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Abstract
In this paper a new approach for short-term load prediction in buildings is shown. The method is based on a special kind of artificial neural

network (ANN), which feeds back a part of its outputs. This ANN is trained by means of a hybrid algorithm. The new system uses current and

forecasted values of temperature, the current load and the hour and the day as inputs. The performance of this predictor was evaluated using

real data and results from international contests. The achieved results demonstrate the high precision reached with this system.
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1. Introduction

In [1], an intelligent building was defined as the one that

maximizes the efficiency of the service with a minimum

cost. This author enumerates a list of intelligent building

components, placing in first place, the energy management

system (EMS). This system controls the building energy

consumption. For a good operation of EMS, accurate

information of this consumption is needed in order to know

how it behaves in a short-and medium-term. This ‘‘short-

term load forecasting’’, STLF, can predict electric load of

regions, countries and even in buildings or industries during

a period of minutes, hours, days or weeks.

The reported literature in the last years about artificial

neural networks (ANN) applications in the prediction of

electric load demonstrates that this technique is one of the

more successful in areas so dissimilar like countries or

buildings. In these studies, the ANN have been applied in

order to correlate climatic conditions, schedules, etc., with

the variations of the load, in order to predict, either the picks

of daily load, the total consumption, or the load at every
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hour. The advantage of ANN with respect to the other

models is their ability of modeling a multivariable problem

given by the complex relationships between the variables.

Also, ANN can extract the implicit non-linear relationships

among these variables by means of ‘‘learning’’ with training

data. Many excellent results in real applications have been

reached with ANN in STLF using a wide variety of ANN

architectures. The works of [2–4] are a good example.

An issue that has been investigated in the last years in

order to solve the problem of STLF with ANN has been the

selection of the best structure to use. In a suggestive work,

[5], several rules are given in order to build a quasi-optimal

neural network for STLF. Those that plan to use a frequently

re-trained recurrent network are very interesting.

The main objective of this paper is to present a new

approach for load prediction with high precision using a

feedback neural network trained by means of a hybrid

algorithm. In order to validate the proposed method, data and

final results from two contests of the ASHRAE has been

utilized. The paper is divided in 10 sections. After Section 1,

Sections 2 and 3 show the ANN architecture and the training

method. Sections 4 and 5 illustrate the general configuration

of the predictor. In Sections 6–9 the results are presented, and

finally, Section 10 describes the conclusions of the paper.
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Nomenclature

CV coefficient of variation of the root-mean-

square error

E error of the Neural Network

G specific parameter for change from MROM to

BPM algorithm

MBE mean bias error

MAPE mean absolute percentage error

q�1 a one-step delay

u(k) system input

wk weights of the Neural Network at iteration k

x̂ðk þ 1Þ prediction of the system state x

ŷðk þ 1Þ prediction of the system output

z measured output

e0 specific parameter for change from BPM to

MROM algorithm
2. The used ANN and its training

In this paper, the key idea is to use as predictor a special

kind of ANN with a feedback (FB) structure [6] that is

shown in Fig. 1. This network operates as follows: the

system input u(k) and a presumable value of the initial state

x̂ð0Þ are passed through a multilayer neural network (with

any topology) whose output, for the next sampling instant

k + 1, is the prediction ŷðk þ 1Þ of the true system output y,

and the prediction x̂ðk þ 1Þ of the system state x, which is fed

back to the network via a one- step delay, q�1. The

prediction error eðk þ 1Þ ¼ zðk þ 1Þ � ŷðk þ 1Þ, with

respect to the measured output z, is used to train the

network. By ‘‘mapping’’ x̂ð0Þ and u(k) to x̂ðk þ 1Þ and

ŷðk þ 1Þ, the FB structure can approximate, to any degree of

accuracy, using a finite number of hidden nodes, any

dynamic system for which a state-space description with

functions g and h exists.

xðk þ 1Þ ¼ hfxðkÞ; uðkÞg

yðk þ 1Þ ¼ gfxðk þ 1Þg
The algorithm for training this ANN, in the original

paper, is a hybrid one formed by the well-known delta rule

and a random search [6].
Fig. 1. General schema of the feedback neural network designed in [6].
3. Structure of the network and training

It is also explained in [6] that any multilayered topo-

logy of ANN can be used for supporting the FB structure.

