclic strategy are 2% lower
ith no additional penalty on the comfort or in the reserve energy

equired.
Fig. 8 shows that for the storage tanks, the cyclic control strategy

tores less energy, resulting in a more borderline control strategy.

.3. Considering variable electricity market price

In the Virtual Power Plants perspective (Management Summary
eport of EU-Project No. NNE5-2000-208, 2005), the case where the
lectricity price is not constant has been assessed to demonstrate
he capabilities of the controller to adapt the strategy in order to
ake advantage of a time dependent electricity price. The controller
as used from the electricity provider point of view using either a
onstant or a time dependent electricity price and assuming that
he price for the electricity is the same for incoming and outgoing
lectricity (assuming 6% grid losses).

Fig. 9 compares the strategies with a varying electricity price
nd a constant electricity price on a regular day. The varying price

able 4
perating costs C̃

∗
op and objective function value J̃

∗
, and maximum additional energy

equired for cyclic and open strategies. Simulation for 5 days in spring (starting at
ay 46).

Not cyclic Cyclic
�tMH = 24 [h] �tMH = 25 [h]

˜ ∗
op [euro] 28.33 27.82

∗ × 10−6 2.49 2.11
ax{Q̇ add

dhw
} [kW] 3.06 3.06

ax{Q̇ add
hs

} [kW] 0.24 0.25
Fig. 10. Constant and time dependent electricity price. Extreme day.

reduces the cost of energy supply by 5% with no additional comfort
violation.

Fig. 10 illustrates the control strategies in a day where the elec-
tricity has a very high peak. In this case, operating costs reduction
can be 30%.

Both figures illustrate how the controller adapts the strategy to
take advantage of higher electricity prices. In fact, when the price of
electricity varies, the cogeneration unit is first stopped in order to
empty the storage tank before starting cogenerating heat and elec-
tricity when the price is high. When considering the temperature
in the room, one can observe that the controller even used the heat
capacity of the building to maximize the cogeneration profit.

The time dependent prices were taken from the European
Energy Exchange website1, and the constant electricity price was
the arithmetic mean of the time dependent electricity price over
the time studied.
6. Conclusions

A model based predictive controller has been developed using a
Mixed Linear and Integer Programming model to define the optimal

1 http://www.eex.com.

http://www.eex.com
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SOFC-based decentralized polygeneration system for providing energy ser-
vices in an office-building in Tokyo. Applied Thermal Engineering, 26(13), 1409–
592 A. Collazos et al. / Computers and Ch

anagement strategy of micro-cogeneration systems in building
pplications. The MILP model takes into account starting and shut-
own of the unit as well as the partial load efficiency using a
iecewise formulation. The model includes the balance of the hot
ater storage tanks as well as the heat accumulation in the building

nvelope.
The controller was validated with a numerical model of the sys-

em that is more detailed than the model used for the predictive
ontroller.

The predictions of temperature and solar gains as well as the
onsumption of domestic hot water and electricity are obtained.

The cyclic horizon strategy has proved to deliver a better perfor-
ance than the open horizon strategy.

In the virtual power plants perspective, this controller shows an
bility to adapt the strategy in order to profit from fluctuating price
f the electricity.
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