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A BSTRA CT 

The present paper compares classical control systems with knowledge-based 
systems in the control of  building designs to achieved comfort conditions. 
Initially the goal has been the minimization of energy usage. For this target, 
thermostats and PID controllers have been employed. Adaptive and ad 

hoc first-generation controller implemented for the improvement of  specific 
problems are described next. The achievement of thermal and visual comfort 
conditions within living and working space fits the application of fuzzy logic 
expert systems. The structure of  a fuzzy control system is described This 
paper also discusses the capabilities of  the fuzzy logic expert system in the 
achievement of optimal resource management in passive-building designs. 

1 I N T R O D U C T I O N  

Solar-building designs traditionally need the implementation of some 
kind of controller to ensure internal conditions approaching those intended. 
These controllers have the task of regulating the climate by using whatever 
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sub-system is available and controllable, i.e. curtains, blinds, ventilation, 
auxiliary heating and cooling, etc. Initially the goal has been the mini- 
mization of energy usage, and simple systems like thermostats have been 
employed. 1,2 Subsequently more complicated tasks have been targeted, 
namely the achievement of thermal and visual comfort conditions within 
the living and working space. 

As the systems grew more complicated, by adding more thermal sub- 
systems, so the demands put on the controller rose. Consequently new 
techniques have been empoyed. Optimal and adaptive controllers have been 
applied. 3-13 Another suggested approach is the use of ad hoc controllers, 
targeted mainly at the goal of managing the available sub-systems properly, 
rather than minimizing the usage of auxiliary energy. These employed 
simple algorithms in which a degree of expertise and decision-making 
capabilities have been built in. 14-16 Finally advances in both hardware 
and software technology have made the use of knowledge-based systems 
feasible. 17-18 Only the latter are capable of handling fuzzy requirements, 
like 'comfort', particularly when coupled with the human perception of 
comfort.~9-22 

The present paper aims to compare these basic approaches and their 
assessment in the achievement of 'optimal' resource management in solar- 
building designs. 

2 THERMOSTATS AND PID CONTROLLERS 

Temperature regulation is the oldest and simplest means of improving 
our comfort. Thermostatic control aims at the regulation of temperature 
by auxiliary heating or cooling. Thermostats offer closed-loop control of 
a single device, i.e. either heater or cooler (Fig. 1). This type of controller 
achieves only two states, ON/OFF, which are fairly rapidly cycled. The 
cycling rate can be reduced by introducing a dead band, which has the 
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Fig. I. Bang-bang control of a single device (Omf, desired temperature; Oi, indoor 
temperature). 
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side-effect of increasing the temperature oscillation amplitude. In this way, 
temperature overshoot is likely to occur, particularly in large thermal- 
inertia buildings, which in turn leads to a waste of auxiliary energy.~'2 

To reduce this problem, proportional integral differential (PID) con- 
trollers have been employed. These control auxiliary heating or cooling too, 
but implement an integral and a differential term, which, if they are tuned 
properly, reduce overshooting and temperature oscillations considerably. 
PID controllers are governed by the following expression: 

b/ ---- K p ( 0  i - 0re 0 + K I 0 i - 0ref) dt + K D d/dt ( T  i - 0ref) 

The PID controllers achieve the above result at a penalty. If their gains 
are improperly set, instability might occur, i.e. near optimal conditions 
are never met, but the temperature oscillates uncontrollably between the 
maximum limits set by the building dynamics and the auxiliary heater/ 
cooler characteristics. 

