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Abstract

This thesis is part of the project around the New Monte Rosa Lodge of the Swiss
Alpine Club (SAC). The lodge is built almost 2900m above sea level and is not
connected to any energy or water supply grid. However, it has an extended house
automation, consisting of thermal solar collectors and photovoltaic cells, water tanks
which store heat, a battery and a combined heat and power plant which can startup
if there is an energy shortage. The lodge is constructed by different project partners
as a jubilee project for 150 years ETH Zurich. The Measurement and Control Lab-
oratory IMRT is responsible for the development of an advanced model predictive
control algorithm which will increase the grade of autarky of the New Monte Rosa
Lodge, meaning that the overall fuel consumption is minimized.

First a mathematical model of the new lodge and its house automation is derived.
Also booking schedule and weather forecast data are included in the model. In a
second step a linear and a dynamic programming algorithm are implemented in
order to compute the minimum possible fuel consumption by determining the best
control input sequence for all house automation parts.

The model consist of differential and algebraic equations which are derived from
fundamental laws of physics and from information supplied by project partners of
the New Monte Rosa Lodge. The equations are set up such that they represent the
essential dynamics accurately and are easy enough for an optimization algorithm to
deal with. Former asks for a lot of states while latter requires the state space to be
as small as possible. Both needs are successfully merged into a model with 6 states.
The equations are implemented in MATLABr Simulinkr in order to simulate the
system over time.

In order to determine the optimal control input sequence the model is split up in an
electrical and a thermal part. These two subsystems are optimized separately with
a linear respectively a dynamic programming algorithm. The lost interconnection
between the two subsystems due to the split is discussed and analyzed. Further-
more, a heuristic controller is developed to which the behavior of the optimized
controller can be compared.

The results derived, based on weather and booking schedule data from the year 2006,
show the typical behavior of the different control strategies during three different
time periods. The advantages of an optimized controller are outlined and discussed.
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Chapter 1

Introduction

1.1 Motivation

This bachelor thesis is part of the project around the New Monte Rosa Lodge of the
Swiss Alpine Club (SAC). The lodge is constructed by different project partners
as a jubilee project for 150 years of ETH Zurich. All these ETH projects have the
same motivation: to make a sustainable contribution to the society. The increasing
energy consumption and CO2 production is a problem we are faced with every
day. In the last decades the main objective was to reduce the fuel consumption of
transportation. But since a few years the demand for energy saving technologies for
buildings is constantly increasing. Indeed, the potential to save energy in facilities
is much larger than that for the transportation sector [13].
With regard to the lodge, the most expensive issue related to energy saving aspects
are the helicopter transports, which are necessary to bring fuel, food and other
supplies. If the lodge had a high energy independency, the number of flights could
be reduced substantially. The goal of the New Monte Rosa Lodge project is to

Figure 1.1.0.1: Montage of the New Monte Rosa Lodge.
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Chapter 1. Introduction 2

build a new lodge that reaches a grade of autarky above 90% 1. This goal shall be
reached by an intelligent usage of the locally accumulated solar energy and correctly
chosen HVAC components. Intelligent usage means to synchronize the operation
of the components with a predictive control system. Today, buildings are rarely
handled as integrated systems; normally, each component of a building is controlled
separately. These simple controllers are only based on current measurement signals,
which can lead to bad decisions. An intelligent controller, like the one to be built in
the New Monte Rosa Lodge, is able to take the development of weather conditions
and guest reservations into account. Only in this way the ambitious aim of an
autarky level above 90% can be reached.

1.2 Initial Position

In the years 2003 to 2005, the faculty of architecture of the ETH Zurich developed
the construction of the New Monte Rosa Lodge. Until then, no decisions about
the technical components of the lodge were made. This followed in the years 2006
and 2007, when the Lucerne University of Applied Sciences and Arts evaluated
fundamental calculations of the thermal and electrical energy need of the lodge.
Based on these results, the size of the HVAC components, the photovoltaic cells,
the thermal solar collectors etc. was estimated and the final technical equipment
was chosen.
In this thesis an optimal allocation of the available energy is computed.

1.3 Tasks & Goals

Actually two tasks are to be solved: The first task is to create a mathematical
model of the lodge. This means, that in a first step all components of the building
are identified and quantified, which are able to store energy or mass, including
the building itself. The second step is to map the interconnections between these
storages. In a third step, these relations are represented in a mathematical way
such that they can be used for an optimization problem.
The second task is to find an optimal control signal for every adjustable component
in the lodge. This control signal shall be optimal in the sense that it minimizes the
overall fuel consumption and thus maximizes the grade of autarky. Of course various
constraints have to be fulfilled, such as comfortable climate inside the building. The
goal is to create a benchmark; the performance of every controller which will be
built in the future can be checked against this benchmark.

1.4 Structure of the Thesis

Firstly, some fundamental theory is discussed in Chapter 2. The basic concepts
of linear programming and dynamic programming are derived. Secondly, the New
Monte Rosa Lodge and its house automation is described in Chapter 3, followed by
the description of the modeling process in Chapter 4. Chapter 5 covers the imple-
mentation of the optimization algorithms in MATLABr. The computed results are
discussed in Chapter 6.

1excluding energy spent on cooking



Chapter 2

Theoretical Foundations

Mathematical models and methods used in the present work are discussed in this
chapter. In Section 2.1, the reader is introduced to a systematic approach of trans-
forming physical phenomena into mathematical models and equations. In Section
2.2 some mathematical definitions are given, which are used in Sections 2.3 and
2.4 where the linear programming (LP) and the dynamic programming (DP) are
introduced and their theoretical background is described. To give the reader an un-
derstanding of their application area their advantages and drawbacks are discussed.
An brief introduction to model predictive control (MPC) in Section 2.5 closes this
chapter.

2.1 Modeling

The background of the following equations is found in [5].

2.1.1 Basic Approach

First of all one can distinguish two main classes of objects in a physical system:

� ”Reservoirs”, which typically store mass, energy, charge or information;

� ”Flows”, i. e., any interaction between reservoirs or a reservoir and the envi-
ronment.

Reservoirs cause a dynamic effect in a system and have a level variable associated.
A reservoir with a large time constant is referred to as a slow dynamic, one with a
small time constant as a fast dynamic. It depends on the problem setting, which
dynamics are the interesting ones. If the reaction time of a sensor is asked for
some reason, the relevant dynamics have time constants in the order of seconds to
milliseconds. But if the temperature of a room is of interest, the dynamics with
time constants of a second are not at all interesting, all the more the ones with time
constants of minutes or even hours.
A typical approach to model a system is the following:

1. Define the boundaries of the system as well as the inputs and outputs;

2. Identify all relevant dynamic elements (in other words, reservoirs) of the sys-
tem and the corresponding level variable;

3



Chapter 2. Theoretical Foundations 4

3. Formulate the differential equations for all relevant dynamics in the following
form:

d

dt
(reservoir content) =

∑
inflows−

∑
outflows ; (2.1)

4. Formulate the algebraic relations which describe the flows between the reser-
voirs and eliminate implicit algebraic loops if possible;

5. Identify the unknown system parameters with some experiments and verify
them with independent experiments.

2.1.2 Useful Equations

In Table 2.1.2.1 the most important equations, which were used later to model the
lodge, are given in their standard form.

