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Abstract

An innovative and self-adaptive integrated system for building energy and comfort management has been developed. Both arti®cial and

natural lighting controllers have been designed in order to ®t the integrated approach. The shading device controller is split into two parts

depending on the user presence. When the user is present, priority is given to visual comfort, and when he is absent, priority is given to

thermal aspects (heating/cooling energy saving). The arti®cial lighting controller is used to complete the illuminance in the room up to the

level desired by the user, which is learned by the system through the user wishes. Many simulations have allowed comparing different

variants of the lighting controllers. The models used in the control system are regularly adapted to the measurements. Therefore, the system

continuously adapts itself to the environment and the room characteristics. Four months of experiments in the occupied LESO-PB of®ce

building have demonstrated that this integrated system leads to interesting energy saving (25% less of total energy consumption) compared

to a conventional one. # 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Only very few building control systems nowadays inte-

grate the main innovations of these last years in the building

energy management system (BEMS). In particular, the

continuous adaptation of the system to the environment

and building characteristics is a very promising feature that

is rarely studied (only few studies have been done on

adaptive controllers in buildings [1,2]) and nearly never

implemented. In addition, a predictive approach in the

control algorithms is quite necessary to obtain really ef®-

cient control systems. The heating control system NEURO-

BAT [3], developed in part at the LESO-PB, is one of the

very few systems that takes into account both the adaptation

and prediction aspects for the control. Nevertheless, the

main drawback of current building control systems is that

they deal separately with each kind of controller (heating,

ventilation, lighting) and they are not able to optimise the

overall multi-controller system.

However, such an integration could bring several bene®ts

at both economic and social levels. A potential of large

energy saving has been demonstrated when integrated con-

trol strategies are used instead of individual strategies: 10 to

30% less of total energy consumption when considering only

the heating and lighting controllers [4]. Moreover, an

improvement of the indoor comfort brings better working

conditions, and therefore, well-being and higher productiv-

ity. This allows to reduce partly the huge economic and

social burdens of work related health problems. In USA, for

instance, total direct and indirect costs due to these problems

have been estimated to be 26 billion dollars per year [5].

The EDIFICIO (Ef®cient Design Incorporating Funda-

mental Improvements for Control and Integrated Optimisa-

tion) research project, funded in part by the EU Commission

in the framework of the JOULE III programme has precisely

the goal to develop an innovative and integrated control

system for heating, ventilation, shading and arti®cial light-

ing, which increases the overall performance of the BEMS

and the indoor comfort.

The LESO-PB, as partner of this project, has mainly

worked on the development of the control algorithms for

the shading device and for the arti®cial lighting, on the

overall optimisation of the controllers and on the experi-

mental evaluation of the integrated system. This integrated

controller is presented in Section 2 of the paper. Section 3

describes the self-adaptation of the models included in the

various controllers. The overall optimisation process uses

Genetic Algorithms (GA). Even if the learning of fuzzy

control rules using GA has already been studied [6], a

dedicated adaptation process has been de®ned for our case

and it is explained in Section 4. The experimental validation

Energy and Buildings 33 (2001) 477±487

* Corresponding author. Tel.:�41-21-693-45-51; fax:�41-21-693-27-22.

E-mail address: antoine.guillemin@epfl.ch (A. Guillemin).

0378-7788/01/$ ± see front matter # 2001 Elsevier Science B.V. All rights reserved.

PII: S 0 3 7 8 - 7 7 8 8 ( 0 0 ) 0 0 1 0 0 - 6



is running at three different sites: at the LESO-PB (Switzer-

land), at CONPHOEBUS (Italy) and at the VTT (Finland).

This way, the system will be validated for three different

climates. The experimental results of the LESO-PB are

presented and discussed in Section 5.

2. Integrated controller

Four different device categories are considered for the

control: the heating/cooling system, the ventilation, the

blinds (shading devices) and the arti®cial lighting. The

integrated system is built on the principle of three nested

control loop levels (see Fig. 1).

Level 1 performs the translation from physical values

(heating power, blind position, etc.) into the appropriate

commands of the corresponding device (changing the heat-

ing system valve position, raising or lowering the blind,

etc.).

The level 2 control loop includes the domain knowledge.

