
A hierarchical fuzzy–genetic multi-agent
architecture for intelligent buildings

online learning, adaptation and control

Hani Hagras *, Victor Callaghan, Martin Colley,
Graham Clarke

Department of Computer Science, University of Essex, Wivenhoe Park, Colchester CO43SQ, UK

Received 5 August 2000; accepted 7 April 2001

Abstract

In this paper, we describe a new application domain for intelligent autonomous

systems––intelligent buildings (IB). In doing so we present a novel approach to the

implementation of IB agents based on a hierarchical fuzzy genetic multi-embedded-

agent architecture comprising a low-level behaviour based reactive layer whose outputs

are co-ordinated in a fuzzy way according to deliberative plans. The fuzzy rules related

to the room resident comfort are learnt and adapted online using our patented fuzzy–

genetic techniques (British patent 99-10539.7). The learnt rule base is updated and

adapted via an iterative machine-user dialogue. This learning starts from the best stored

rule set in the agent memory (Experience Bank) thereby decreasing the learning time

and creating an intelligent agent with memory. We discuss the role of learning in

building control systems, and we explain the importance of acquiring information from

sensors, rather than relying on pre-programmed models, to determine user needs. We

describe how our architecture, consisting of distributed embedded agents, utilises sen-

sory information to learn to perform tasks related to user comfort, energy conservation,

and safety. We show how these agents, employing a behaviour-based approach derived

from robotics research, are able to continuously learn and adapt to individuals within a

building, whilst always providing a fast, safe response to any situation. In addition we

show that our system learns similar rules to other offline supervised methods but that

our system has the additional capability to rapidly learn and optimise the learnt rule

Information Sciences 150 (2003) 33–57

www.elsevier.com/locate/ins

*Corresponding author.

E-mail address: hani@essex.ac.uk (H. Hagras).

0020-0255/02/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.

PII: S0020 -0255 (02 )00368 -7

mail to: hani@essex.ac.uk


base. Applications of this system include personal support (e.g. increasing independence

and quality of life for older people), energy efficiency in commercial buildings or living-

area control systems for space vehicles and planetary habitation modules.

� 2002 Elsevier Science Inc. All rights reserved.

Keywords: Fuzzy systems; Genetic systems; Intelligent buildings; Agents; Online

learning

1. Introduction

The building industry uses the term intelligent, to describe the way the de-

sign, construction and management of a building can ensure that the building

is flexible and adaptable, and therefore profitable, over its full life span. A

definition which finds favour with many building managers and architects is
that ‘‘An intelligent-building is one that provides a productive cost-effective en-

vironment through the optimisation of four basic elements; systems, structures,

services, management and the inter-relationship between them’’ [20].

Computer scientists, however, hold a different view of intelligence. They are

more concerned with giving machines management, analytic and control ca-

pabilities that are comparable to intelligent human activity. We prefer the

definition––‘‘An intelligent-building is one that utilises computer technology to

autonomously govern and adapt the building environment so as to optimise user

comfort, energy-consumption, safety and work efficiency’’. In the context of a

building, a system works by taking inputs from building sensors (light, tem-

perature, passive infra-red, etc.), and using this and other information to

control effectors (heaters, lights, electronically operated windows, etc.). If this

system is to be intelligent, an essential feature must be its ability to learn and

adapt appropriately. For this a system which can adapt and generate its own

rules (rather than being restricted to simple automation) is required. Ac-

cording to Kasabov [16] an intelligent system should be able to learn quickly
from large amounts of data therefore using fast training. An intelligent sys-

tem should also adapt in real-time and in an on-line mode where new data are

accommodated as it arrives. Also the system should be able to accommodate

in an incremental way any rules that will become known about the problem.

It should be memory-based, plus possess data and exemplar storage and re-

trieval capacities. It also should be able to learn and improve through active

interaction with the user and the environment. It should have parameters

to represent short and long term memory, age, forgetting, etc. It should also
analyse itself in terms of behaviour, error and success. To the authors

knowledge no system in the field of intelligent building has satisfied these

conditions.

34 H. Hagras et al. / Information Sciences 150 (2003) 33–57



We view intelligent buildings as computer-based systems, akin to robots,

gathering information from a variety of sensors, and using embedded intelli-

gent agent techniques to determine appropriate control actions. In controlling

such systems one is faced with the imprecision of sensors, lack of adequate
models of many of the processes and the non-deterministic aspects of human

behaviour. Such problems are well known and there have been various at-

tempts to address them. The most significant of these approaches has been the

pioneering work on behaviour-based systems from researchers such as Brooks

[4] and Steels [23] who have had considerable success in the field of mobile

robots. It might not seem obvious that a building can be looked upon as a

machine; indeed ‘‘a robot that we live within’’, but, in other work [6] we have

justified the view that intelligent buildings, are analogous to robots, gathering
information from a variety of sensors, and able to use behaviour-based tech-

niques to determine appropriate control actions.

Fuzzy logic offers a framework for representing imprecise, uncertain

knowledge. Similar to the way, in which people make their decisions, fuzzy

systems use a mode of approximate reasoning, which allows it to deal with

vague and incomplete information. In addition fuzzy controllers exhibit ro-

bustness with regard to noise and variations of system parameters. However,

fuzzy systems have a well-known problem concerning the determination of
their parameters. In most fuzzy systems, the fuzzy rules are determined and

tuned through ‘‘trial and error’’ by developers, taking much iteration to de-

termine and tune them. As the number of input variables increases (which is the

case of intelligent buildings) the numbers of rules increase further magnifying

the difficulty.

Evolutionary algorithms constitute a class of search and optimisation

methods guided by the principles of natural evolution. Genetic algorithms

(GA) are optimisation methods inspired by principles of natural evolution and
genetics. GA has been successfully applied to solve a variety of difficult theo-

retical and practical problems by imitating the underlying processes of evolu-

tion such as selection, recombination and mutation. Their capability of

learning enables a GA to adapt a system to deal with any task [12]. There are

numerous reports in the scientific literature on designing fuzzy controllers

using GA [2,10,15,17]. However, most work uses simulation to overcome the

time overhead problem caused by the large number of iterations needed for a

conventional GA to develop a good solution. Thus it is not feasible for a simple
GA to learn online and adapt in real-time. The situation is worsened by the fact

that most evolutionary computation methods developed so far assume that the

solution space is fixed (i.e. the evolution takes place within a pre-defined

problem space and not in a dynamically changing and open one), thus pre-

venting them from being used in real-time applications [16].