In our paper a Perceptron has been used, composed of

one hidden layer and neurons with hyperbolic tangent

transfer functions due to the reported results about the

improvement, in terms of the required number of iterations

during learning, of a neural network that uses the

backpropagation method (BPM) algorithm [7]. In the

configuration shown in Fig. 1 errors produced by the states

are not analysed during training. However, if they are

known, it is also possible to train using these errors and thus

to get a greater precision. In fact, this is the proper way

when a mapping u(k) and x̂ð0Þ to ŷðk þ 1Þ and x̂ðk þ 1Þ is

required.

The FB ANN has been trained using a similar strategy

suggested by [8] (in our paper, it was decided to use the

classical BPM with increments of the learning coefficient, in

order to avoid long time execution when the BPM is

running). That method works as follows: first, the training is

carried out using a modified version of the BPM.

When the decreasing of the total error function is lower

than a specified value e0, jE(wk+l) � E(wk) < e0, the hybrid

algorithm conjectures that the current point is near to a local

minimum, so the random optimization MROM (modified

random optimization method) [9] is activated. The BPM is

executed again if the decreasing of the error function

becomes bigger than max (E(wk)G,e); (0 < G < 1) [8]. This

strategy was also improved by using the method proposed in

[10] where the MROM was enhanced by means of some

heuristic but effective ideas: to use the same Gaussian

random vector of parameters in the next iteration if the total

error function was decreasing, and to change the variance in

dependence of this error decrease.
4. The general structure of the predictor

The general structure of the predictor is shown in Fig. 2.

As it can be observed, it is a cascade of predictors. The first

of them, the temperature predictor (any kind) provides the

presumable value of the environmental temperature at the

hour to predict the load. Important efforts have been

developed to predict on line this temperature value [11–13].
Fig. 2. General Structure of the load predictor.
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The output of this predictor becomes one of the inputs to the

second network: the load predictor.

Fig. 2 illustrates how the input temperature (the unique

environmental variable) is utilized. Instead of using a

forecasted value of this variable as an input for providing the

most probable value that corresponds to the relationship

load/ temperature, a small change in the consideration of this

input has been introduced: to use the difference (1).

DT ¼ Tkþ1 � Tk (1)

where Tk+1 is the predicted temperature for the period k+1,

and Tk is the value of temperature measured in the instant k.

This signed difference DT, would indicate if an increment (or

decrease) of the environmental temperature has occurred

during the time period between the hour or instant of

prediction and the following period, and therefore, a possible

increment or decrease of the load.

The second element of this database is the time: the hour

of the day and the day of the week. The hour is coded by

means of its sine and cosine values as usual in reported

literature [14,15]. In regard to the days, it is well known that

during weekends and holidays, public and social buildings

consume less amount of energy independently of the

ambient temperature. This change is determined by the

schedule of work. (In [16], for instance, a special emphasis

was made on weekend and non-working days). This

circumstance makes that, in spite of the fact the ambient

temperature has a tremendous importance as an input

variable in STLF on the normal days, the accuracy of the

temperature prediction looses importance during weekends,

because the operation of the building in these days requires a

lower consumption. Given this condition during weekends

or holiday days, one could simplify the predictor system

analyzing only the normal days. However, a FB ANN has

been chosen, so, it is not possible to interrupt the dynamic of

the network every five days, so it was decided to include

these types of days. That implies to add an index in the

database that specifies to the ANN what type of day it is.

This index is also formed by two vectors with the sine and

the cosine of the days of the week (see Table 1). The third

input is, perhaps, the most important one: the current load.