It is based on expert fuzzy rule and uses adaptive models for

thermal, lighting and air quality in order to produce a smart

global control strategy. The outputs of this level are the

physical values that are the inputs of the level 1 control loop.

Finally, level 3 ensures the long-term adaptation of the

level 2 algorithms. The adaptation is done in a continuous

way to take into account all the long-term changes in the

building and device characteristics. Moreover, an adaptation

task using Genetic Algorithms is undertaken in order to

improve the ef®ciency of the system. The GA allow mini-

mising a global `̀ cost function'' in adjusting the algorithm

parameters of the level 2 smart controller.

It should be noticed that level 1 is speci®c to each building

but both levels 2 and 3 are very easily adjustable to any kind

of controller device. The self-adaptation of the system will

lead to a simpli®ed commissioning, and a good performance

of the system is ensured without complicated parameter

adjustment.

This Section presents in detail the smart controllers of

the level 2. The LESO-PB building has no ventilation

system, so only the heating and lighting controllers are

explained here.

2.1. Shading device controller

The shading device controller described here deals only

with textile blinds. However, a similar controller has been

developed and simulated for venetian blinds (with both

vertical position and slat angle regulated) and its description

can be found in [7]. The textile blind controller is split into

two cases, depending on whether the user is present or not in

the room. This partition is inspired by the DELTA blind

controller [4]. When the user is present, the blind controller

primarily provides optimal visual conditions in the room;

otherwise, only thermal considerations are taken into

account in order to minimise the heating energy consump-

tion.

2.1.1. User present: visual optimisation

When the user enters the room, the controller switches to

the visual optimisation mode. Several algorithms for blind

control have been studied. First the algorithm called Sun-

Position, which seems to be the most promising one, is

explained in detail and then the other algorithms are quickly

presented.

The Sun-Position algorithm consists of two parts. The ®rst

part determines a maximum blind aperture in order to avoid

glare (using a fuzzy rule base) and the second part tries to

®nd the blind position (below the maximum value) that leads

to the inside illuminance, which corresponds to the illumi-

nance setpoint chosen by the user.

2.1.1.1. Maximum blind aperture. There are 25 rules in the

fuzzy inference system, four inputs (direct outside

horizontal illuminance, season, height and azimuth of the

sun) and one output (maximum blind position). The main

principles used in the rules are:

� Priority is avoiding glare, but the system also tries to save

some energy by differentiating the rules depending on the

season. In winter, during the day the maximum of solar

gains is accepted and during the night the blinds are

closed in order to increase the insulation and reduce

the heat losses through the window. In summer, the

opposite behaviour is applied.

Fig. 1. Principle block diagram of the three nested control loop levels.
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� A position of the sun near the horizon leads to closed

blinds if the direct solar irradiance is high enough to

disturb the user (typically higher than 100 W/m2).

� If there is only diffuse radiation incident on the facade,

there is no restriction on the maximum aperture of the

blind.

The innovative idea of the algorithm is to take into

account not only the incidence angle of the direct radiation

on the facade (which was one limitation of the DELTA blind

controller) but the exact position of the sun relatively to the

facade, that means both the azimuth and the height of the

sun. This allows different behaviours for different sunlight

penetration scenarios. If the sun illuminates the wall in front

of the user or illuminates the user directly, the algorithm may

give different maximum blind apertures although the inci-

dence angle is the same in both cases.

2.1.1.2. Blind position according to the inside illuminance

measurement. The final position of the blind is determined

through an `̀ Illuminance Ratio'' RI. This ratio links the

inside horizontal illuminance (Ehin) with the outside vertical

illuminance (Evout). It depends on the blind position (a).

Ehin � RI �a� � Evout

Setting the inside horizontal illuminance (Ehin) equal to the

illuminance setpoint and solving this equation for a, a final

position of the blind can be calculated. The only constraint is

that the blind position must be lower than the maximum

blind aperture previously determined. If the inside illumi-

nance level is still too low, artificial lighting is used to

complete the inside illuminance up to the setpoint defined by

the user.

The measurement of the inside illuminance is not used

directly (it is used, however, for adapting continuously the

RI expression in function of the blind position), the bene®ts

are:

� Avoid the oscillations (which could come from a closed-

loop control).