Our work is concerned with utilising an intelligent embedded-agent approach

based on a double hierarchical fuzzy–genetic system, similar to the approach

H. Hagras et al. / Information Sciences 150 (2003) 33–57 35



already taken in our previous work in mobile robotics [13,14], to create an

integrated and semi-autonomous building control system. There are other re-

search projects concerned with applying AI to buildings most notably

[5,7,8,19]. Examples of such work include research in Sweden [8] that utilises
multi-agent principles to control an intelligent building. Their primary goal is

energy-efficiency, and although their system does adjust the heating and light

level to suit individual preferences, these settings must be pre-defined. Their

agents are built from traditional AI (i.e. not behaviour based) and their work

does not address issues, such as occupant based learning. The system, so far

implemented in simulation only, managed to achieve energy savings of 40%

over the same building being controlled manually by occupants. A group in

Colorado [19] are using a soft computing approach––neural networks––fo-
cusing solely on the intelligent control of lighting within a building, by antic-

ipating when particular zones (regions in a room) will be occupied or

unoccupied. Their system, implemented in a building with a real occupant, also

achieved a significant energy reduction, although this was sometimes at the

expense of the occupant�s comfort. They use a centralised control architecture
which differs from our multi-agent approach and which includes no adapta-

tion, as is the case for us. A third group based at the MIT Artificial Intelligence

Lab in Massachusetts is working on an intelligent room project. They employ a
mix of cameras, microphones and multiplexer to enable people to interface

with room-based systems in a natural way using speech, gesture, movements,

and context information [5]. This primary focus on facility of the user interface

differs to our work where ideally the agent remains more or less invisible to the

user of the building. There have been also other research projects by [1] and

[11] concerned with producing optimal models for buildings which will used

later in control, however these techniques lacks flexibility as if the system

characteristics changes the system has to repeat a time consuming offline
learning cycle. Also these techniques ignores the fact that the building control

is subject to human desires which can vary from a person to another, so there is

a need for online adaptive and interacting learning. We believe our approach is

unique in seeking to apply a hierarchical fuzzy control architecture with genetic

learning. This approach allows the learning or adaptation to be performed

through interaction with the environment (with the occupant of the room being

seen as part of the environment). In this approach there is no need for simu-

lation or direct human intervention into the rule setting system thus satisfying
the definitions of intelligent autonomous agents in robotics [23] and intelligent

systems as explained above.

Broadly speaking, the agent work described here is situated in the recent line

of research that concentrates on the realisation of embedded real-time agents

grounded in the physical world. Traditional approaches such as real-time

control and expert systems rely on predictive models and thus have difficulty in

environments that are of intractable complexity (in terms of the dynamics and

36 H. Hagras et al. / Information Sciences 150 (2003) 33–57



number of variables) being essentially (if not actually) non-deterministic.

However, a number of robotic based researchers have had notable success in

dealing with this type of problem based on techniques that can broadly be

categorised by the term behaviour based systems. We take this approach as our
starting point and have developed a method of implementing this as a hier-

archical fuzzy system with numerous consequent advantages. Thus, our macro-

control architecture belongs the ‘‘behaviour based control architecture’’ school

pioneered by Rodney Brooks of MIT in the late 80�s [4]. In this approach a
number of concurrent behaviours (mechanisms to attain goal or maintain

state) are active (sensing environment, effecting machine) to a degree deter-

mined the relationship of the machine and environment. We have extended this

approach by developing a number of mechanisms that address both behaviour-
integration, in the form of a hierarchical fuzzy controller, and genetic learning,

combined into a single architecture which we label an ‘‘associative experience

engine’’ [13,14]. In addition to dealing with control problems that are difficult

to model, the self-programming nature of the system has benefits in reducing

software development costs throughout the lifetime of the product. In this

paper we give an overview of both the hierarchical fuzzy control and the ge-

netically based associative experience engine applied to develop an embedded-

agent within a distributed intelligent buildings architecture.

2. Distributed architecture

The granularity of our computational distribution is room-based. Thus,

each room contains an embedded-agent, which is then responsible, via sensors

and effectors for the local control of that room as shown in Fig. 1. The logic
behind this is that it mirrors the architects� vision of the functionality of the
building and thereby provides a natural segmentation of agent types and

functions. All embedded-agents are connected via a high level network (IP-

ethernet in our case), thereby enabling collaboration or sharing of information

to take place where appropriate. Within a room, devices such as sensors and

effectors are connected together using a building services network (Lontalk in

our case) and IP at the higher level. This distributed artificial intelligence (DAI)

architecture is illustrated in Fig. 1.

3. The embedded-agents

Fig. 2 shows the internal of the behaviour-based agent. Controlling a large

integrated building system requires a complicated control function resulting

from the large input and output space and the need to deal with many im-
precise and unpredictable factors, including people. In our system we simplify

H. Hagras et al. / Information Sciences 150 (2003) 33–57 37



this problem by breaking down the control space into multiple behaviours,

each of which responds to specific types of situations, and then integrating their

recommendations.

Fig. 1. The DAI building-wide architecture.

Fig. 2. The hierarchical fuzzy control system.

38 H. Hagras et al. / Information Sciences 150 (2003) 33–57



3.1. The hierarchical fuzzy control architecture

The behaviour based approach, pioneered by Brooks, consists of many

simple co-operating units and has produced very promising results when ap-
plied to the control of robotics, which we argue includes IB.