Enthalpy flow Ḣ = cpṁ T
Energy conservation d

dtE(t) = Q̇in − Q̇out
Mass conservation d

dtm(t) = ṁin − ṁout

Table 2.1.2.1: Some useful equations

2.2 Mathematical Definitions

Some basic mathematical definitions are given in this section. They provide a
basis for Sections 2.3 and 2.4 where the linear programming (LP) and the dynamic
programming (DP) are introduced and their theoretical background is described.
The notation is based on [2].

Subspaces

S ⊆ Rn is a subspace if

x, y ∈ S, λ, µ ∈ R → λx+ µy ∈ S . (2.2)

In a three-dimensional space R3 S is a plane through 0, x, y ⊆ S.
A subspace can be represented by a matrix in different ways:

range(A) = {Aw|w ∈ Rq}
= {w1a1 + . . .+ wqaq|wi ∈ R}
= span(a1, a2, . . . , aq) ,

(2.3)

where A = [a1, a2, . . . , aq] .

Affine Sets

S ⊆ Rn is affine if

x, y ∈ S, λ, µ ∈ R, λ+ µ = 1 ⇒ λx+ µy ∈ S . (2.4)

In a three-dimensional space R3 S is a plane through x, y ⊆ S, i. e., a shifted
subspace, which no longer goes through the origin.
It can be represented by linear equalities:

S = {x|Ax = b} . (2.5)
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Convex Sets

S ⊆ Rn is a convex set if

x, y ∈ S, λ, µ ∈ R+, λ+ µ = 1 ⇒ λx+ µy ∈ S . (2.6)

A convex set has the property, that every point z between two arbitrary points of
the set x, y ∈ S is also part of the set:

x, y ∈ S, h ∈ [0, 1]⇒ z = x+ h(y − x) ∈ S . (2.7)

Hyperplanes and Halfspaces

A hyperplane is defined as follows:

{x|aTx = b}(a 6= 0) , (2.8)

where x, a ∈ Rn, b ∈ R .
A hyperplane is affine and separates a space into two parts.
It is a subspace if b = 0.

A halfspace is defined as
{x|aTx ≤ b}(a 6= 0) , (2.9)

where x, a ∈ Rn, b ∈ R .
A halfspaces is convex.

Intersections

The intersection of affine and/or convex subspaces is again an affine or convex
subspace.
An important example is the polyhedron, which is an intersection of a finite number
of halfspaces:

P = {x|aTi x ≤ bi, i = 1, . . . , k}
= {x|Ax � b} (� means componentwise) , (2.10)

where x, ai ∈ Rn, A = [a1, a2, . . . , ak]T ∈ Rk×n, b = [b1, b2, . . . , bk]T ∈ Rk .
A closed convex set S is always a polyhedron, i. e., an intersection of halfspaces.

Formulation of an Optimization Problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p ,
(2.11)

where fi, hi : Rn → R, x ∈ Rn .

� x is the optimization variable,
f0(x) is the objective or cost function,
fi(x) ≤ 0 are the inequality constraints,
hi(x) = 0 are the equality constraints;

� x is feasible if it satisfies the constraints;

� The feasible set C is the set of all feasible points;

� The problem is feasible if there are feasible points x ∈ C ;
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� The problem is unconstrained if m = p = 0 ;

� If the problem is feasible, at least one point x exists in the set C and its value
f0(x) is the infimum of the values of the objective function within the set
C : f? = infx∈C f0(x) ;

� The optimal point is: x? ∈ C : f0(x?) = f?

Generally more than one point x minimizes f0(x), i. e., the solution is a set:
Xopt = {x ∈ C|f0(x) = f?} .

Local and Global Minimum

The local minimum of an arbitrary continuous function is defined as follows:
A point x ∈ C is the local minimum if it satisfies

y ∈ C, ||y − x|| ≤ R⇒ f0(y) ≥ f0(x) (2.12)

for some R > 0.
x is globally minimal, if

y ∈ C ⇒ f0(y) ≥ f0(x) (2.13)

is valid.

Convex Functions

A function f : Rn → R is convex if dom f is convex for all x, y ∈ dom f , θ ∈ [0, 1]:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) . (2.14)

f is concave if −f is convex.
An interesting property of a convex function is that it has only one minimum.
Therefore the local minimum is also the global one.

2.3 Dynamic Programming

In this section a short introduction to the wide field of dynamic programming is
given. The explanations are focused on the theory which is needed to follow the
optimization described in Section 5.3 and make no claim to be a complete math-
ematical description of the problem. This section is based on the introduction to
dynamic programming in [6].

2.3.1 Introduction

Dynamic programming is useful to determine the global optimum of an optimization
problem. This optimization is generally not limited to any complexity but the
problem can easily exceed available calculation resources. There exist two groups
of problems in dynamic programming; the stochastic and the deterministic. To
which group a problem belongs is determined by the knowledge about the external
influences, in control systems known as disturbances. For a deterministic problem
all disturbances are assumed to be known in advance. For a stochastic problem the
disturbances are only known with a certain variance. This text concentrates on the
group of deterministic problems.



7 2.3. Dynamic Programming

2.3.2 Optimal Control Problem stated for a Time-Invariant
Discrete-Time System

The time-invariant, discrete-time system examined here is defined as

xk+1 = fk (xk, uk, wk) . (2.15)

xk Dynamic states, xk ∈ X ⊆ Rn
uk Control inputs, uk ∈ U ⊆ Rm
wk Known disturbances ∀t, wk ∈W ⊆ Rd
k 0, 1, 2, . . . , N − 1
N Length of the optimization horizon

The aim of an optimal control problem is to find a control input, which minimizes
the cost function

Jπ (x0) = gN (xN ) +
N−1∑

k=0

gk (xk, µk (xk) , wk) . (2.16)

Jπ Total cost for x0 and π
π Sequence of control inputs, {µ0, µ1, . . . , µN−1}
x0 Initial condition
gN Final cost / final state weight
gk Cost for step k
µ Control inputs

Reformulated in one equation. It is to find the optimal control sequence π0 which
minimizes the cost Jπ.