� Keep a smart control even if the sensor gives a temporary

wrong value (in case of paper on the sensor, etc.).

� Blind position may be predicted (necessary for the heating

controller).

The continuous adaptation of the RI model is explained in

Section 3.1.

2.1.1.3. Algorithms comparison. Five other algorithms have

been considered. Only the three most interesting are

presented here.

The so-called Reference algorithm is the DELTA blind

controller; it is a simple fuzzy logic open-loop controller that

uses the vertical direct illuminance on the facade and the

height of the sun.

The so-called Variation algorithm is different from the

others in the fact that the output of the fuzzy logic is a step-

variation of the blind position and not directly the blind

position. Depending on a calculated glare risk, the blind

move is applied or not.

The so-called I-Ratio algorithm uses three luxmeters for

the control. One measures the horizontal illuminance and

two measure illuminances on the walls. From these three

measurements a value of `̀ contrast'' (ratio of illuminances)

may be calculated, and the algorithm looks for a blind

position that gives the right illuminance level in the room

while keeping a reasonable value of this contrast. The bene®t

of this method using three luxmeters is that it is possible to

take into account some glare aspects. But the drawback is

that the right positioning of these luxmeters is a very dif®cult

thing to do. It is important to notice that the simulations have

not tested the algorithm behaviour (for the I-Ratio) with

different values of the input variable contrast; it was chosen

constant.

In order to compare all the algorithms, the toolbox

Simulink of the MATLAB1 program has been used to carry

out the simulations. Each algorithm has been tested during

one week with external weather conditions taken from

synthetic values produced by the METEONORM program

[8]. The simulations are done for the period that corresponds

to the ®rst seven days of July. Different weather conditions

are represented (sunny and cloudy days). During the night

(from 21.00 to 7.00 h), the user is considered as absent, so

the tested algorithm is stopped (no blind movements, no

arti®cial light).

The physical software model of the room (that plays the

role of the real room for the simulations) used for the

calculation of the inside illuminance is simply the illumi-

nance on the facade multiplied by a kind of daylight factor

(0.05 for our case) and a blind transmission factor. This

illuminance blind transmission factor depends linearly on

the blind position between a value of 1 (blind completely

open) and 0.2 (blind completely closed).

The simulations give, as results, the extreme values of

inside illuminance reached in the room, the difference

between the setpoint value and the current value of illumi-

nance integrated on the period of the presence of the user, the

electrical power consumption of the arti®cial lighting sys-

tem and the total number of blind movements during the

simulation.

The results of the simulations are given in the Table 1.

All the algorithms work reasonably, without too many

blind movements or too high an electrical energy consump-

tion. Concerning the inside illuminance level, they all keep a

value not too far (<300 lux of difference) from the setpoint

value (600 lux), except the Reference algorithm, which is

the only one with no closed-loop control. From a quantita-

tive point of view, none of the tested algorithms is really bad.

But, qualitatively, some interesting comments can be made:

� Reference: Except the fact that the level of illuminance is

far from the setpoint, the algorithm does not take into

account various window (and room) characteristics (e.g.
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daylight factor), and therefore, it has to be adjusted for

every new room configuration.

� Variation: This algorithm leads to nearly perfect visual

conditions in the room. But this very small value of the

integrated error of illuminance is due, in fact, to an

extensive use of artificial light and a low position of

the blind. Because of the low position of blind, the

illuminance level is not much influenced by the outdoor

conditions and can be kept very constant with the use of a

big amount of artificial light. The possible blind positions

are pre-defined and fixed, which avoids recurrent blind

movements but leads to a lack of flexibility. Another

drawback of this algorithm is the fact that it deals with

blind variation instead of blind position and it is not really

compatible with the nested loop control (levels 1 and 2 are

no longer clearly separated).

� I-Ratio: This algorithm gives a continuous blind position

and since it works in a dynamic way, the blind moves until

a balance is found. Thus, the blind would move too often

if no discretisation were applied to the output of the

algorithm (note that for the simulations, a simple dis-

cretisation by step has been used). Unfortunately, this

necessary discretisation is nearly impossible to do without

spoiling the quality of the algorithm. Moreover, the

algorithm is a bit too complicated and that may lead to

have some troubles in the adaptation task.