The problem of how to co-ordinate the simultaneous activity of several

independent behaviour-producing units to obtain an overall coherent behav-

iour have been discussed by many authors [4,21]. The work described in this

paper suggests a solution based on using fuzzy logic to both implement indi-

vidual behaviour elements and the necessary arbitration (allowing both fixed

and dynamic arbitration policies to be implemented). We achieve this by im-

plementing each behaviour as a fuzzy process and then using fuzzy agents to
co-ordinate them. In the resultant architecture, a hierarchical fuzzy logic

controller (HFLC) takes a hierarchical tree structure form and is shown in Fig.

2. This hierarchical approach has the following advantages:

• It facilitates the design of the agent controller and reduces the number of
rules to be determined. It uses the benefits of fuzzy logic to deal with impre-

cision and uncertainty.

• Using fuzzy logic for the co-ordination between the different behaviours
which allows more than one behaviour to be active to differing degrees there-

by avoiding the drawbacks of on–off switching schema (i.e. dealing with sit-

uations where several criteria need to be taken into account). In addition,

using fuzzy co-ordination provides a smooth transition between behaviours

with a consequent smooth output response.

• It offers a flexible structure where new behaviours can be added or modified
easily. The system is capable of performing different tasks using identical be-

haviours by changing only the co-ordination parameters to satisfy a different
high level objective without the need for re-planning.

Our room-based decomposition of behaviours consists of the following

meta-functions. A safety behaviour, which ensures that the environmental

conditions in the room are always at a safe level. An emergency behaviour,

which in the case of a fire alarm or another emergency, might for instance open

the emergency doors and switch off the main heating and illumination systems.

In the case of an emergency this will be the only active behaviour. An economy
behaviour that ensures that energy is not wasted so that if a room is unoccupied

the heating and illumination will be switched to a sensible minimum value. All

of the previous behaviours are fixed but settable, there is however a set of

behaviours that the system learns from the occupant of the room and these

are called comfort behaviours. These behaviours try to ensure that the condi-

tions the occupant prefers (subject to being safe) are set. The learning process is

done interactively using reinforcement where the controller takes actions and

H. Hagras et al. / Information Sciences 150 (2003) 33–57 39



monitors these actions to see if they satisfy the occupant or not, until a degree

of satisfaction is achieved. This process would be acceptable in a hotel or

apartment block but would probably require the intervention of a care assis-

tant in housing for the elderly or those with learning difficulties. The behav-
iours, resident inside the agent, take their input from a variety of sensors in the

room (such as occupancy, inside illumination level, outside illumination level,

inside temperature, outside temperature etc.), and adjust device outputs (such

as heating, lighting, blinds, etc.) according to pre-determined, but settable,

levels. The complexities of training and negotiating satisfactory values for

multiple use rooms would depend upon having a reliable means of identifying

different users.

In our prototype system each agent has six inputs made up of four envi-
ronmental variables––a room temperature (RTEMP), the outside natural

temperature (ONTEMP), the room illumination (RILLUM) and the outside

natural illumination (ONILLUM) each of which have the fuzzy membership

functions shown in Fig. 3. Each input will be represented by three fuzzy sets as

these were found to be the smallest number that give satisfactory results. The

two remaining inputs to the system are the room occupancy flag and another

input indicating whether there is an emergency alarm. The system has two

outputs which are the room heating (RH) setting and a room illumination (RI)
setting, these outputs have the membership functions shown in Fig. 4. Seven

fuzzy sets were used as it was found to be smallest number to give a satisfactory

result. If the alarm input is active then the emergency behaviour is dominant

and the room illumination and heat are switched off. The economy behaviour is

active to a fuzzy degree depending on occupancy and the outside temperature

and light. Behaviour co-ordination is done in a fuzzy way as will be explained

later and the fuzzy membership for behaviour co-ordination are shown in

Fig. 5.

Fig. 3. The input membership functions for RTEMP and ONTEMP A ¼ 10�, B ¼ 20�, C ¼ 30�,
for RILLUM and ONILLUM A ¼ 300 Lux, B ¼ 400 Lux, C ¼ 500 Lux.

40 H. Hagras et al. / Information Sciences 150 (2003) 33–57



Each separate behaviour will use a singleton fuzzifier, triangular member-

ship functions, product inference, max-product composition and height de-

fuzzification. The selected techniques were chosen due to their computational

simplicity. The equation that maps the system input to output is given by:

Yt ¼
PM

p¼1 yp
QG

i¼1 aAip
PM

p¼1
QG

i¼1 aAip
ð1Þ

In this equation M is the total number of rules, y is the crisp output for each
rule, aAi is the product of the membership functions of each rule input and G is
the number of inputs. In this hierarchical architecture we will use a fuzzy

operator to combine the preferences of different behaviour into a collective
preference. According to this view, command fusion is decomposed into two

Fig. 4. The output membership functions for RI A ¼ 0%, B ¼ 20%, C ¼ 35%, D ¼ 40%, E ¼ 50%,
F ¼ 70%, G ¼ 100%, for RH A ¼ 0%, B ¼ 30%, C ¼ 40%, D ¼ 50%, E ¼ 70%, F ¼ 85%,
G ¼ 100%.

Fig. 5. The co-ordination parameters for ONILLUM A ¼ 350 Lux and B ¼ 400 Lux, for ON-
TEMP A ¼ 15� and B ¼ 25�.

H. Hagras et al. / Information Sciences 150 (2003) 33–57 41



steps: preference combination, decision and in the case of using fuzzy numbers

for preferences, product–sum combination and height defuzzification. The final

output equation is [21]:

C ¼
P

iðBWiCiÞP
i BWi

ð2Þ

Here i ¼ economy, comfort, Ci is the behaviour command output (room

heat and temperature). BWi is the behaviour weight. The behaviour weights are

calculated dynamically taking into account the context of the agent. In Fig. 2

each behaviour is treated as an independent fuzzy controller and then using

fuzzy behaviour combination we obtain a collective fuzzy output which is then

deffuzzified to obtain a final crisp output. The fuzzy values are used as inputs to
the context rules which are suggested by the high level planner according to the

mission to be performed by the agent.