J0 (x0) = min
π
Jπ (x0) (2.17)

2.3.3 The Principle of Optimality

The basic requirement behind the dynamic programming is the principle of opti-
mality. For this it is assumed that πo =

{
µo0, µ

o
1, . . . , µ

o
N−1

}
is the optimal control

sequence, which minimizes 2.16. At time i (arbitrary for i ∈ [0, N −1]) this optimal
trajectory reaches the point xi.
Looking at the same optimization problem with the initial condition xi and the
cost-to-go

J(xi) = gN (xN ) +
N−1∑

k=i

gk (xk, µk (xk) , wk) , (2.18)

the cost from step i to the final step N , shows that the corresponding elements of
the optimal control sequence πo =

{
µoi , µ

o
i+1, . . . , µ

o
N−1

}
are still the same optimal

solution. This fact is illustrated in Figure 2.3.3.1.

2.3.4 Algorithm

Applying the principle of optimality the following algorithm is obtained, which is
applied backwards in time from N − 1 to 0:

1. Calculation of the final cost

JN (xN ) = gN (xN ) (2.19)
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x0

state space

k

xN

xi

i

f
(
π0

)

Figure 2.3.3.1: Principle of Optimality: The optimal trajectory for the initial conditions
x0 and xi is identical from step i to step N .

2. Minimization of the cost-to-go for all steps from N − 1 to 0

Jk (xk) = min
uk∈Uk(xk)

{gk (xk, uk, wk) + Jk+1 (fk (xk, uk, wk))} (2.20)

The state space system 2.15 is not only discrete in time but also operates with
discretized values in valuation space. Jk+1 is determined for every point of the
discretization grid. This is why it has to be interpolated for xk+1, which is related
to xk by the state space equation 2.15, to build the sum in the second algorithm
step. This interpolation respectively the discretization of the values has a strong
influence on the result and the computing time of the problem. Other influences on
the computing time are the number of time steps, states and control inputs. The
number of operations to solve a problem is of the following order.

O (N · pn · qm) (2.21)

N Number of time steps
p Number of possible state values (value discretization)
n Number of states
q Number of possible control input values (value discretiza-

tion)
m Number of control inputs

This is why this optimization is only applicable to low order systems. If it is
not possible to reduce the number of states and inputs further, the discretization
precision can be reduced. The weakest influence on the complexity has the number
of time steps.

2.4 Linear Programming

The following section on linear programming (LP) is based on [2].
The LP is a subclass of the convex optimization problem.
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2.4.1 Convex Optimization Problem

Equations 2.2 - 2.14 allow for defining the optimization problem stated in 2.11 more
specific. The standard form of a convex optimization problem is as follows:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTj · x = bj , j = 1, . . . , p ,
(2.22)

where x ∈ Rn, Aeq = [a1, a2, . . . , ap]T ∈ Rp×n, beq = [b1, b2, . . . , bp]T ∈ Rp ,

� f0, f1, . . . , fm : Rn → R convex

� all p equality constraints are affine

� the feasible set is convex.

The core of the convex optimization problem is its convex objective function. This
type of function has the important property that the local minimum is also the
global one. When a convex optimization problem is solved numerically, the global
minimum is found very fast. Because of this it is very beneficial to describe the real
problem by a convex optimization problem.

2.4.2 Linear Programming

Linear programming (LP) is one application of the convex optimization problem. If
all fi are affine, i. e., fi = ai,ineq ·x− bi,ineq, the problem is called a linear program:

minimize cTx
subject to aTi,ineq · x ≤ bi,ineq, i = 1, . . . ,m

aTj,eq · x = bj,eq, j = 1, . . . , p ,
(2.23)

where x, c, ai,ineq, aj,eq ∈ Rn, bi,ineq ∈ Rm, bi,eq ∈ Rp ,

� m affine inequality constraints; if these m halfspaces intersect, they form a
polyhedron

� p affine equality constraints

� the feasible set is convex.

A related problem setup is the quadratic program (QP). It differs in the objective
function, which is no longer affine, but quadratic.

2.4.3 Optimal Control Problem

In Section 2.3.2 the Optimal Control Problem is stated in a general way for time-
invariant discrete-time systems. Assume in addition, that a given system has linear
dynamics and affine constraints on the state x and the input u. The Optimal
Control Problem can then be written in the following form:

J0(x0) = min
π

N−1∑

k=0

||Qxk||p + ||Ruk||p (2.24)

subject to xk+1 = Axk +Buk, k ≥ 0
xk ∈ X ⊆ Rn
uk ∈ U ⊆ Rm ,
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where
xk State vector x at time k
uk Input vector u at time k
p Typically p ∈ {1, 2,∞}
X,U Polyhedral sets
Q,R Constant matrices of appropriate dimensions
π Sequence of control signals, {µ0, µ1, . . . , µN−1} .

If p ∈ {1,∞}, the problem can be written as a LP; if p = 2, the problem can be
transformed into a QP.

2.4.4 Transformation of the Optimal Control Problem into a
Linear Program

If p = 1 is chosen in Equation 2.24, the objective function turns out to be the sum
of the next N − 1 absolute weighted state and input values. This problem can be
transformed into a LP by introducing decision vectors Zx and Zu, which limit QX
and RU from below and from above:

−Zx ≤ QX ≤ Zx
−Zu ≤ RU ≤ Zu ,

(2.25)

where

X = [xT0 xT1 . . . xTN−1]T

U = [uT0 uT1 . . . uTN−1]T

Q = diag[Q0, Q1, . . . , QN−1], Qi ∈ Rn×n
R = diag[R0, R1, . . . , RN−1], Ri ∈ Rm×m .

The problem can now be written as a LP:

min
X,U,Zx,Zu

1TZx + 1TZu (2.26)

subject to εuU ≤ Fu
εxX ≤ Fx
−Zx ≤ QX ≤ Zx
−Zu ≤ RU ≤ Zu
[I −A,−B] · [XTUT ]T = H · x0 ,

where

1 = [1 1 . . . 1]T

εu, Fu Matrices containing the inequality constraints on u
εx, Fx Matrices containing the inequality constraints on x

A =




0 0 0 . . . 0
A 0 0 . . . 0
0 A 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 A 0
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B =




0 0 0 . . . 0
B 0 0 . . . 0
0 B 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 B 0




A,B System matrices

H =




I
0
0
...
0




x0 Initial condition on the state .

Simplification for x, u ≥ 0

If all states x und all inputs u are constrained to be greater or equal to zero, the LP
can be written in a simplified way. This is due to the fact, that the 1-norm reduces
to a sum and therefore no decision vectors have to be introduced. The LP can be
written as

min
X,U

qTX + rTU (2.27)

subject to εuU ≤ Fu
εxX ≤ Fx
[I −A,−B] · [XTUT ]T = H · x0 ,

where the dimensions remain unchanged, except for the weighting matrices Q and
R, which reduce to vectors:

q = [qT0 , q
T
1 , . . . , q

T
N−1]T , qi ∈ Rn

r = [rT0 , r
T
1 , . . . , r

T
N−1]T , ri ∈ Rm .