To sum up, three algorithms (Sun-Position, Variation and

I-Ratio) have been developed and tested for the visual

optimisation task. The comparison of these algorithms with

the Reference algorithm (coming from a project especially

dedicated to blind control) has shown that all the new

algorithms give the same kind of simulation results and

even better ones than the Reference algorithm. The best one

seems to be the Sun-Position algorithm. Its results are good

and it combines well with the nested loop control. It takes

into account both the azimuth and the height of the sun,

which allows different behaviours for different penetrations

of the sun in the room. This algorithm Sun-Position has been

chosen to be implemented in the integrated controller.

2.1.2. User absent: energy optimisation

When the user has not been present for a certain amount of

time (typically for 15 min at least) the controller switches

from the visual optimisation to the energy optimisation

algorithm.

2.1.2.1. Algorithms definition. The basic idea is taken from

[4]. There are two main heat exchanges through a window:

one is due to the transmitted solar irradiance (direct gain),

the other to the heat transmission caused by the difference

between inside and outside temperatures (gain or loss).

Taking into account both contributions, which depend on

the blind position, a window heat balance is calculated. The

idea is that the fuzzy controller does not provide directly a

blind position but a `̀ desired window heat balance''

(DWHB). A positive (respectively, negative) value of the

DWHB (watts) corresponds to the desired heat gains

(respectively, losses) for the room. The position of blind

which gives a window heat balance as near as possible to this

DWHB is calculated knowing physical parameters of the

window and the blind (solar transmission coefficients, heat-

loss coefficients).

Nine different blind controllers have been developed and

tested. They are classi®ed according to the inputs of the

fuzzy inference system. Two controllers have only the

variable heating power as input (controllers called Only

heating). Three have only the variable season as input

(controllers Only season). Finally, the last four have both

the heating power and the season as inputs (controllers

Both). The main ideas used to build the tables of rules were:

� The blind controller must always help the heating/cooling

system.

� In winter, solar gains should be accepted as often as

possible.

� In summer, solar gains should be rejected as often as

possible.

� In mid-season, the situation is unclear, so several possi-

bilities are studied.

Concerning this last point, two versions of fuzzy con-

trollers of the same category are differentiated by the

DWHB in mid-season. For instance, in the fuzzy rule base

of the controller Both version 2 (Both v2, see Table 2), the

DWHB value `̀ positive-low'' is replaced by the DWHB

value `̀ zero'' in the controller Both version 1 (Both v1).

The fuzzy variable `̀ season'' is not determined from the

period of the year but from the average outside temperature

Table 1

Simulation results of the different visual optimisation algorithmsa

Algorithm Inside illuminance

extrema (lux)

Integrated

`̀ error'' (lux)

Electrical energy

consumption (MJ)

Number of blind

movements

Reference 400±1500 690 13.6 16

Variation 400±600 80 22.3 52

Sun-Position 380±800 230 13.5 42

I-Ratio 380±960 490 11.2 36

a The inside illuminance setpoint is 600 lux.
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during the last 24 h. Its membership functions are given in

Fig. 2.

2.1.2.2. Algorithms comparison. The simulation tests have

been done with Simulink (MATLAB1 Toolbox), for a

period of 1 week during three different periods of the

year (winter (days 52±59), mid-season (days 100±107),

summer (days 192±199)) with climate data of Lausanne

(Switzerland). The external weather conditions are synthetic

values produced by the METEONORM program. For each

period, the controllers are tested with a heating/cooling

system and with a heating only system. Both heating

systems are predictive (inspired from the NEUROBAT

project [3]).

The main conclusions of the simulations are:

� The variable `̀ season'' is essential in order to have an

energetically efficient blind controller (see Fig. 3).

� The differences between controllers are particularly visi-

ble during the mid-season period.

� It is best to have a positive DWHB in mid-season when the

heating power is zero.

� The best value to take for the DWHB in this case has not

been defined. It depends strongly on the kind of heating/

cooling system and on the window and room character-

istics.