Which is in general:

IF ONTEMP IS HIGH AND ONILLUM IS HIGH AND THE ROOM IS

OCCUPIED THEN ECONOMY

IF ONTEMP IS LOW AND ONILLUM IS LOW THEN COMFORT

IF THE ROOM IS VACANT THEN RH IS LOW AND RI IS LOW

The context rules determine which behaviour is fired, and to what degree,

depending on the fuzzy membership functions in Fig. 5. The final output is a

mixture of the different behaviour outputs, each weighted by the degree of its

importance, and the final output is calculated using Eq. (2).

4. Overview of the genetic learning architecture

For learning and adapting the dynamic comfort rule base according to the

occupant behaviours we use an evolutionary computing approach based on a

development of novel hierarchical GA technique. This mechanism operates

directly on the fuzzy controller rule-sets. We refer to any learning conducted

without user interaction, in isolation from the environment as offline learning.

In our case learning will be done online in real-time through interaction with

the actual environment and user.

4.1. The associative experience engine

Fig. 6 provides an architectural overview of what we term an associative
experience engine (AEE) which forms the learning engine within the control

architecture and is the subject of British patent 99-10539.7. Behaviours are

42 H. Hagras et al. / Information Sciences 150 (2003) 33–57



represented by parallel fuzzy logic controllers (FLC). Each FLC has two pa-

rameters that can be modified which are the rule base (RB) of each behaviour

and its membership functions (MF), however in this paper we will concentrate

on learning the RB. The behaviours receive their inputs from sensors. The

output of each FLC is then fed to the actuators via the co-ordinator that

weights its effect. When the system response fails to have a desired a response,

the learning cycle begins.
The learning depends on the learning focus which is supplied by the co-

ordinator (the fuzzy engine which weights contributions to the outputs). When

the learning focus is learning an individual rule base for a behaviour, then each

rule base for each behaviour is learnt alone, which is the case when learning the

comfort behaviour rule base in the IB agent.

After the initial process of interactively learning the occupant�s preferred
behaviours, if the occupants behaviour indicates that there are changes in at-

titude or that a new situation has arisen, the system can add or delete rules
to satisfy the occupant by re-entering the interactive mode. In the case of a

new occupant in the room the system interactively monitors his actions dur-

ing the first few minutes and after that the system takes control and fires

the most suitable rule base from the Experience Bank. If this rule base is

Fig. 6. Architectural overview of associative experience learning engine (UK patent no. 99-

10539.7).

H. Hagras et al. / Information Sciences 150 (2003) 33–57 43



not totally appropriate, the interactive system learning is started from the

previously found best point in the search space rather than starting from

random, this results in the speeding up of learning and adaptation. The

experience assessor assigns each stored rule base in the Experience Bank a
fitness value. When the Experience Bank is full, we have to delete some expe-

riences. To assist with this the experience survival evaluator determines which

rules are removed according to their importance (as set by the experience as-

sessor).

When the past experiences do not satisfy the occupant�s needs we use the
best-fit experiences to reduce the search space by pointing to a better starting

point, which is the experience solution with the largest fitness. We then fire an

adaptive genetic mechanism (AGM) using adaptive learning parameters to speed
the search for new solutions. The AGM is constrained to produce new solu-

tions in certain range defined by the contextual prompter which is supplied by

human constrains to avoid the AGM searching options where solutions are

unlikely to be found. By using these mechanisms we narrow the AGM search

space massively thus improving its efficiency. After generating new solutions

the system tests the new solution and gives it fitness through the solution

evaluator. The AGM provides new options until a satisfactory solution is

achieved.
From a users viewpoint the system functions interactively as follows. A

user is asked to select his preference for any given programmable setting.

The system then tries to adapt its rules to achieve this setting. The user is

prompted to confirm or deny his satisfaction with the result. The system

then either tries to re-adjust the rules if the occupant is dissatisfied or, if the

user is satisfied, the current rule set is accepted. Experiments to date show the

experience engine achieves a satisfactory solution in a small number of itera-

tions (typically 22) which takes only 3 min of the agent time. As we mentioned
earlier this process would probably have to undertaken by a care assistant for

some populations. In the next section we will explain the techniques in more

detail.

We have compared our method, which is an online proactive method, with

other offline supervised learning system like the Mendel–Wang approach [18],

offline GA [15], ANFIS. We found, from the experimental results, that our

system gives comparable results to that of the offline approaches while our

system learns online through interaction with the user and has the ability to
adapt to new users or situations. Offline methods have to repeat the learning

cycle from the beginning and require that the initial training set plus any newly

acquired data be used. Our system works by cause-effect actions in the form of

fuzzy rules, based on the occupant�s actions. The advantage of this is that the
system responds and adapts to the users needs in an interactive manner. To

gather all the given results we used an AEE specially adapted for IB control,

shown in Fig. 7.

44 H. Hagras et al. / Information Sciences 150 (2003) 33–57



5. The associative experience learning engine applied in IB in detail

5.1. Identifying poorly performing rules

The rule-base is intialised to have all the outputs switched off. The GA

population consists of all the rules consequents contributing to an action which

is usually a small number of rules. As in the case with classifier systems, in
order to preserve the system performance the GA is allowed to replace a subset

of the classifiers (the rules in this case). The worst m classifiers are replaced by
the m new classifiers created by the application of the GA on the population [9].
The new rules are tested by the combined action of the performance and ap-

portionment of credit mechanisms. We will replace the actions of the worst

four rules that participated in bad action at a given input.

In the learning phase the agent is introduced to different situations, such as

having low temperature inside and outside the room and low illumination level,
and the agent, guided by the occupants needs attempts to discover the rules

needed in each situation. The learning system consists of learning different

situations or episodes; in each situation only small number of rules will be fired.

The model to be learnt is small and so is the search space. The accent on

local models implies the possibility of learning by focusing at each step on a

small part of the search space only, thus reducing interaction among partial

Fig. 7. Modified AEE embedded-agent architecture.

H. Hagras et al. / Information Sciences 150 (2003) 33–57 45



solutions. The interaction among local models, due to the intersection of

neighbouring fuzzy sets means local learning reflects on global performance [3].