Due to this simplification the size of the inequality matrix reduces dramatically.

2.4.5 Solving a Linear Program with MATLABr

A linear program of the form

minimize cT z
subject to Aineq · z ≤ Bineq

Aeq · z = Beq

(2.28)

can be solved in MATLABr with the following command:

z = linprog(f,Aineq, Bineq, Aeq, Beq) . (2.29)

The five input matrices and vectors contain all necessary information, such as the
system equations, the hard and soft constraints and which variable is to be mini-
mized.
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2.5 Advantages and Drawbacks of the LP and DP

Both approaches, LP and DP, have their advantages and drawbacks.
A linear program can be solved in very short computing time for thousands of state
variables. A large number of states is a prerequisite if a physical problem shall be
described sufficiently accurate. However, the physics must be describable in affine
equations exclusively, so that these equations can be converted into LP standard
form.
A dynamic program takes much longer to be solved, even for just two or three state
variables. A program must be computed, which finds the minimum of a non-convex
function. As such functions generally have more than one local minimum computing
time increases accordingly. Furthermore, the physical problem must be discretized
not only in time, but also in magnitude. This explains why the computing time
grows exponentially with the number of states. The main advantage is, that the
problem can be described with arbitrary complex functions, which gives the freedom
to model the physical reality very accurately.

2.6 Outlook: Model Predictive Control

This thesis is a preliminary study for the controller design process. It provides the
basis for a model predictive controller (MPC). This chapter briefly describes the
concept of a MPC.
The basic idea of this controller concept is to look ahead in time by estimating
future disturbances. In contrast to traditional feedback control (e. g., PID control)
which always reacts after an event, the MPC can act in advance. This allows the
controller to take into account saturation of actuators and other constraints.
The basic algorithm of a MPC can be summarized as follows. Based on a measure-
ment at time step k a MPC determines the optimal trajectory to reach a reference
value within the horizon of length N . The particular cost function for the consid-
ered problem (i. e., a LP or a DP) is minimized to reach this optimum. The cost
function also contains the discrete model of the system and is evaluated for the time
span of the horizon. The initial value is the measurement at time step k. The first
element of the resulting control sequence is applied to the real system at time step
k + 1. The whole optimization process restarts with a measurement at time step
k + 1 to determine the signal applied at time step k + 2. Since the model cannot
represent the reality perfectly and the optimal solution at one time step does no
longer hold for the next one, only the first element of the control sequence is applied
(see also Figure 2.6.0.1).
Obviously, the time to solve the optimization must be smaller than the duration of

one time step. This is why today MPC is only applied to reasonably simple models
or to slow processes. An other factor is the length of the horizon which has a strong
influence on the result. Would the horizon be equal to the entire simulation time
and the system behavior as well as the environmental influences exactly be known,
the MPC would be ideal. An ideal MPC calculates a performance bound for the
system and the given components that can no be surpassed. Arbitrary control
strategies can be compared with this bound and their potential can be determined.
For instance it is possible to determine, in which situations a conventional control
strategy almost reaches the optimum, and in which situations it is reasonable to
implement a MPC to improve the system behavior.
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Figure 2.6.0.1: Visualization of the MPC algorithm.
black: optimal trajectory starting from the measurement at k
red: real trajectory
gray: optimal trajectory starting from the measurement at k + 1
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Chapter 3

System Description

3.1 Geography and Climate

The New Monte Rosa Lodge is situated near the Gornergrat and the Duforspitze,
between the Gorner Glacier and the Grenz Glacier. It is 2883m above sea level.
The mean ambient temperature during the time the lodge is maintained (March to
September) is 0◦C. In the winter period the ambient temperature decreases to an
average of −5.5◦C with peaks below −20◦C. The wind speed is moderate. The
peak velocity in the year 2006 is 20m/s, the mean velocity around 6m/s [21].

Figure 3.1.0.1: Site of the New Monte Rosa Lodge.
〈Reproduced with authorization by swisstopo (BA081751)〉

3.2 Purpose of the Lodge

The New Monte Rosa Lodge is an accommodation for alpinists. It gives them the
possibility to stay overnight or just to have a warm meal at noon, before they
continue their trip.
The lodge is not connected to the valley by road, it can only be reached by foot
by crossing the glaciers. All food and fuel transports are done by helicopter. The
lodge is maintained by a caretaker and an assistance team of about five persons.

15
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Figure 3.1.0.2: Sun progression at the location of the New Monte Rosa Lodge [16]; in
summer the sun exposure of the lodge is 13 hours a day. Notice that
solar energy can be obtained only for 2 hours during the shortest winter
days.

Their job is to cook meals for the guests, clean the building, make the laundry and
manage the administrative tasks, altogether like in a hostel. The traveling alpinists
are requested to book their stay in advance, so that the caretaker can plan the
amount of food and beds to be ready.

3.3 Structure of the Lodge

The lodge has four floors and two basement levels. The ground floor consists of
a kitchen and a restaurant, which is also used as a lounge. On the first, second
and third floor are the bedrooms and washrooms. The maintenance team has its
own department on the first floor with integrated bathroom and shower. On the
first basement level the house automation (HA), the repositories of food, fuel and
fresh water and also a drying room for the alpinists’ skis and shoes are located.
On the second basement level there is a small apartment with a few beds and a
kitchenette. This room is not tended to and is opened for guests only in winter,
when the rest of the lodge is closed. Furthermore the waste water treatment plant
(WWTP) is situated there. The whole building can accommodate a maximum
of 120 persons. This is the case at about five weekends per year. On weekdays
normally 30− 40 people book a bed, on normal weekends up to 60 people. During
winter time, when the lodge is not tended to, less then 5 visitors are present most
of the time [21].

3.4 Features of the Lodge and the House Automa-
tion Components

The entire lodge is very well isolated to minimize energy losses through the hull.
There are not a lot of windows, and they can only be opened by the caretaker and his
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Figure 3.3.0.3: Plan of the first floor [1]; additional plans can be found on the appended
CD.
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team. The heating system of the building is combined with the ventilation system.
Warm air is blown into the building in the restaurant area. Through the stairways
the fresh air is transported up to the first, second and third level. Furthermore, the
stairway has a window bank, so the sun can heat up the air additionally. The used
air is sucked out in each bedroom and shower room. The remaining heat in the air
is recuperated.

Figure 3.4.0.4: The stairways of the lodge with a panorama view. Source: [20].