� Three controllers are clearly better than the others: Both

v2, Both v3 and Only season v3 (the three controllers have

a DWHB value `̀ positive-low'' in mid-season!). They

lead to a quite comfortable inside temperature and their

energy consumption values are the lowest (see Fig. 3).

The Only season v3 controller has been chosen to be

implemented in the integrated system as the controller for

the user absent case. Although this controller is not exactly

the best considering energy consumption, it does not use the

heating power variable, and therefore, avoids a cross cou-

pling heating-lighting, which could lead to instabilities.

Indeed, the heating controller needs the blind position

produced by the blind controller (in order to predict the

future inside temperature), whereas the lighting controller

needs the heating power variable produced by the heating

controller.

2.2. Artificial lighting controller

The goal of the controller is to use the arti®cial light as a

complement of illuminance when the natural inside illumi-

nance level is too low. In order to permanently know the

exact arti®cial part (and by the way also the natural part) of

Table 2

Fuzzy rules base for the lighting controller (Both v2)a

Season Heating power

Negative Zero Positive

Winter DWHB � negative DWHB � positive DWHB � positive

Mid-season DWHB � negative DWHB � positive-low DWHB � positive

Summer DWHB � negative DWHB � negative DWHB � positive

a DWHB is the desired window heat balance.

Fig. 2. Membership functions of the fuzzy variable `̀ season''.

Fig. 3. Heating energy consumption of the nine controllers during the mid-season simulation (`v' is the version number of the considered algorithm).
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the total illuminance, a relation between the current electric

power applied to the arti®cial lighting system and the

illuminance provided by the latter has to be known. This

is given by the arti®cial lighting model (see Section 3.2).

From the vertical outside illuminance, the RI model (see

Section 3.1) provides the natural horizontal inside illumi-

nance. If this value is lower (at least 20% less) than the

illuminance level wanted by the user (user setpoint), the

arti®cial lighting system is switched on and it calculates

(thanks to the arti®cial lighting model) the exact electrical

power that should be applied in order to complete the

illuminance up to the user level setpoint.

This user illuminance setpoint is continuously adapted in

order to ful®l the user wishes. In fact, each time the user

expresses a wish concerning the arti®cial lighting, the

system learns (thanks again to the arti®cial lighting model

and the RI model) which illuminance level suits at best the

user.

The arti®cial lighting is switched off either when the user

leaves the room or when the natural inside illuminance has

become higher than the user setpoint.

2.3. Heating controller

The main idea of the heating controller is to take the

power pro®le of the previous day, to change it depending on

the current conditions (weather, user presence, inside and

outside temperature) and to apply it to the current day. The

correction applied to the power pro®le is done using a fuzzy

logic inference system.

The fuzzy algorithm has two inputs, the current comfort

level and the future comfort level (predicted comfort level in

6 h). They are de®ned as the difference between the inside

temperature and the temperature setpoint, divided by the

temperature setpoint. Several rule sets have been tested and

it was found that nine rules were suf®cient to correctly

regulate the system. These rules are given in Table 3.

In this set, the current comfort level has a larger priority

than the future one. In order to predict the future comfort

level (that means the future inside temperature), a climate

predictor and a thermal model of the room are used. Both

models are realised using an Arti®cial Neural Network

(ANN). A description of the two networks is done in Section

3.

The output of the fuzzy logic system is the variation that

should be applied to the power pro®le in order to have a

better comfort level. More precisely, the power pro®le is

discretised in steps of 15 min. The power applied the pre-

vious day during the 15 min after the current time is changed

depending on the output of the fuzzy inference system. Fig. 4

shows an example of the power pro®le use.

In fact, the heating controller uses two setpoints, the user

setpoint (temperature desired by the occupant) and an

energy-saving setpoint. The latter is applied when the user

is not present, and it allows saving energy during nights and

weekends. In order to provide the right comfort level in the

morning and after the weekend, an occupancy schedule is

used. In the future, the goal is to replace this ®xed schedule

by a presence predictor made with an ANN, which could

learn the actual user presence schedule.

3. Self-adaptation of the models included in the
controller

In order to adapt continuously the system to the para-

meters of the building and the environment, an adaptation of

the different models used in the controller (namely the

illuminance ratio model, the arti®cial lighting model, the

climate predictor and the thermal room model) is done

regularly.