Moreover, the smooth transition among the different models implemented by

fuzzy rules implies robustness with respect to data noise. So we can have global
results coming from the combination of local models, and smooth transition

between close models. Also dividing the learning into local situations can re-

duce the number of learnt rules. For example if we started learning with 81

rules, the agent discovered that during its interactive training with the occu-

pant, it needed only 49 rules.

5.2. Fitness determination and credit assignment

The system fitness is determined by the solution evaluator and is evaluated by

how much the system satisfies the room occupant desired input value or normal

value (such as desired temperature) in a specific situation and how it reduces

the normalised absolute deviation ðdÞ from the normal value. This is given by:

d ¼ jnormal value� deviated valuej
max deviation

ð3Þ

where the normal value will correspond to the value that gives the value desired

by the human. The deviated value is any value deviating from the normal

value. The maximum deviation corresponds to the maximum deviation that

can occur. So the fitness of the solution is given by d1� d2 where d2 is the
normalised absolute deviation before introducing a new solution and d1 is the
normalised absolute deviation following the new solution. The deviation is

measured using the agent�s physical sensors, which gives the agent the ability to
adapt to the imprecision and the noise found in the real sensors rather than
relying on estimates from previous simulations.

The fitness of each rule at a given situation is calculated as follows. The crisp

output Yt can be written as in (1). If the agent has two output variables, then we
have Yt1 and Yt2. The normalised contribution of each rule p output ðYp1; Yp2Þ to
the total output Yt1 and Yt2 can be denoted by Sr1, Sr2 where Sr1 and Sr2 is given
by:

Sr1 ¼

Yp1
QG

i¼1
aAip

PM

p¼1

QG

i¼1
aAip

Yt1
; Sr2 ¼

Yp2
QG

i¼1
aAip

PM

p¼1

QG

i¼1
aAip

Yt2
ð4Þ

We then calculate each rule�s contribution to the final action Sc ¼ ðSr1þ
Sr2Þ=2. Then the most effective rules are those that have the greatest values of
Sc. The fitness of the rule in a given solution is supplied by the solution eval-
uator and is given by:

Srt ¼ Constantþ ðd1 � d2Þ � Sc ð5Þ

46 H. Hagras et al. / Information Sciences 150 (2003) 33–57



d1 � d2 is the deviation improvement or degradation caused by the adjusted
rule-base produced by the algorithm. If there is improvement in the deviation,

then the rules that have contributed most will be given more fitness to boost

their actions. If there is degradation then the rules that contributed more must
be punished by reducing their fitness w.r.t other rules so we can give the chance

to other useful actions and go away from the current bad actions.

5.3. Memory application

Zhou [24] presented the classifier system with memory (CSM) system that
addresses the problem of long versus short term memory, i.e. how to use past

experiences to ease the problem solving activity in novel situations. Zhou�s
approach is to build a system in which a short and long term memory are si-

multaneously present. The short term memory is just the standard set of rules

found in every learning classifier system (the fuzzy rule base in our case). The

long term memory is a set of rule clusters, where every rule cluster represents a

generalised version of problem solving expertise acquired in previous problem

solving activity. Each time the agent is presented a problem it starts the
learning procedures trying to use long term experience by means of an ap-

propriate initialisation mechanism. Thereafter, the system works as a standard

classifier system (except for some minor changes) until an acceptable level of

performance has been achieved. It is at this point that a generalizer process

takes control and compresses the acquired knowledge into a cluster of rules

that are memorised for later use in the long term memory.

In our system, as the agent begins learning, it has no previous experience

and the Experience Bank is empty. But as it begins learning by GA, it begins
filling the memory with different rule bases of different users. Each stored rule

base is consisting of the rules that were learnt and the actions (consequences)

that were learnt by the GA.

After monitoring the user�s action for two minutes the agent then matches
the fired rules during this time to sets of rules bases for different users stored in

the Experience Bank. The system tries to identify which rule base is appropriate

to the user based on the basis of actions taken by him during the first two

minutes, and the rule base that contains the most similar actions to the oc-
cupant is chosen as a starting point for learning and adaptation.

Each time the agent is presented with a situation to solve, it begins checking

if the consequences of firing the rules from a rule base extracted from the

Experience Bank suits the new user or not. If these rules are suitable for the

user then they are used for the comfort behaviours. If some actions are not

suitable for the user, the system begins identifying the poorly performing rules

as described in Section 5.1, then it fires the AGM to change these rules. This

action helps to speed up the genetic search as it starts the search from the best
found point in the search space instead of starting from a random point.

H. Hagras et al. / Information Sciences 150 (2003) 33–57 47



By doing this, our system does not need the matcher calculations used by

[24]. This is because our system does not use the binary message coding, or ‘‘do

not care’’, conditions but uses perfect matches, hence we do not need the

generalizer. The clusters are arranged in a queue starting from the most recent
experiences.

Problems occur as the system begins accumulating experience that exceeds

the physical memory limits. This implies that we must get rid of some of the

stored information as the acquired experience increases. However we do not

favour this, as this means that some of the experiences acquired by the agent

will be lost. So for every rule base cluster we attach a difficulty counter to count

the number of iterations taken by the agent to find a suitable rule base for a

given user, we also attach a frequency counter to count how much this rule base
have been retrieved. The degree of importance of each rule base cluster is cal-

culated by the experience survival valuer and is given by the product of the

frequency counter and the difficulty counter. This approach tries to keep

the rules that have required a lot of effort to learn (due to the difficulty of the

situation) and also the rules that are used frequently. When there is no more

room in the Experience Bank, the rule base cluster that had the least degree of

importance is selected for removal. If two rule base clusters share the same

importance degree, tie-breaking is resolved by a least-recently-used strategy;
derived from a ‘‘life invocation’’ flag, that is updated each time a rule is acti-

vated.

5.4. Using GA to produce new solutions

If the rule base extracted from the Experience Bank is not suitable for the
user, the GA starts its search for new consequences for the poorly performing

rules. The fitness of each rule in the population is proportional to its contri-

bution in the final action. If the proposed action by the new solution results in

an improvement in performance then the rules that have contributed most will

have their fitness increased more than the rules that have contributed less in

this situation. If the result was a decrease in performance then the rules that

have contributed most to this action will have their fitness less than the rules

that have contributed less to this action. This allows us to go away from those
points in the search space that cause no improvement or degradation in the

performance. The parents for the new solution are chosen proportional to their

fitness using the roulette-wheel selection process and the genetic operations of

crossover and mutation are applied.