The house automation consists of a warm drinking water tank, two tanks containing
heating water, PV cells, thermal solar collectors, a battery, a waste water treatment
plant, a combined heat and power supply, a ventilation and heating system, fresh
water tanks and a weather station [11] [12] [10].

Thermal Energy Storage

The tank with hot drinkable water has a volume of 270l. It is embedded in a
outer tank with a volume of 1180l, filled with a 34% glycol-water mixture, referred
as heating water. Pure water would freeze and evaporate in the application area.
When hot water is consumed by the guests, cold fresh water at 5◦C from the fresh
water supply flows into the hot water tank. The entire tank is called warm drinking
water tank (WDWS) [3].
Two additional heating water tanks are installed with a combined capacity of 4400l.
This volume is only separated into two parts because the largest commercial tanks
have a volume of 2200l [9]. The tanks are connected once in the upper half and once
in the lower half and heating water circulates all the time [10]. These two tanks
provide energy to heat the building. There is also a controllable connection to the
WDWS [10].

PV Cells and Thermal Solar Collectors

The PV cells are installed on the southern side of the building. Its peak power
generation is 13.5kW [21]. It covers almost the entire electric power demand of the
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lodge. Near the building on the ground the thermal solar collectors are installed.
They generate a peak power of 58kW [21]. The heated 44% glycol-water mixture
is transported in an isolated heatable tube into the building. First of all it flows to
the WDWS, afterwards to the upper part of the heating tanks, then to the lower
part. The controller decides, if the mixture is lead through the heat exchangers in
the tanks, or if it just passes the tank because it is colder than the mixture in the
tank [10].

Electric Energy Storage

The lead-acid battery is able to store 288kWh electric energy [18]. However, the
battery should not be discharged under 50% for technological reasons [4]. The
battery buffers the electric energy usage and production and is connected by power
electronics to the 230V isolated network of the lodge [18].

Waste Water Treatment Plant

The waste water treatment plant (WWTP) is situated on the second basement level.
Due to this installation it is possible to save a lot of fresh water, because grey water
is used to flush the toilets. Furthermore, one can avoid the expensive transport of
the waste water down to the valley. Only the highly compressed clearing sludge must
be flown down. However, the internal biological system must be held in balance,
that is why this installation is the biggest energy consumer. In standby mode it
consumes about 700W , during the cleaning process more than 2kW [15].

Combined Heat and Power Plant

The combined heat and power plant(CHP) is a highly efficient electric power gen-
erator. The plant is cooled with heating water. Thus over 85% of the energy out of
the fuel is used. A part of the remaining 15% are losses into the building. Only a
very small percentage is lost through the exhaust.

Ventilation and Heating System

The ventilation- and heating system consist of the following parts [10]:

� A pre-heater, where fresh air from the environment is heated up with heating
water to a temperature of about −7◦C. This component is only active in
winter.

� A heat exchanger, in which the incoming air is heated to at least 8◦C with
the energy recuperated from the outgoing air.

� A supplementary heater heats the air up to the desired temperature with
heating water.

The outgoing air only passes the heat exchanger and is then blown out to the
environment.

Fresh Water Supply Reservoir

400m from the building three fresh water tanks are situated. The tanks together
store 140m3 melt water, which accrues during summer. This amount is enough to
supply the lodge during the whole year [16].
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Weather Station

Next to the lodge a weather station is installed, which collects data so that a
local weather forecast will be possible in future. Up to then the weather data is
interpolated from three weather stations near-by.

3.5 Constraints

Various constraints resulting from the lodge’s purpose or requirements of the Swiss
Alpine Club [17] are listed here:

� The lodge is maintained in the months March to May and July to September

� 6500 persons per year eat a warm meal in the evening and stay over night

� 2000 persons per year have a warm meal at noon

� On 5 weekends per year the lodge is booked up. 120 persons stay over night
and 40 guests eat warm at noon

� Minimal temperature in the guestrooms is 5◦C, target value is 20◦C [16].

� Minimal temperature in the restaurant and in the kitchen is 15◦C, the target
value is 20◦C

3.6 Deterministic Factors

Mathematically speaking, the lodge has two main disturbances, on one hand the
actual weather situation and on the other hand the number of guests at the lodge;
all other disturbance inputs are a consequence of these two. For the calculations and
simulations all external influences are assumed to be known, i. e., are determined
for each time step before the simulation starts.
The important weather factors are the ambient temperature and the global irradia-
tion; any wind influences are neglected. Based on the global irradiation the energy
which can be gained by the PV cells and thermal solar collectors is calculated. For
simplification the direct irradiation on the building, especially through the win-
dowed staircase, is neglected. If an independency level of 90% for the lodge can
be reached in the calculations without this additional heat, the independency level
with it is even better.
For the power with which the guests support the lodge heating 100Wp is assumed
(where p stands for persons) [22]. The volume flow rate of waste water is estimated
around 2.1 l

h·p , this rate is based on the maximum waste water volume of 6m3 per
120 persons and per day. [21].
Warm water for the guests to shower is provided, whenever there is enough heat.
Warm water is also used for the kitchen and housekeeping. Because the warm water
used to shower is a short-term load for the heat balance, the consumption is modeled
with a usage profile over one day. It is a hygiene requirement that the employees
take a shower every day. Because most of the guests leave the lodge before 7 am,
5 showers for the employees are planned from 8 to 9 am. The guests take their
showers before or after dinner, from 6 to 8 pm or from 9 to 10 pm. Following the
details provided by the SAC only 12.5% of the guests take a shower during their
stay [17].
The amount of electricity needed by all the different devices, whose usage is based
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on the occupancy of the lodge, is taken from the calculations of the Lucerne Uni-
versity [21]. The same source is used for the amount of electricity used by the house
automation.

3.7 Data Source

As the start of construction of the lodge was in August 2008, no details about
any parts of the lodge were set out at the moment the research was done. Some
parameters are set based on information from one of the project partners, others
are estimated according to one’s best judgment. Details on each parameter can be
found in moroParameters.m on the appended CD. The project partners are listed
in Table 3.7.0.1.

Name Description Project contribution
Bearth & De-
plazes Architek-
ten AG

Architect’s office Executive architect’s office

Center for Inte-
grated Building
Technology

Lucerne University of Ap-
plied Sciences and Arts

House automation project
planning; overall component
dimensioning

Feuron AG Water tank manufacturer Supplying the water tanks
KW Energie
Technik e.K.

CHP manufacturer Supplying the CHP

Lauber IWISA
AG

Engineering company spe-
cializing in house automation

Detailed planning of the
house automation

Muntwyler En-
ergietechnik AG

Engineering company spe-
cializing in solar energy com-
ponents

PV cell and power electronics
dimensioning

Oerlikon Sta-
tionary Batter-
ies Ltd.