Since this predictor is designed to predict the load at k+1, the

used value for this input is the value of the load at the hour k,

supplied by the energy consumption instrumentation. The

information of this value has a supreme importance since it

reflects how the energy consumption of the installation

behaves. While other systems need, for example, data like
Table 1

Database used for load prediction

Variable Data

Temperature ðTd�n
h¼1 � Td�n

h¼0 Þ; ðTd�n
h¼2 � Td�n

h¼1 Þ . . . ðTdþ1
h¼0 � Td

h¼23Þ
Hour sin ðpððhd�n

0 . . . hd
23Þ=12ÞÞ; cos ðpððhd�n

0 . . . hd
23Þ=12ÞÞ

Day sin ðpððdd�n . . . ddÞ=3:5ÞÞ; cos ðpððdd�n . . . ddÞ=3:5ÞÞ
Input load Cd�n

h¼0 . . .C
d
h¼23

Output load Cd�n
h¼1 . . .C

dþ1
h¼0
the occupation level, values of the environmental variables

(which sometimes include information on raining, for

example), it could be said that, by introducing the actual

value of the load to the network, one is introducing the effect

produced by all these situations until the instant k, therefore,

the task of the predictor is to predict the next value in

dependence of the quality of the ‘‘acquired knowledge’’

during the previous training. This database is formed, then,

by a ‘‘moving’’ window that contains a matrix of data n 
 m,

(see Table 1), where: n is equal to 6 inputs and m is equal to

the number of days, that is, the size of the window in days

multiplied by 24 h. In these simulations, a window of only

21 days has been used. The window is normalized between

the values [�0.9,0.9] by means of (2). Specifically, in this

paper, the difference (1) was normalized by adding �10 8C
to the maximum and minimum of this difference, while, for

the current load input, �50 kW were added to the maximum

and minimum values of the consumption on the period

formed by the moving window (Table 1).

Xn ¼ 1:8
X � Xmin

Xmax � Xmin

� �
� 0:9 (2)

In Table 1, the nomenclature is as follows:

ðTd�n
h¼1 � Td�n

h¼0 Þ; ðTd�n
h¼2 � Td�n

h¼1 Þ . . . ðT
dþ1
h¼0 � Td

h¼23Þ: set of

differences between the temperatures at the hours (h + 1)

and (h) from the day in which the window of data begins

(d � n days), until the difference between the temperature of

the hour 00:00 of the day (d + 1) minus the temperature at

hour 23:00 of the day (d) in which the training is carried out.

sin ðp ð ðhd�n
0 . . . hd

23Þ=12ÞÞ; cos ðp ð ðhd�n
0 . . . hd

23Þ = 12Þ Þ:
code of the hours. The hours go from 0 to 23.

sin ðpððdd�n . . . ddÞ=3:5ÞÞ; cos ðpððdd�n . . . ddÞ=3:5ÞÞ: code

of the days. The days go from 1 to 7. Many authors define a

specific number for each day, but this is not important. For

convenience, it has been used 7 as Sunday.

Cd�n
h¼0 . . .Cd

h¼23: set of values of electric load from the hour

(h) 00:00 of the day in which the data window starts (d � n

days) until the hour 23:00 of the day (d) in which the training

is carried out.

Cd�n
h¼1 . . .Cdþ1

h¼0 : set of values of electric load from the hour

(h) 01:00 of the day in which the data window starts (d � n

days) until the hour 00:00 of the day (d + 1).

After normalization, the sine and the cosine of the day

and hour remain exactly between the limits [�0.9, 0.9];

however the current load and the difference of temperature

remain normalized taking into account the kilowatt and

Celsius degrees added, as it was explained before.
5. Parameterization of the ANN and the hybrid

algorithm

In Table 2, the set of necessary parameters to configure

the ANN and the training algorithm is shown. The function
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Table 2

Parameters of the ANN and of the hybrid algorithm

Parameter Value

Number of neurons Five

Type of neurons Hyperbolic tangent

Epochs 1000, first day 750, the rest of the days

Learning rate H To start BPM: 0.001 increased by 1.1 in

each iteration if E(wk+1) < E(wk)

Coefficient of momentum a 0.9

Switch from BPM to

MROM (e0)
0.1

Switch from MROM to

BPM (G)

0.05

Variance [0.001, 0.05]
to optimize is considered in (3) where z and ŷ are the real and

predicted values of the output; y, the number of elements of

the output training set; x and x̂ the real and predicted values

of the states and x, the number of elements of the state

training set.

With the purpose of improving the benefits of the ANN,

each datum from the set of training output states, was

equalled to the load in k + 1, so that the feedback of each

state has the biggest precision during the training.