The proposed system can be viewed as a double hierarchy system in which

the fuzzy behaviours are organised in a hierarchical form and the online

learning algorithm is also a hierarchy. In the higher level we have a population

of solutions stored in the Experience Bank. If the stored experiences leads to a
solution then the search ends, if none of these stored experiences leads to a

48 H. Hagras et al. / Information Sciences 150 (2003) 33–57



solution then each of these experiences acquires a fitness assigned by the Ex-

perience Assessor by finding how many rule in the stored rule base are similar

to the user�s action in the first two minutes. The highest fitness experience is
used as a starting position to the lower level GA that is used to produce new
solution to the current situation.

The AGM is the rule discovery component for our system (as in the classifier

system). We used Srinivas method [22] to adapt the control parameters (mu-

tation and crossover probabilities). The strategy used for adapting the control

parameters depends on the definition of the performance of the GA. In a non-

stationary environment (which is our case), where the optimal solution changes

with time, the GA should possess the capacity to track optimal solutions, too.

The adaptation strategy needs to vary the control parameters appropriately
whenever the GA is not able to track the located optimum. It is essential to

have two characteristics in GA for optimisation. The first characteristic is the

capacity to converge to an optimum (local or global) after locating the region

containing the optimum. The second characteristic is the capacity to explore

new regions of the solution space in search of the global optimum. In order to

vary Pc (crossover probability) and Pm (mutation probability) adaptively, for
preventing premature convergence of the GA, it is essential to be able to

identify whether the GA is converging to an optimum. One possible way of
detecting convergence is to observe the average fitness value f 0 of the popu-

lation in relation to the maximum fitness value fmax of the population. fmax � f 0

is likely to be less for a population that has converged to an optimum solution

than that for a population scattered in the solution space. The equations that

determines Pc, Pm are given by:

Pc ¼ ðfmax � f 0Þ=ðfmax � f 0Þ f 00 P f 0

Pc ¼ 1 f 00 < f 0 ð6Þ

Pm ¼ ðfmax � f Þ=2ðfmax � f 0Þ f P f 0

Pm ¼ 0:5
ð7Þ

where f 00 is the larger of the fitness values of the solutions to be crossed, f is the
fitness of the individual solutions. The method means that we have pc and pm
for each chromosome. The type of crossover was chosen to be one point
crossover for computational simplicity and real time performance.

In [22] this method was superior to the simple GA and gave faster con-

vergence of rate 8:1. We use this adaptive method for finding the values of

crossover and mutation probabilities. This way leads to fast convergent solu-

tions, and adapts the GA for non-stationary environments and relives the

designer from determining these values, heuristically.

We use constrained GA search, which is constrained by the contextual

prompter according to the occupant�s needs so that if, for example, a temper-
ature is too high for the room occupier then the AGM would not suggest

H. Hagras et al. / Information Sciences 150 (2003) 33–57 49



solutions increasing the temperature. In this way we can minimise the search

space of the GA and achieve faster conversion.

In order to justify these techniques we have conducted various experiments

with this adaptive GA (AGA) with open range and AGA with constrained
range and simple GA (SGA) with constrained range for the problem of

learning the comfort behaviour of different human attitudes as shown in Fig. 8.

The SGA was tried with different parameters in the range [0.5 1.0] for pc and
[0.001 0.1] for pm. And the best performing one was found to be pc ¼ 0:7 and
pm ¼ 0:002 and is plotted in Fig. 8. It was found that the one with constrained
AGA converges to a solution in average after only 22 iterations and 3 min of the

real agent time (most of the time is consumed in interacting with the human).

The AGA with open rage converges also but after larger number of iterations
(33 iterations in average) as it needs more time to explore the search space and

determine its limits this takes about 11 min of the agent time to converge to a

solution. The SGA with defined limits and pc ¼ 0:7 and pm ¼ 0:002 converge to
a solution after in average 48 iterations and 24 min of the agent time. These

experiments justify that our proposed algorithm converges in a very short time

interval thanks to the AGA and the constrained GA.

We use binary coding in the GA. For each rule there are two actions which

are the room heating and illumination. As we have seven output membership
function, we decode each action by three bits as follows: very very low is 000,

very low is 001, low 010, normal is 011, high is 100, very high 101, very very high

110. By doing this we have a chromosome length of 6 bits.

Fig. 8. The best fitness plotted against the number of iterations for different learning.

50 H. Hagras et al. / Information Sciences 150 (2003) 33–57



Fig. 9 shows a description of the GA operation in which the actions of rule

number 5 and rule number 2 of the comfort behaviour are chosen for repro-

duction by roulette wheel selection due their high fitness. They have contrib-

uted more with their actions to the final action which caused improvement, or

contributed less with their actions to final action which caused degradation.

The adaptive crossover and mutation probabilites have been applied to both

chromosomes. The resultant offspring were used to replace the consequences of
rules 1 and 3 which were mostly blamed for the unstatisfactory responses. It is

worth saying that at each situtation the population consists only from that fired

and caused the user dissatisfaction.

6. Experimental results

In our experiments we used an IB agent based on 68000 Motorola processor,

the agent is equipped with light and heat sensors and actuators in the form of a

heater and a light source; the IB agent is shown in Fig. 10. This agent is tested

in a room with various conditions such as multiple occupancy, different levels
of natural light and temperature and different times of the day and different

Fig. 9. An example of GA processes in our proposed classifier system in which rule 5 and rule 7

(which were selected due to their higher fitness values) are generating new consequent for rules 1, 2.

H. Hagras et al. / Information Sciences 150 (2003) 33–57 51



human desires. There is a built in economy behaviour that should switch the
heat low and ventilation off after the room is vacated. There is also a safety

behaviour that prevents the heat going below a minimum safe level (e.g. zero

degrees which would result in pipes freezing). Centrally, there is the comfort

behaviour for the occupant themselves which will be learnt using our patented

fuzzy–genetic techniques. The agent deals in a proactive way with the occupant

interacting with him to see if the action was completed satisfactory or not, and

whether it is required to decrease or increase levels in question.