Table 3

Fuzzy rule base for the heating controllera

Future comfort Current comfort

Too cold Normal Too hot

Too cold DP � �large DP � �small DP � ÿsmall

Normal DP � �medium DP � zero DP � ÿmedium

Too hot DP � �small DP � ÿsmall DP � ÿlarge

a DP is the variation applied to the value of the power profile of the

previous day.

Fig. 4. Operation of the heating controller.

482 A. Guillemin, N. Morel / Energy and Buildings 33 (2001) 477±487



3.1. RI model

The illuminance ratio model calculates the horizontal

inside illuminance on the desk from the measurement of

the vertical outside illuminance. Some experiments [9] have

shown that the use of the vertical outside illuminance (RI

model) gives better and more consistent results than the

standard use of the horizontal outside illuminance (Daylight

factor) when comparing with horizontal inside illuminance

for different blind positions. The Figs. 5 and 6 show the

results for both cases; the case with vertical outside illumi-

nance (Fig. 6) clearly leads to less scattered results.

Every half an hour, the parameters of the RI model are

changed in order to take into account the current measure-

ments. If the new measured values of parameters are

strongly different (®ve times higher or lower than the old

ones), the values are rejected because it means that either a

paper covers the inside illuminance desk sensor or direct

radiation hits it. The strategy of the adaptation is then to

adapt very slowly the RI parameters (small weights of the

new values compared to the old one), which allows rejecting

measurements only when they are very faulty. A slightly

faulty measure will indeed not lead to a completely wrong

illuminance model.

3.2. Artificial lighting model

The arti®cial lighting model is also regularly adapted in

order to take into account the ageing of the lamp, the dust

accumulation or the installation of a new arti®cial lighting

system. This model has been developed for the situation with

a dimming control of the arti®cial lighting. The hypothesis is

that the relation between the internal illuminance provided

by the arti®cial lighting system and the electrical power

applied to this latter, is linear. So each night, when the user is

not present, the arti®cial lighting is switched on with two

different values of power. The illuminances in the two cases

are measured and a simple calculation provides the lighting

device characteristic. The new calculated values are then

averaged with the old values in order to produce the new

arti®cial lighting model.

3.3. Climate predictor

The climate predictor is in fact divided into two similar

ANNs. One provides the outside temperature and the other

provides the horizontal global solar irradiance. A simple

feed-forward network structure has been chosen with one

hidden layer (four-neurons layer). The Levenberg±Mar-

quardt training algorithm is used because of its convergence

faculty and the tangent hyperbolic activation function is

chosen because of its non-linearity, continuity and deriva-

bility characteristics. The 4 inputs are the considered value

(the outside temperature or the solar irradiance) at the

current time, the value 1 h ago, the value 24 h ago and

the computed maximum solar irradiance at the time of

prediction. The training is done once a week on the data

collected during the last whole year period.

Fig. 5. Daylight factor (horizontal inside illuminance/horizontal outside illuminance) measured for three sky conditions (overcast, intermediate, clear).

Fig. 6. Illuminance ratio (horizontal inside illuminance/vertical outside illuminance) measured for three sky conditions (overcast, intermediate, clear).
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3.4. Thermal room model

The thermal room model [10] uses a special kind of

ANN, called Radial Basis Function Networks [11]. There

are six kinds of inputs: the inside and outside tempera-

tures, the global solar irradiance on the facade, the heating

power, the blind position and the ventilation rate (which

may be replaced by a ®xed value if there is no ventilation

system). All these inputs, except the inside temperature,

are composed of six values: the current value and the ®ve

values predicted on the next 5 h, by step of 1 h. It means that

®nally there are 31 inputs (®ve kinds� six predicted

values� one current inside temperature) in the thermal

room model. The output is the predicted inside temperature

6 h later.

A good accuracy of this model is very important for the

ef®ciency of the heating controller. Therefore, the learning

process is carried out as soon as the error of the predictive

model has got larger than a certain threshold.

4. Global optimisation

Each night, a process of adaptation is undertaken. Using

Genetic Algorithms (GA), the system looks for the most

ef®cient set of parameters of the controllers.