Battery manufacturer Supplying the Battery

Terralink GmbH Engineering company spe-
cializing in water treatment

Supplying Waste water treat-
ment plant

Table 3.7.0.1: Project Partners
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Chapter 4

Modeling

The modeling process follows the theory mentioned in Section 2.1. First of all the
system is analyzed concerning which parts have a storage in any form, afterwards
every interaction between the lodge components and with the lodge is identified.
Putting all together results in an interpretation of all interactions in the whole lodge,
which the equations are based on. The whole model is energy based except the
waste water tank which is a volume storage. This fact simplifies most connections
to enthalpy and power flows.
Some components would not be turned on in the winter time. This is why the
model is in the first place valid for the operating period in the summer, but with
some adaptations it could be used for the winter period as well.

4.1 Storage Identification

To identify the different storages the functions of the lodge components have to be
analyzed. The possible storages are the building mass, the different water tanks, the
water fresh water supply, the thermal solar collectors, the CHP, the battery and the
waste water treatment plant. Each storage is classified in one of the three classes:
Fast, essential and slow dynamics. Based on this classification it is decided whether
the storage can be neglected or has to be modeled as a state. In consideration of
the later optimization the aim is to minimize the number of states as far as possible.
The Table 4.1.0.1 shows the classifications for the storages.
All storage equations follow a lumped parameters approach.

4.2 Parts of the Model

In this section main parts of the model are introduced. Every description follows the
same structure: First a short overview is given, then the different inputs into this
part are explained and at last the complete mathematical relation is introduced.
For every part a graph gives the main impression over the inputs and the state
variables of this model part. The equations for every part are simplified to a certain
point, nevertheless the reader should be able to follow the mathematical relations.
All the equations are introduced as continuous, even though at the end they are
implemented discretely. For more details on the implementation see the m-files on
the appended CD.

23
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Name Dynamics
Class

Description

Building essential Due to the ventilation, which distributes the
energy in the building equally, the building is
assumed as one energy storage.

Heating water
tanks

essential Because of the strong interconnection between
the two tanks, they could be modeled as one,
but the layered temperature arrangement im-
plies a high and a low temperature storage
(HTS / LTS). The temperature distribution
over the two tanks is assumed as linear.

Warm drinking
water tank

essential Even though the energy level in the warm
drinking water storage (WDWS) may drop
fast, due to several showers taken at the same
time, the storage is classified as ’essential’. Be-
cause other influences like the energy refill and
the dependency on the number of people in the
lodge are slower.

Fresh water
supply

slow Compared to the water tanks the mass of the
fresh water supply is huge, hence its dynamics
are negligible.

Thermal solar
collectors

fast Compared to the water tanks the water mass in
the thermal solar collectors is very small. This
results in fast energy dynamics.

CHP fast Even though the CHP is important for the
problem, its dynamics are neglected.

Table 4.1.0.1: Storage classification.
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4.2.1 Building

It is assumed that the energy distribution in the building is ideal due to the venti-
lation. That is why the building is modeled as one energy storage. The building is
divided in three temperature zones, one is the bedrooms, the lounge area and the
basement. How these zones are arranged is apparent in Figure 4.2.1.1. The lounge
area is about 20% of the heatable building mass, the basement another 20% and
the bedrooms build the rest of 60% . For the heatable building mass only the wood
work of the floors from the basement to the third upper floor is considered, every-
thing else is neglected. This results in a mass of 163.7t. With the heat capacity of
wood of 2.3 kJ

kg·K and the building average temperature range of 7◦C to 21◦C this
gets to a storable energy amount of 5.2GJ . The structure of the average building
temperature is explained in Table 4.2.1.1.

Figure 4.2.1.1: Building temperature zones, red: lounge/restaurant area, blue: base-
ment and lilac: bedrooms.

min aim max
Rooms 60% 5◦C 20◦C 20◦C
Lounge 20% 15◦C 20◦C 24◦C
Basement 20% 5◦C − 20◦C
Building average 7◦C 15◦C 21◦C

Table 4.2.1.1: Average building temperature structure.

Inputs and the Differential Equation In Figure 4.2.1.2 all the inputs to the
building are apparent. The inputs to the building are the heat flows based on the
following sources: the inhabitants, the heating system (HS), the ventilation, the
environmental temperature and the solar irradiation.
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Figure 4.2.1.2: Block diagram of the building.

The data source for the environmental temperature and the heat radiated from the
inhabitants is explained in Section 3.6. The environmental temperature determines
the heat loss through the building hull due to heat conduction.

Q̇B,loss = (UB ·AB + UW ·AW ) · (TB − Tenv) (4.1)

Q̇B,loss Heat flow through the building hull
UB Heat conduction coefficient for the exterior walls
UW Heat conduction coefficient for windows
AB Environment temperature exposed area of the exterior

walls
AW Area of the windows
TB Average building temperature
Tenv Environmental temperature

For the heating system it is assumed that all heat exchangers are designed well, i. e.,
the temperature difference of the outflows is assumed as zero. The heat transferred
from the low temperature storage (LTS) to the building is calculated with the
following enthalpy flow equation. This heat flow is added to the building energy
and is subtracted from the LTS energy.

Q̇LTS2HS = ctrHS · c34 · ηHX,water−air · ṁHS,max · (TLTS − TV S) (4.2)

Q̇LTS2HS Heat flow from the LTS to the Building
ctrHS Heating system control signal {0 . . . 1}
c34 Heat capacity of water with a glycol concentration of 34%
ηHX,water−air Heat exchanger efficiency for a water/air heat transfer,

ideal = 1
ṁHS,max Water mass flow rate [21]
TLTS Temperature of the water out of the LTS
TV S Temperature of the fresh air after energy recuperation

Because the windows cannot be opened by the guests but only by the warden the
lodge has to be ventilated all the time. This ventilation system has a very good heat
exchanger with an efficiency of 83%. The fresh air is already heated by a energy
recuperation of the exhaust air before heated by the heating system.