The agent was tried, in different environments, under different conditions
such as hot sunny days and cold and dark days. The agent using our patented

techniques was able to find a satisfactory rule base for different users in an

average of 22 trials taking 3 min of the agent time. Our method also optimised

the number of rules by using only the rules that are important to the room

occupier. The system also has the ability to adapt later and to add or delete

rules and modify the actions of the existing rules interactively to the room

occupant�s wishes.
We have tried different offline learning methods such as the Mendel–Wang

method, offline GA and ANFIS, it was found that the Mendel–Wang approach

Fig. 10. The IB agent.

52 H. Hagras et al. / Information Sciences 150 (2003) 33–57



Table 1

The rule base found by our method and by Mendel–Wang method

RTEMP ONTEMP RILLUM ONILLUM Our method Mendel–Wang method

RH RL RH RL

Low Low Low Low Very high High Very very high Very high

Low Low Low Norm Very very high Very very high Very high Very high

Low Low Norm Low Very high Norm Very high Norm

Low Low Norm Norm Norm Norm Norm Norm

Low Low Norm High Very high Very low Very high Very low

Low Low High Low High Very low Very high Very low

Low Low High Norm High Very very low Very high Very very low

Low Low High High High Very very low Very high Low

Low Norm Low Low Norm Very very high Norm Very high

Low Norm Low Norm Norm Norm Norm High

Low Norm Norm Low Very very high Very low Very very high Very low

Low Norm Norm Norm High Very low Very high Very very low

Low Norm Norm High High Very very low Very high Very low

Low Norm High Low Very high Low Very very high Very low

Low Norm High Norm Norm Very very low High Very low

Low Norm High High Very high Very very low Very very high Low

Low High Low Low Norm Very high Very very high Very high

Low High Low Norm Very very high High Very very high High

Low High Norm Low High Norm Very very high High

Low High Norm Norm Very very low Very low Very very low Very low

Low High Norm High Very very low Very low Very very low Very low

Low High High Norm Very very low Very low Very very low Very low

Low High High High Very very low Very low Very very low Very low

Norm Low Low Low Norm High Norm High

Norm Low Low Norm Norm Very very high High High

Norm Low Norm Low Norm Norm Norm Norm

Norm Low Norm Norm Norm Norm High High

Norm Low Norm High Very very low Very low Very very low Low

H
.
H
a
g
ra
s
et
a
l.
/
In
fo
rm
a
tio
n
S
cien

ces
1
5
0
(
2
0
0
3
)
3
3
–
5
7

5
3



Table 1 (continued)

RTEMP ONTEMP RILLUM ONILLUM Our method Mendel–Wang method

RH RL RH RL

Norm Low High Norm Low Norm Very very low Low

Norm Low High High Very very low Very low Very low Norm

Norm Norm Low Low Very low Very high Very very low Very very high

Norm Norm Norm Low Low Norm Very low High

Norm Norm Norm Norm Very low Very very low Very very low Norm

Norm Norm Norm High Very very low Low Very low Very very low

Norm Norm High Norm Low Very low Very very low Low

Norm Norm High High Very low Low Very very low Low

Norm High Low Low Very very low High Very very low Norm

Norm High High High Very very low Very low Very very low Very low

High Low Low Low Very low High Very low Very high

Norm High High High Very very low Very low Very very low Very low

High Low Low Low Very low High Very low Very high

High Low Norm Low Very low Very very high Very low Very high

High Low Norm Norm Very very low Low Very low Very low

High Low Norm High Norm Very very low Norm Very low

High Low High Norm Norm Low Very very low Low

High Low High High Very low Low Very low Low

High Norm Low Low Norm High Very low High

High Norm Norm Low Low Very high Very low Very high

High Norm Norm Norm Very very low Low Low Very low

High Norm Norm High Very very low Very low Very very low Low

High Norm High High Very very low Very low Low Very very low

5
4

H
.
H
a
g
ra
s
et
a
l.
/
In
fo
rm
a
tio
n
S
cien

ces
1
5
0
(
2
0
0
3
)
3
3
–
5
7



had produced the best results. Table 1 shows the rules obtained by our method

and the Mendel–Wang method, which is an offline rule extraction method.

Note that our method had optimised the number of rules from an expected

34 ¼ 81 rule base to only 49 rules. Also a problem with supervised learning
techniques, such as Mendel–Wang, are that they need a person to supply a set

of desired values. Which would be difficult since the values are not intuitive. If

the person wants the heating turned to what might be the equivalent of 37%

and the illumination to 40% (taken as percentages of their maximum output)

then finding or deriving an appropriate value from the device setting for the

purposes of generating a training rule would be difficult. This is why, although

the rules extracted by our method are similar to the Mendel–Wang a rule, the

difference is that in our case we interact with the person until he is satisfied.
Another advantage our method is that our system can quickly adapt to any

change, starting from the closest previous solution, while the supervised

learning techniques are off-line and repeat the learning cycle from the begin-

ning and requiring a full set of training data.

7. Conclusion and future work

In this paper we have presented a novel online learning, adaptation and

control algorithm based on a double hierarchical fuzzy–genetic system. In this

prototype IB agent this system is composed of three fixed behaviours––the

safety, emergency and economy behaviours and an adaptable rule set of
comfort behaviours that are adapted according to the occupants actual be-

haviour. The system interactively learnt an optimised rule base for the comfort

behaviour in a small set of interactions. The system produced similar rules to

the rule base learnt by off-line supervised techniques but our system has many

advantages such as the ability to adapt to changes in environmental conditions

or the room occupant. It adapted in real time, on-line accommodating new

data and rules, as they become known to the system. The system is memory

based, possesses data, exemplar storage and retrieval capacities; leaning and
improving through active interaction with the user and the environment. It

includes parameters to represent short and long term memory, age, forgetting,

and analyses itself in terms of behaviour, error and success. Thus we would

argue that our approach substantially meets the criteria for intelligent systems

set out by researchers such as Kasabov and Steels and described earlier in this

paper which has not achieved by other methods in IB.