3 OPTIMAL AND A D  H O C  CONTROLLERS 

Optimal controllers have been introduced to replace dead band thermo- 
static control with an optimal linear regulator scheme. 2 The improvement 
stems from the fact that optimal regulators process a much more accurate 
methematical description of the building dynamics. Although an exact 
building dynamics description is very difficult and leads to complicated 
mathematical expressions, simplified modelling is still better than no 
modelling, as is the case with dead band controllers. In addition optimal 
controllers using weather prediction algorithms and minimization criteria 
have been developed. 5,~3 Optimal controllers need a simplified-state 
dynamic model for the behaviour of the building, of the following form: 

= A X  + B U  + E W  

Y =  C X  

This is the classical linear system-state space-description with external 
input and measurements. Matrices A, B, C, E are usually defined by 
employing identification techniques and are unique for each building. 
Vectors, X, U, W, Y are the internal system state (e.g. temperature), the 
control input, the random disturbance and the measured variable, respec- 
tively. 

Predictive control offers in addition a system-input prediction, e.g. 
solar radiation prediction. ~° This knowledge can be used to modify the 
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control decisions. Basic predictions are expressed as simplified adaptive 
models, or as tabulated values. In addition, other information, such 
as control input restrictions, can all be combined to achieve a scheme 
capable of controlling the present system state and calculating the effect 
of certain actions in the future. 

All control strategies in the optimal controller approach, aim at the 
reduction of a mathematical index, i.e. the criterion. Following Pontryagin 
and classical optimal control theory, the performance index is described 
in the form 

I T J = El(t)[Oi(t) - 0ref] 2 dt  + K E2( t )U( t  ) d t  
o 

Improvement of the value of this performance index results from the 
reduction of auxiliary energy usage. 4,23 The minimization of the perfor- 
mance index leads to the determination of an acceptable control law.~'~2 

The performance index function has two terms: the first expresses the 
departure of the internal temperature from the set point; the second 
expresses the usage of auxiliary energy. It should be noted that, in a 
rather abstract way, the minimization of the performance index criterion 
trades off temperature departures from the set point with the usage of 
auxiliary energy. This is the actual role of weight factors E l ,  E 2  and K; 
K is actually a normalization factor. In the case where the control input 
is not singular, i.e. vector U is of dimension 2, then bilinear control 
results. For example, such a case arises if a curtain is used in addition to 
auxiliary heating/cooling. In all cases, the optimal control law is calculated 
by applying the Pontryagin maximum principle, which is widely used in 
optimal control theory and has been applied for the control of thermal 
systems.  2,4,6,7 

A problem in the whole process is that the mathematical models are 
unique to the particular building. To overcome this problem, real-time 
parameter identification techniques have been applied. 9,24 These have 
finally evolved into the application of even more complicated techniques, 
like adaptive modelling, 8 which offer in several situations considerable 
improvements over the classical linear optimal controllers. These techniques 
have been coupled with others, such as weather prediction, aimed at inte- 
grated control of all available actuators like shading, ventilation as well 
as auxiliary heating and cooling. 

The passive-building control system of TU Delft (Delft University of 
Technology) and the control system of CSTB-EMP (Centre Acientifique 
et Technique du Batiment, Ecole des Mines d e  Paris) utilize weather- 
prediction models to estimate solar radiation, external temperature and 
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wind speed f rom available measurements .  Solar radiat ion on a horizontal  
plane can be approx imated  by a sinusoidal funct ion of  the sun's  eleva- 
tion, with amplitude/max: 

Itot(k + kl) = /max sin (/3(k + kl)) 

where /max is a funct ion of  average solar radiation,  k 1 is the prediction 
interval and /3  is the sunshine durat ion.  An A R M A  model  is used for the 
predict ion of  the external tempera ture  using/tot as an input  signal: 

Oo(k) = ao + alOo(k - dl)  + ' ' '  + amOo(k - din) 

+ boltot(k) + . • + b f l to t (k  - n)  

+ doe(k)  + ' ' '  + d , ( k  - n)  

where d i =  1 + N i with i = 0, 1, 2, 3 . . .  and N -- number  of  t ime steps. 
The  e ( k )  is the predict ion estimator,  taken as the difference between the 
predicted value at t ime k + 1 and the measured  value at t ime k. Wind 
speed is predicted using an A R  model:  