TV S = Tenv + ηHX,air−air (TB − Tenv) (4.3)

Q̇ventilation,loss = ṁair · cair · (TB − TV S) (4.4)
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ηHX,air−air Heat exchanger efficiency for a air/air heat transfer, 83%
[19]

Q̇ventilation,loss Heat loss through ventilation
cair Heat capacity of air, 1004.5 J

kg·K
ṁair Air mass flow rate [21]
TB Building temperature
Tenv Environmental temperature
TV S Temperature of the fresh air after energy recuperation

It is possible to include the influence of the solar irradiation on the building surface
in the model, but due to missing information and no chance to measure it, it is
neglected. If a high energy independency is reachable without consideration of the
irradiation the result with consideration is even better.
For a better interpretation of the energy level in the storage a mean temperature
for the storage is calculated:

TB =
QB +QB,min
cB ·mB

. (4.5)

QB Useable heat in the building
QB,min Energy level at the lower temperature bound
cB Heat capacity of the building (mainly wood), cwood =

2.3 kJ
kg·K

mB Building mass, 163.7t

With all these inputs the differential equation for the building is formulated:

d

dt
QB = Q̇LTS2HS + Q̇persons + Q̇sun − Q̇B,loss − Q̇ventilation,loss . (4.6)

Q̇persons Heat radiated from the inhabitants
Q̇sun Heat from solar irradiation on the building surface, in this

calculation neglected, so set to 0

4.2.2 Warm Water Tanks

In the lodge there are physically three warm water tanks. The tank for the warm
drinking water is modeled as a simple tank, but the two heating water tanks are
modeled in a special way. These two tanks have a very strong horizontal intercon-
nection, that is why they could be modeled as one. However, their structure implies
a temperature layering. In the model this is taken into account by dividing both
tanks horizontally in a high and a low temperature tank. The strong interconnection
nevertheless allows to interpret the two physical tanks as one and to model one low
and one high temperature storage. This approach is illustrated in Figure 4.2.2.1.
As it can be seen in the plans on the appended CD the different heat exchangers
in the warm water tanks are not of the same size. The lower heat exchangers are
bigger than the upper one. Because of that and to assign in- and outlets properly
to the separate storages the volume of the high and the low temperature tank is
not equal.

Low Temperature Storage (LTS)

The low temperature storage represents the lower part of the two heating water
tanks. The storable mass of water with a 34% glycol concentration is 2536kg.
Following the data of the pump specification from Lauber IWISA [14], this mixture
has a density of 988 kg

m3 (water at 50◦C) and a heat capacity of 3.6 kJ
kg·K . The
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Figure 4.2.2.1: Split of the physical heating water tanks.

temperature reaches from 5◦C to 80◦C this results in a storable energy of 0.68GJ .
This limit of 80◦C is set due to limited heat supply from the thermal solar collectors
and cooling purposes for the CHP. Overheating can be prevented by heat evacuation
to the fresh water supply.

Inputs and the Differential Equation of the LTS In Figure 4.2.2.2 all in-
puts into the low temperature storage are apparent. The LTS can be heated by
the thermal solar collectors (TSC) and indirectly by the interaction with the high
temperature storage (HTS). The energy level is reduced due to energy provided to
the heating system and losses through heat conduction.
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Figure 4.2.2.2: Block diagram of the low temperature storage.

Q̇LTS,loss = ULTS ·ALTS · (TLTS − TB) (4.7)

Q̇LTS,loss Heat flow through the tank hull
ULTS Heat conduction coefficient for the tank hull
ALTS Building temperature exposed area of the tank hull
TLTS Average tank temperature
TB Building temperature
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The energy supplied to the heating system is the same as in the equations for the
building, only the sign in the differential equation is different (See Equation 4.2).
The interconnection to the high temperature storage (HTS) is represented by the
following equation:

Q̇HTS LTS = cHTS2LTS ·mHTS · c34 ·
(
THTS −

THTS ·mHTS + TLTS ·mLTS

mHTS +mLTS

)
,(4.8)

where

cHTS2LTS =

{
0.01
3600 ctrCHP = 0
50·0.01
3600 ctrCHP = 1

.

Q̇HTS LTS Heat flow between the HTS and LTS
cHTS2LTS Heat exchange coefficient depending on ctrCHP
c34 Heat capacity of water with a glycol concentration of 34%
mHTS HTS heatable water mass
mLTS LTS heatable water mass
THTS HTS average temperature
TLTS LTS average temperature

The Equation 4.8 represents a reduction of the temperature difference between the
two tanks. The coefficient cHTS2LTS is an inverse time constant. The value 0.01

3600
stands for 1

100h . When the combined heat and power plant (CHP) is turned on,
the heat flow between the two tanks is increased, because the cooling circle of the
CHP pulls out water at the bottom of one of the physical tanks and puts it back
in at the top of the other. This equation was developed to fit the assumption of a
temperature layering in the water tanks.
The distribution of the energy provided by the thermal solar collectors is represented
by the following simple equation. There are three heat exchangers (HX) connected
to the thermal solar collectors, one in every water storage. Every HX can be dis-
connected separately. This fact allows the distribution of the energy there, where
it is needed the most.

Q̇TSC LTS = ctrTSC LTS ·
Q̇solar∑
i ctrTSC i

i = {LTS,HTS,WDWS} (4.9)

Q̇TSC LTS Heat flow form the TSC to the LTS
ctrTSC i Control signal to connect and disconnect the TSC HX in

the Tanks, ∈ {0, 1}
Q̇solar Available energy

With all these inputs the differential equation for the LTS is formulated:

d

dt
QLTS = Q̇HTS LTS + Q̇TSC LTS − Q̇LTS2HS − Q̇LTS,loss . (4.10)

High Temperature Storage (HTS)

The upper part of the heating tanks is modeled as the high temperature storage.
This storage has 34% glycol/water mixture capacity of 1812kg with the same char-
acteristics as the LTS. This matches a storable energy amount of 0.48GJ .

Inputs and the Differential Equation of the HTS The high temperature
storage has inputs from the following sources: the TSC, the CHP, the electric
heating and the interconnections to the other tanks (WDWS and LTS). See Figure
4.2.2.3. Of course this storage also suffers losses through the tank hull.

The equations for the TSC, the interconnection to the LTS and for losses are
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Figure 4.2.2.3: Block diagram of the high temperature storage.

analog to the equations of the LTS. See Equations 4.9, 4.8 and 4.7.
The equations for the CHP and the electric heating are very similar to each other
and can be generalized the following way.

Q̇i = ci · ctri

ci =

{
PeH,HTS,max i=eH,HTS electric heating

Q̇CHP,opt i=CHP combined heat and power (CHP)
(4.11)

Q̇CHP Heat flow from the CHP
Q̇elec Heat flow from the electric heating
ctrCHP CHP control signal
ctreH,HTS Electric heating control signal

For the interconnection to the WDWS the following relation is applied. It has to
be noticed that this interconnection is controllable by ctrHTS WDWS .