For our future work, we plan to move from an experimental bench based rig

to IB equipped rooms with our intelligent, autonomous, agents and thereby
extend the investigation to a richer set of environmental inputs which include a

wider set of occupant behaviours. Also, we believe that an ideal IB agent

H. Hagras et al. / Information Sciences 150 (2003) 33–57 55



should require little or no involvement from the occupant and thus another

goals of our future work is further minimise the interactive aspects of the agent.

Acknowledgements

We are pleased to acknowledge the contribution from Malcolm Lear (Essex

University) who built the agent hardware, sensors and test rig. We would also

like to thank, Anthony Pounds–Cornish, Sue Sharples, Gillian Kearney, Robin

Doling and Filiz Cayci with whom we have had many stimulating discussions
on embedded-agent architectures.

References

[1] P. Angelov, R. Buswell, V. Hanby, Automatic generation of fuzzy rule-based models from data

by genetic algorithms, in: Proceedings of International Conference on Recent Advances on

Soft Computing, Leicester, UK, 2000.

[2] A. Bonarini, F. Basso, Learning behaviours implemented as fuzzy logic and reinforcement

learning, Second Online Workshop on Evolutionary Computation, 1996.

[3] A. Bonarini, Comparing reinforcement learning algorithms applied to crisp and fuzzy learning

classifier systems, in: Proceedings of the Genetic and Evolutionary Computation Conference,

Orlando, Florida, 1999, pp. 52–60.

[4] R. Brooks, Intelligence without representation, Artificial Intelligence 47 (1991) 139–159.

[5] R. Brooks, Intelligent room project, in: Proceedings of the 2nd International Cognitive

Technology Conference (CT�97), Japan, 1997.
[6] V. Callaghan, G. Clarke, Buildings as intelligent autonomous systems: a model for integrating

personal and building agents, in: The 6th International Conference on Intelligent Autonomous

Systems (IAS-6), Venice, Italy, 2000.

[7] M.H. Coen, Building brains for rooms: designing distributed software agents, in: Proceedings

of the Ninth Innovative Applications of AI Conference, AAAI Press, 1997.

[8] P. Davidsson, Energy Saving and Value Added Services; Controlling Intelligent-Buildings

Using a Multi-Agent System Approach in DA/DSM Europe DistribuTECH, PennWell, 1998.

[9] M. Dorigo, Genetics-based machine learning and behaviour based robotics: a new synthesis,

IEEE Transactions on Systems, Man, Cybernetics (1993) 141–154.

[10] T. Fukuda, N. Kubota, An intelligent robotic system based on fuzzy approach, Proceedings of

the IEEE 87 (1999) 1448–1470.

[11] A. Gegov, D. Azzi, G. Virk, Application of sot-computing techniques in modelling of

buildings, in: Proceedings of International Conference on Recent Advances on Soft

Computing, Leicester, UK, 2000.

[12] D. Goldberg, Genetic Algorithms in Search, Optimisation and Machine Learning, Addison-

Wesley, Reading, MA, 1989.

[13] H. Hagras, V. Callaghan, M. Colley, A fuzzy–genetic based embedded-agent approach to

learning and control in agricultural autonomous vehicles, 1999 IEEE International Conference

on Robotics and Automation, Detroit, USA, 1999, pp. 1005–1010.

[14] H. Hagras, V. Callaghan, M. Colley, Online learning of fuzzy behaviours using genetic

algorithms and real-time interaction with the environment, 1999 IEEE International

Conference on Fuzzy Systems, Seoul, Korea, 1999, pp. 668–672.

56 H. Hagras et al. / Information Sciences 150 (2003) 33–57



[15] F. Hoffmann, Incremental tuning of fuzzy controllers by means of evolution strategy, in:

Proceedings of the GP-98 Conference, Madison, Wisconsin, 1998, pp. 550–556.

[16] N. Kasabov, Introduction: Hybrid intelligent adaptive systems, International Journal of

Intelligent Systems 16 (1998) 453–454.

[17] G. Linkens, O. Nyongeso, Genetic algorithms for fuzzy control, Part II: online system

development and application, IEE Proceedings Control Theory Applications 142 (1995) 177–

185.

[18] J. Mendel, L. Wang, Generating fuzzy rules by learning through examples, IEEE Transactions

on Systems, Man and Cybernetics 22 (1992) 1414–1427.

[19] M. Mozer, The neural network house: an environment that adapts to its inhabitants, in:

Proceedings of American Association for Artificial Intelligence Spring Symposium on

Intelligent Environments, AAAI Press, 1998, pp. 110–114.

[20] P. Robathan, Intelligent Buildings Guide, Intelligent Buildings Group and IBC Technical

Services Limited, 1989.

[21] A. Saffiotti, Fuzzy logic in autonomous robotics: behaviour co-ordination, in: Proceedings of

the 6th IEEE International Conference on Fuzzy Systems, Barcelona, Spain, 1997, pp. 573–

578.

[22] M. Srinivas, L. Patnaik, Adaptation in Genetic Algorithms, Genetic Algorithms for Pattern

Recognition, in: S. Pal, P. Wang, CRC press, 1996, pp. 45–64.

[23] L. Steels, When are robots intelligent autonomous agents, Journal of Robotics and

Autonomous Systems 15 (1995) 3–9.

[24] H. Zhou, A computational model of cumulative learning, Machine Learning Journal (1990)

383–406.

H. Hagras et al. / Information Sciences 150 (2003) 33–57 57


	A hierarchical fuzzy-genetic multi-agent architecture for intelligent buildings online learning, adaptation and control
	Introduction
	Distributed architecture
	The embedded-agents
	The hierarchical fuzzy control architecture

	Overview of the genetic learning architecture
	The associative experience engine

	The associative experience learning engine applied in IB in detail
	Identifying poorly performing rules
	Fitness determination and credit assignment
	Memory application
	Using GA to produce new solutions

	Experimental results
	Conclusion and future work
	Acknowledgements
	References