SSE ¼
Xy

i¼1

ðziðk þ 1Þ � ŷðk þ 1ÞÞ2 þ
Xx

j¼1

ðxjðk þ 1Þ

� x̂jðk þ 1ÞÞ2 (3)

6. Results of the application of the FB predictor with
real data

In 1993 and 1996, ASHRAE developed two contests on

predicting hourly building energy use. Parts of the data used

in those competitions were used here (the whole-building

electricity use, WBE). The first database is the benchmark

PROBEN1.1 The second database is The Great Building

Energy Predictor Shootout 2 [17]. We have called DATA1

and DATA2 to these databases.

In order to evaluate the results obtained by this prediction

system, several experiments were carried out using the

coefficients demanded by the organizers of the competitions

of ASHRAE [17]. These are: the coefficient of variation of

the root-mean-square error (CV-RMSE) (4) used in order to

decide the better results and the mean bias error (MBE) (5)

used in case of a tie.

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðypred;i � ydata;iÞ2=n � p

s

ȳdata


100 (4)
1 ftp://ftp.ira.uka.de/pub/neuron/, specifically, its entry: building.
MBE ¼

Xn

i¼1

ðypred;i � ydata;iÞ=n � p

ȳdata


100 (5)

where ydata,i is the data of the dependent variable correspond-

ing to a particular group of the independent variables, ypred,i

the dependent variable predicted for the same group of

independent variables, ȳdata the mean value of the dependent

variable, n the number of data, and p the total number of

model regression parameters (arbitrarily set to 1 by the event

organizers [17]).
7. Using DATA2

As a first experiment, the data from the competition

number 2 were used for a quantitative comparison, because

the results of the winners reported in terms of the coefficients

previously exposed were available. It should be emphasized

that the winners had to predict energy consumption of

periods intentionally emptied by the organizers. The models

used by the winners (see Table 3, where E* are the codes

given to the winners) allow looking for any day or period,

since the systems are trained with long periods of well-

known data.

In Fig. 3, it can be seen the behavior of the predictor for a

week after training with a window of only 21 previous days.

This period begins with a weekend where it can be

appreciated the difference of consumption between the

normal days and the weekends (approximately 300 kW). If

this figure is carefully observed, it could be noted that the

bigger deviation occurs on a point where the consumption

changes its tendency to decrease, with a slight increment, but

all of this occurs after the hours of high consumption, where

the highest precision of the predictor is required.

In Fig. 4, a week with a different pattern with respect to

the normal weeks is presented. In fact, on Wednesday, it can

be noted a decrease of the consumption that resembles a day

of weekend. After consulting the database, it was seen that

this day corresponds to July 4, 1990, the Independence Day

in the United States. That is why, the work of the forecaster

can be declared correct, because although the index that

indicates the day is on Wednesday, which would correspond

to a high consumption day, the deviation is not considerable.

Probably, this is the better example of the importance of the

input signal Cd
h : electric load at the hour h of the day d,

because even though the index ‘‘type of day’’ is specifying a

high consumption day, the ANN is able to solve this problem

without an input that points out to these special days.

Finally, Fig. 5 shows two consecutive weeks presenting a

marked difference between their daily consumption. In this

case, this difference comes from a problem of work

scheduling. This period corresponds, according to the

database, to the days from August 18–31 of 1990. In the

scheduling table of this building it is specified that, on

ftp://ftp.ira.uka.de/pub/neuron/
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Table 3

The methods and values for CV and MBE achieved by the four winners of the competition [17] and those reached in this project

Authors Method CV MBE

E4 Neural Network, 2 hidden layers, 25 neurons. Hyperbolic

tangent. Choice of the input variables by means of the ‘‘Wald test’’

2.9032 �0.0907

El Perceptron trained by a non-lineal Bayesian regression method 3.1205 0.2722

E3 Statistical classification of the types of day in dependence of the

climatic situation. Regression models per each hour

8.6475 �6.555

E2 Auto associative ‘‘feed-forward’’ neural network. Hyperbolic tangent 13.212 �1.805

González and

Zamarreño

FB neural network. Hyperbolic tangent, hybrid training algorithm 1.4423 0.0033
Monday 27 of August, another period of classes began, but

previously, the building occupants were possibly on

vacations or summer courses, hence, from this date on,

the consumption rises considerably. It is good to highlight

that the prediction of energy of that week remained generally

below of the actual value, probably because the ANN was

trained with 21-day window, and maybe, it did not cover a

period with a greater consumption. This demonstrates that

the length of the data window is important and constitutes a

design factor. In this paper, its optimal value has not been

determined because it is considered case depending. Indeed,

what it is offered as a result is the fact that it is not necessary

to have an extensive database because the results obtained
Fig. 3. A week of data. The solid line is the actual load.