Vw(k) = ao + a t V w ( k  - 1) + . .  - + a ,  V w ( k  - n)  

+ e ( k )  + d l e ( k  - 1) + - -. + d.~e(k - m )  

The state of  the art in opt imal  control ler  design is described in Refs 8, 
9 and l l  and is the result of  a CEC-sponsored  P A S T O R  project. The 
systems developed can handle  passive solar gains, natural  or forced 
ventilation, auxiliary heating and cooling and lighting. The Passive Building 
Control  System of  T U  Delft and the Contro l  System of  C S T B - E M P  use 
a data-acquisi t ion system f rom local controllers (TU Delft) and f rom 
meteorological stations, an adaptive controlled room model and a weather- 
predict ion algori thm. Contro l  is split into two levels. The  first caters for 
opt imisat ion and energy management .  The  second comprises all local 
controllers for each separate space (Fig. 2). The  activation of  the suitable 
lower-level controller  is the result of  a cost minimizat ion funct ion at the 
higher level. The  following criterion is minimised: 

J = [0i(k + llk) - Ord(k + 1)] 2 + ru2(k)  

where 0i is the internal temperature ,  0ref is the reference point,  and r is 
the weight factor for u. 

The  C S T B - E M P  system utilises a single control-level with a weather  
predict ion for the opt imisat ion of  solar gain systems (including shading 
controls) and  auxiliary heaters. The Pontryagin  min imum principle is 
applied in order  to calculate the opt imal  control  strategy. 
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Other characteristics of these systems are: (a) They use parameter- 
identification techniques, otherwise the systems developed could be ap- 
plied only to the specific building for which they are tuned. (b) They use 
the 'discomfort parameter' to represent thermal comfort. Also the glare 
index DGI is not used to regulate visual comfort, although lighting and 
contrast are controlled. (c) The CSTB-EMP system consists of two tem- 
perature-regulators, operating at the same priority level; the first utilising 
auxiliary heating and the second ventilation. Instability may occur by the 
interaction of these systems, so that their set points must be set suffi- 
ciently apart. 

Another system is the NAPAC-Armines (Centre d'Energique) system, 
described in Ref. 11. The system controls shading, auxiliary heating and 
ventilation. It does not use weather prediction but employs system 
parameter identification. The the applicable control strategy is defined by 
logic diagrams. 

All the systems described above, either ignore thermal comfort completely, 
or use the term 'discomfort parameter' to estimate thermal comfort in the 
controlled space. The 'discomfort parameter' is defined as the weighted 
number of hours that the indoor temperature exceeds 0ref: 

]~(0 i -- Oref)nh(°Ch) 
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This is however a very limited interpretation of the thermal comfort 
concept, restricting it to some form of prolonged overheating. A wider- 
scope definition involves the thermal comfort index, defined by FangerY 
This index, however, involves fuzzy variables and is not suitable for 
handling by classical optimal-control techniques. 

The practical operation of the above system has shown two major 
results. (a) During summer, there is no significant improvement obtained 
by using the advanced optimal-control systems. The simple rule 'building 
cooling occurs by natural ventilation if the internal temperature rises above 
22°C ' gives results as satisfactory as those from the advanced control 
system. (b) During winter, the advanced control system achieves 20% 
energy savings. It should be noted that the above schemes are designed and 
tested on fairly simple building constructions) e.g. a single room. Their 
adaptation for handling a more complicated building, like an office building, 
is not trivial and will probably require considerable effort and tuning. 

Although the above techniques have improved the actual controllability 
of the system, they still do not overcome the set point departure/energy 
usage trade-off abstraction, the building modelling problems and the 
system operation in a manner totally unfamiliar to the user. Conse- 
quently the control laws achieved are sub-optimal in practice and can be 
surpassed by other heuristic, but simpler, algorithms. This has led to the 
development of a~ hoe controllers, whose main target is the management 
of the actuators of a building in a logical and clear fashion, rather than 
minimizing an abstract mathematical index, as optimal controllers do. 