The idea is to use the GA to apply small variations to the

parameters of the current controller. Each gene is related to a

certain parameter (for instance, the width of a membership

function) but does not give the value of this parameter:

instead, it gives the value of a small variation, which is

applied to this coded parameter. The Fig. 7 shows an

example of a small variation applied to the membership

function `̀ normal'' of the fuzzy variable comfort. An indi-

vidual is a set of small variations and each one corresponds

to a slightly different controller. The main bene®t of this

approach is that the `̀ experience'' of the current controller is

kept. In short, there is no risk of losing information that has

previously been learned by the controller.

After randomly generating a population of individuals,

the genetic operators (selection, crossover and mutation) are

applied in order to obtain a new population. This is repeated

until a suf®ciently good solution is found. The individuals

(controllers) are evaluated with a ®tness function, which

takes into account several factors: energy consumption,

visual and thermal comfort provided. This ®tness function

is the opposite of a cost function like the one used in the

NEUROBAT project [3].

More precisely, the algorithm works as follows:

1. Random initialisation of the population.

2. Each individual (set of small variations) is applied to the

set of parameters of the current controller.

3. Each individual corresponds to a different controller. For

each controller, outputs (blind position, heating power,

etc.) are calculated.

4. From the outputs, a fitness for each individual is

calculated, and then the genetic operators are applied.

A new generation is obtained.

5. Back to step 2, until a sufficiently good solution has

been found.

The best individual found by the GA is applied to the set

of parameters of the current controller in order to produce

the new and more ef®cient controller.

5. Experimental results

The integrated system with heating, shading device and

arti®cial lighting controllers, is currently tested on the

occupied LESO-PB of®ce building. Two rooms are used

for the experiments. One room is equipped with the inte-

grated system and one room with a conventional controller

(no automatic blind control, no automatic arti®cial lighting

control, proportional heating controller with saturation). The

control system is hosted by a computer, which controls both

rooms. The conversation between the computer, the actua-

tors and the sensors is done via a LonworksTM bus with the

standard protocol `̀ Dynamic Data Exchange''. The dimen-

sions of the two rooms are 4:75 m� 3:6 m� 2:8 m. The

windows are on the south wall, and the total area of window

for a room is 5.75 m2. They are rather large openings, but

thanks to the low U-value (1.4 W/m2K) of these windows,

the rooms are quite well thermally insulated.

In order to reduce the experimental bias, due to the

possible slightly different room characteristics and the dif-

ferent user behaviour, the integrated controller is periodi-

cally (typically, every 2 weeks) replaced by the conventional

controller while in the other room the conventional con-

troller is replaced by the integrated controller. For the results

analysis, the time each controller has worked in a room is

taken into account.

5.1. Lighting controllers operation

Fig. 8 shows some qualitative results concerning the

blind and arti®cial lighting operation. Two days of experi-

ments are shown. The ®rst day is a working day (Friday,
Fig. 7. Fuzzy parameters that are adapted using the Genetic Algorithms.

Here the fuzzy membership function `̀ normal'' is changed.
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7 January 2000) and the second one is a day-off (Saturday,

8 January).

During the working day (day 7), the user has left the room

for a short time each in the morning and in the afternoon, and

he had a longer lunch break at noon. The last peak in the

presence graph corresponds to the coming of the cleaning

staff. The corresponding blind position shows that when t

he user is present, the blind has a very low position (<0.2)

for glare considerations (winter � sunny day � high glare

risk) and when the user is absent, the blind is completely

open for thermal considerations. In the evening, the user

is present while the solar irradiance is low, then the blinds

are completely open in order to have a maximum of

day lighting.

Since the measuring season was winter and the user was

not present the day 8, the blind was open during this day in

order to accept the maximum of solar gains and closed

during the night in order to have a better thermal insulation

of the window.

Concerning the arti®cial lighting controller, the day 7

(user present) shows that it operates correctly, bringing

additional lighting only when it is necessary: early in the

morning and late in the evening when the natural lighting

was not suf®cient and when somebody was in the room.

Moreover, it has to be said that the user has not interacted

with the shading device controller during the whole working

day (day 7), which means the visual comfort provided by the

controller was probably suf®cient. Questionnaires that are

®lled in by the user twice or three times a day have

con®rmed it. These questionnaires give information about

the visual comfort, the thermal comfort and the user opinion

about the automatic system.