Fig. 4. A week that includes a holiday day. The solid line is the actual load.
here using a small window are comparable to others reported

in the literature.
8. Robustness of the design

With the objective of determining the influence of the

temperature prediction error, the same experiment is

repeated but a random component was added to the

temperature database at k + 1 (Tk + 1, the predicted

temperature). This component introduces an error of

�0.5 8C. The results of this experiment indicate that this

error has an insignificant transcendence on the predictor of

energy, which confirms the robustness of this design in the

case of this input could have a noisy component (supposing

that the measurement of temperature in k, Tk, has a much

minor error). The mean value of the registered CV was equal

to 1.4979, while the value of MBE was 0.0123 (compare

them with the values reported in Table 3).
9. Using DATA1

With the objective of continuing showing the benefits of

the designed STLF system, the database DATA1 was used.

In first place, this database is longer and secondly, it presents

a bigger variation in the behavior of the variables. For this

period, the values of CV and MBE were also calculated,

obtaining 2.55 and 0.0123, respectively. However, it was
Fig. 5. Weeks with different consumption. The solid line is the actual load.
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Table 4

Summary of several MAPE coefficients

Reference Year MAPE

[2] 1995 2.26

[18] 1996 1.75

[19] 1996 2.23

[20] 1996 2.88

[21] 1998 1.53

[4] 1998 2.12

[22] 1999 1.73
preferred to evaluate the behavior of the neural predictor by

means of (6), the Mean Absolute Percentage Error (MAPE),

which is considered a standard for examining the quality of

the models of prediction of load as it repeatedly appears in

the consulted literature [2,4,14–18].

MAPE ¼ 1

N

XN

i¼1

jCrðiÞ � CpðiÞj
CrðiÞ


100 (6)

where N is the total number of samples, in this case, 24,

because of the daily evaluation. Cr(i) is the actual value of

load and Cp (i) the predicted value by the ANN for the instant

of prediction i. In this case, it is not possible to carry out a

quantitative comparison because the data sets used by other

authors are different from the one considered here. Never-

theless, some of the values of MAPE that have been reported

in the last years can be seen in Table 4. In this project, the

average of MAPE for the analyzed period was equal to

1.945. As it can be appreciated, from a qualitative point of

view, this value of MAPE is very good, taking into account

that this value could be different if the data sets are different,

but at least, the order of magnitude reached in this project is

the same as others.

An example of this good value of MAPE is illustrated in

Fig. 6. As it can be observed, the pattern of consumption is

very well determined by the predictor in spite of an

interesting situation: the behavior of Thursday and Friday is

completely different to the other weeks, therefore it could be

suspected that those days were declared like holidays ones.

Indeed, the database tells us that the ‘‘Thanksgiving Day’’,

one of the national parties in the United States, was on
Fig. 6. A period with an abnormal pattern. The solid line is the actual load.
Thursday of this week. Also, the graph allows us to

conjecture that the following day was declared as holiday

too. Thus, the predictors has been confronted, first, with two

days with consumption similar to a weekend, and after-

wards, with two days in weekend.
10. Conclusions

In this paper it has have been shown the excellent results

of a method for electric load forecasting in buildings based

on a feedback ANN. The new energy predictor presents a

precision comparable to the better results reported in the

literature. The main virtue of this system is its simplicity,

which is based on the fact that the developed tool is very

simple and the resources for its application are tiny and

available at modern automation systems. In particular, in

order to apply it to a STLF system, only simple methods for

atmospheric temperature and electric power measurement

are required.

The number of neurons that compose the hidden layer of

the ANN, the optimal size of the data window and the

parameters of the algorithm of training have not been deeply

analyzed. The experimental works carried out suggest that

these values should be carefully studied, but anyway, as it is

expounded in [6], many neurons were not needed to get

satisfactory results.
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