Ad hoc controllers 

These use simple algorithms, which are easily implemented using limited- 
memory single-chip computers. Temperature and other parameters are 
measured, namely humidity, both inside and outside of the controlled 
building. If other components are used, like thermal stores, solar collectors 
etc, their conditions are also monitored. The algorithm aims always 
to switch ON and OFF the various sub-systems in a logical and clearly 
understood manner. For example, if overheating is detected, then the 
auxiliary heater is switched OFF first, ventilation is employed as the next 
logical step and the ventilation switched OFF and cooling is employed as 
the final measure. Several of these algorithms can be stored in a fairly 
low-capacity memory and be implemented according to conditions in the 
field. In this way, no building models are required. However, the proper 
management of all thermal sub-systems results in near-optimal control, 
often more efficient than the optimal-control strategies obtained from 
theoretically optimal controllers.  15'~6'26 A d  hoc controllers, due to their 
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algorithmic nature are incapable of handling fuzzy requirements, such as 
comfort conditions. These need the use of more sophisticated techniques, 
such as the application of expert-system techniques. The implementation 
of logic rules in a systematic way enables the construction of more 
complicated algorithms than the heuristic ones implemented in ad  hoc 

controllers. These are then capable of handling more complicated concepts 
like human comfort. On the other hand, rapid advances in hardware and 
software technology have increased the capabilities of microcomputer 
controllers considerably over the last decade. Consequently the applica- 
tion of expert-system techniques is economically quite feasible. 

4 EXPERT SYSTEMS IN BUILDINGS 

Several expert systems or knowledge-based systems (KBSs) have been 
developed and realised in buildings or HVAC systems. ~8 Their main goals 
are: (a) system-state monitoring, i.e. the deduction of system state from 
measured quantities; (b) diagnostics, i.e. for solar radiation from available 
measurements and other system input, such as technician observations, 
and (c) design, i.e. building designer assistance to achieve stated goals. 
Application programs exists for fault diagnoses of several HVAC com- 
ponents, HVAC component selection for new designs and for energy- 
resource management. 3 

All KBSs used for diagnostics comprise two major subsystems: a 
knowledge base and an inference engine. 17 The knowledge base consists 
of a rule set of I F - T H E N  type, such as the following: 

IF symptom is too-hot 
and 

thermostat-set point is correct 
and 

air-flow is good 
and 

air-flow temperature is cold 
THEN the general cause is 

cooling-load size is too small (cf. 80) 

The rule incorporates parameters (e.g. symptom and thermostat set-point) 
and values (e.g. too hot). A general cause parameter, set by application 
of the rule, reflects whether all rule conditions are met. The 'cf. 80' term 
is an uncertainty factor, reflecting the fact that even if all rule conditions 
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are met there is only an 80% certainty that this is actually so. This 
uncertainty factor is introduced to allow classic KBSs to handle uncertain 
situations. A much more structured approach is offered by fuzzy logic 
expert systems, as is described later in this paper: it is designed to handle 
certainty factors, fuzzy variables, describe hypotheses uncertainty and 
obtain uncertain conclusions. 

5 FUZZY LOGIC EXPERT SYSTEMS IN BUILDINGS 

The above analysis shows that the development of a universal control 
system, without specific building models, is required. This system must 
have decision-making capabilities in a fuzzy environment to manage the 
resources, particularly in a random-input environment e.g. in cloudy 
weather conditions. Another important issue is the participation of 
the user in the determination of the environmental conditions. A fuzzy 
conditions problem is created because of the subjectivity of the target 
environmental conditions and, consequently, the use of fuzzy logic fits 
naturally into the problem. 