5.2. Heating controller operation

Fig. 9 shows the results concerning the thermal controller.

It corresponds to eight days of the year 2000 from Thursday,

10 February to Thursday, 17 February. The inside tempera-

tures in the two rooms (one with the integrated controller and

one with the conventional controller) are shown in parallel

with the heating power pro®les of the two controllers. Users

in both rooms have chosen the temperature setpoint at 228C.

The integrated controller shows a very interesting advan-

tage compared to the conventional controller. It avoids

Fig. 8. Global solar irradiance, presence, blind position and artificial lighting power provided by the integrated controller. Day 8 corresponds to Saturday, 8

January 2000 at midnight.

Fig. 9. Inside temperatures and corresponding heating power profiles. Day

41 corresponds to Thursday, 10 February 2000 at midnight.
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overheating (day 41 for instance) in the afternoon by taking

into account the solar gains.

5.3. Energy consumption

The most signi®cant quantitative result is the total energy

consumption during the ®rst 94 days of experiments (27

January to 1 May). The rooms were exchanged several times

in order to reduce the experimental bias due to the slightly

different room characteristics. The integrated system was

running 48 days in the room Awhile the conventional system

was in the room B. During the 46 other days, the situation

was the opposite: the integrated system in room B and the

conventional system in room A. The results are shown in

Table 4.

The energy consumption in both rooms is clearly lower

with the integrated system. During these 94 days of experi-

ments, the integrated system has saved 25% of energy in

comparison with the conventional controller.

Fig. 9 gives some explanations of this large energy saving.

Thanks to the prediction capability of the integrated con-

troller, it reduces the heating power during the night when it

knows that solar gains will provide a large amount of solar

energy in the afternoon. Moreover, the energy-saving set-

point applied during nights and weekends leads to additional

energy savings. For instance, during the weekend, the

integrated controller has completely stopped heating (see

days 43 and 44 in Fig. 9). The different steps of the heating

power of the conventional controller are due to a discretisa-

tion of the inside temperature measurement. Since the

heating power is calculated using the inside temperature,

a discretisation of this latter leads to a discretisation of the

heating power.

5.4. Remarks and future prospects

The integrated system will allow saving, at least during

the winter season, an interesting amount of energy while

keeping a quite good thermal comfort level and even

improving the visual comfort level. This may be explained

by the energy ef®ciency control of blinds and also by the

smart heating controller with the energy-saving setpoint

applied during nights and weekends.

The experiments are going on and the performance of the

system will be studied for a long period including mid-

season and summer.

The questionnaires have shown that the user is quickly

angry at the automatic system when it does not take into

account his wishes. For example, if the user does not like the

current blind position and moves it, the automatic blind

control is held up during a certain amount of time (typically

during 1 h) in order to avoid moving the blind again to the

position disliked by the user. But since the user wish is not

taken into account in the long-term by the system, the

automatic control will keep giving an inadequate blind

position. The conclusion is that the system should adapt

itself on a long-term basis to the user wishes while keeping,

from an energy point of view, the most ef®cient possible

control of the blinds. This is a very complex problem and

further studies are carried on in the project in order to ®nd a

good solution to that issue.

6. Conclusion

The multi-controller presented here has several advan-

tages over the other known building controllers. First, the

overall system is integrated in an optimised global control-

ler. In particular, every part of the controller works in order

to help the others. For instance, the shading device controller

takes into account thermal aspects and is able to help

strongly the heating/cooling system. Furthermore, there is

an overall optimisation of the system realised through the

use of GA. That leads to a system, which provides a high

comfort level for both lighting and thermal aspects and gives

at the same time very good results concerning the energy

consumption.

Finally, it is self-adaptive, which means that the controller

adapts itself to the building and its environment. The bene®ts

are an easier commissioning and robustness towards the

changes of the building characteristics and towards some

possible dysfunction. Moreover, the study has shown that it

is necessary for the control system to take into account the

user wishes on a long-term basis. Otherwise, all the bene®ts

of the automatic system would be lost since the user would

reject it. Considerable efforts are currently made by the

authors in this research area.
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