Recently, the implementation of fuzzy control for an air-conditioning 
system has been presented. This system has two controlled variables (indoor 
temperature and relative humidity) and three controlling elements (cooling, 
heating and humidifying valves). Although the system works satisfactorily, 
it does not utilise the thermal-comfort concept. 29 

Fuzzy rule-based supervisors for self-tuning controllers, based on the 
well known generalized predictive control algorithm for HVAC applica- 
tions, have also been developed. This system improves the stability and 
the performance of the classical controller, showing that at the decision- 
making level, the adaptive control schemes are rather limited. 27 

An integrated fuzzy expert system for a passive building is described in 
Ref. 22. This system incorporates thermal and visual comfort and can 
handle passive solar gains, natural or mechanical ventilation, lighting, 
auxiliary heating and cooling. The system developed implements a set of 
fuzzy rules expressing the control strategies applied in all foreseeable 
conditions. The fuzzy logic expert system consists actually of two, inter- 
acting, fuzzy sub-systems. The first fuzzy sub-system is used for the 
thermal comfort and the second is used for visual-comfort condition. 19 21 
The fuzzy logic system handles naturally the user-defined comfort-level 
requirements, although these are usually rather vaguely defined. The 
expert system inputs are the PMV index, outdoor temperature, illumination 
and daylight-glare index. The outputs are the auxiliary heater, the cooler, 
ventilation window angle, shading and artificial-lighting actuator signals, 
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Fig. 3. Functional blocks for the fuzzy control-system. 

driving the physical process actuators. The outdoor temperature is used 
as the input because it affects natural ventilation and PMV. 

The advantages of the proposed system are the following: 

(a) The system achieves integrated control for passive solar buildings. 
(b) High-level control variable (PMV)is used for comfort control, 

instead of indoor temperature used by classical systems for energy 
saving. 

(c) The energy consumption is within acceptable limits. 
(d) The user participated in the formulation of the comfort conditions. 
(e) Thermal and visual comfort are achieved simultaneously. 
(f) The fuzzy system can be used for any building at no additional cost. 
(g) The PMV control results in keeping the indoor temperature and 

the relative humidity within the ASHRAE comfort zones. 

The fuzzy-system architecture 

The fuzzy system consists of three functional blocks. Fuzzification (FF), 
inference engine (IE) and defuzzification (DF) (see Fig. 3). 

The decisions on the precise quantization levels and the shapes of the 
membership functions are largely ad hoc and based on the nature of 
the fuzzy control variables. In this system, the membership functions 
of the fuzzy variables are triangular shapes, except for the comfort zone, 
where the PMV membership function has a trapezoidal shape. 

The fuzzification block maps a real signal into the appropriate fuzzy 
set. Because the system is a multi-variable complex fuzzy system, the 
inference method used is based on the decomposition of multi-variable 
control rules. 28 The last functional block is a defuzzifying process, 
required to produce crisp actuator signals from their fuzzy counterparts. 
This is essentially the reverse operation of the fuzzifying process and uses 
the center of area method ( c o m ) .  14 

6 CONCLUSIONS 

The present paper presents techniques used for the achievement of ther- 
mal comfort in buildings. The two main approaches are adaptive control 
and the implementation of expert-system techniques. Adaptive control in 
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most cases interprets comfort  in a rather limited manner,  whereas expert- 
system techniques focus on the use of fttzzy reasoning. A fuzzy description 
of comfort  conditions fits naturally into the problem. This makes it 
necessity to use a fuzzy logic expert system with a fuzzy rule data-base, a 
fuzzy logic inference engine and fuzzification and defuzzification inter- 
faces. Although energy consumption may not be optimal, it is shown that 
it is satisfactory. The concept of  the fuzzy logic expert system is easily 
expandable to more complicated buildings. Finally, a possible fusion of  
the two major approaches is the splitting of  the control requirements in 
logical levels, the lower ones catered for by fuzzy expert systems. In other 
words the higher levels, where single-resource management  ensues will 
implement local adaptive-controllers. The techniques presented here may 
well be implemented in other similar systems like greenhouses and may be 
easily extended in fairly complex thermal-systems as occur in centrally 
heated villages. 
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