Q̇HTS WDWS = ctrHTS WDWS · ṁHTS WDWS,max

·c34 · (THTS − TWDWS) (4.12)

Q̇HTS WDWS Controlled heat flow from the HTS to the WDWS
ctrHTS WDWS Control signal for the connection between HTS and

WDWS
ṁHTS WDWS,max Mass flow in the interconnection between the HTS and

WDWS [14]
c34 Heat capacity of water with a glycol concentration of 34%
THTS HTS average temperature
TWDWS WDWS average temperature

Then the differential equation for the HTS is

d

dt
QHTS = Q̇TSC HTS + Q̇CHP + Q̇eH,HTS

−Q̇HTS LTS − Q̇HTS WDWS − Q̇HTS,loss . (4.13)

Warm Drinking Water Storage (WDWS)

The third tank is the warm drinking water storage. Even though the tank has a
small built in tank, it is modeled as one entire energy storage. It is assumed that
the water, which refills the built in tank is heated immediately in a heat exchanger
and thereby the energy level of the whole tank is affected. The 34% glycol/water
mixture capacity of this storage is 1433kg, the density, the heat capacity and the
temperature limits are assumed to be the same as for the other two tanks. This
results in a storable energy amount of 0.386GJ .
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Inputs and the Differential Equation of the WDWS An overview over the
different inputs appears in Figure 4.2.2.4. The equations for the TSC, the connection
to the HTS and the losses are analog to the Equations 4.9, 4.12 and 4.7 from the
other water storages. The input Q̇warmDrinkingWater is the external input for the
warm water consumption depending on the number of people in the lodge. It is
explained in Section 3.6.
The differential equation for the WDWS is the following
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Figure 4.2.2.4: Block diagram of the warm drinking water storage.

d

dt
QWDWS = Q̇TSC WDWS + Q̇HTS WDWS

−Q̇warmDrinkingWater − Q̇WDWS,loss . (4.14)

4.2.3 Battery System

The fifth storage is the battery. In this model the battery, the power electronics
and the grid are summarized in the ”Battery System” block. This storage is also
modeled as a pure energy storage, not all the conversions are modeled separately
but are taken into account in the efficiency. The energy capacity of the battery is
around 1GJ , but to maintain a long life of the battery only 50% should be used.
In the battery system different efficiencies are active, for details see Table 4.2.3.1.

Symbol Value Description
ηBattery 90.9% Represents all processes from charging to discharging
ηPE,CHP 96% Demodulation and conversion efficiency for the power

from the CHP
ηPE,PV 99% Conversion efficiency for the power from the PV
ηPE,load 94% Conversion efficiency for the power to the load

Table 4.2.3.1: Battery System efficiencies, these numbers resulted from the fact sheets
about the components or from personal discussions with the manufac-
turer.

The Differential Equation An overview of the in- and outputs of the battery
system is shown in Figure 4.2.3.1. The mathematical representation is relatively
simple and is shown by the following equation.

d

dt
ESOC = ηBattery · (ηPE,CHP · PCHP + ηPE,PV · PPV )−

1
ηPE,load

· (PWWTP + Pstoch + PHA + PeH HTS + PHA) (4.15)
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Figure 4.2.3.1: Block diagram of the battery.

d
dtESOC Variation of the state of charge of the battery
PCHP Power provided by the CHP [8]
PPV Power provided by the PV [21]
PWWTP Power used for the WWTP, see Equation 4.17.
Pstoch Power used for the stochastic load [21]
PeH HTS Power used for the electric heating of the HTS [10]
PeH WWTP Power used for the electric heating in the WWTP room,

neglected and set to 0 in this thesis.
PHA Power used for the house automation [21]

4.2.4 Waste Water Treatment Plant (WWTP)

As last and probably the simplest storage there is the tank of the waste water
treatment plant. This is a volume storage with a capacity of 5.5m3. The filling
of the tank is dependent on the number of people in the lodge. There is a control
signal which controls the operating of the treatment plant. In this model this control
signal is simplified to an on/off switch. In a further step it will have to be taken into
account that the plant cannot always be turned off immediately. The configuration
of this storage is apparent in Figure 4.2.4.1. As the volume flow to the WWTP is
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Figure 4.2.4.1: Block diagram of the waste water treatment plant.

directly dependent on the number of people in the lodge and the other input is the
control input (which is 1 or 0), the differential equation is formulated directly.

d

dt
WWTPSOC =

V̇ww,in − ctrWWTP · V̇clw,out
VWWTP,max

(4.16)
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d
dtWWTPSOC Variation of the state of charge of the WWTP tank
V̇ww,in Inflow of waste water, V̇wwper person

≈ 2 l
person·h

V̇clw,out Waste water cleaning rate 5.5m3

14h ≈ 0.4m
3

h [15]
ctrWWTP WWTP control signal

The second output of this block is the power consumption of the waste water treat-
ment plant.

PWWTP = PWWTPstandby
+ ctrWWTP · PWWTPon

(4.17)

PWWTP Power consumption of the WWTP
PWWTPstandby

Standby power consumption [15]
PWWTPon

Additional power consumption when the WWTP is turned
on [15]

4.2.5 Entire Model

By putting all these components together the entire model is obtained. This model
is visualized in Figure 4.2.5.1. All blocks with a shadow represent a differential
equation; all the other blocks are algebraic relations. The model has 8 control in-
puts (blue) and 10 deterministic inputs (yellow). The outputs are 6 state variables
(red) and the fuel consumption (magenta) which is important for the optimization.
The model parts can be grouped in 3 different groups: thermal (salmon), electric
(green) and the combination of both (brown). This subdivision will be important
for later optimization, which treats the two groups, thermal and electric, separately.
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Figure 4.2.5.1: Block diagram of the entire model.
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4.3 Model Verification

To verify the model it is split into its elementary parts. To verify each equation
some input and initial values are set and the output value is calculated. In addition,
at least one simple scenario has been created for each part to test empirically if the
results are plausible. These scenarios are discussed here briefly.
A few tests take their input data for outside temperature, solar irradiation etc. from
an exemplary week with average weather conditions and a weekend with 120 visitors
in the middle (datasource: [21]).

4.3.1 Battery

For this test the exemplary week was used. The results are plotted in Figure 4.3.1.1.

Input Signals

PeH WWTP = 0 Energy used to heat the WWTP room.
PeH HTS = 0 Energy used to heat the HTS.
PWWTP , Pstoch, PPV , PHA These values are taken from the exem-

plary week.
PCHP = 0 The CHP is turned off.

Output Signals

ESOC State of charge of the battery over time.
PWWTP Power consumed by the WWTP.

Initial Values

ESOC,0 = 90% of ESOC,max = 932MJ
VwasteWaterTank SOC,0 = 0.5 · VwasteWaterTank SOC,max = 2.75m3

Simulation Results

As Figure 4.3.1.1 shows, the ESOC never falls below about 58%, whereas 50% is the
tolerable minimum value. ESOC fell from 90% to 77% in one week. Considering
that in the exemplary week the weather is average and the number of visitors is
high, this is a realistic result.

4.3.2 WWTP

The results are plotted in Figure 4.3.2.1.

V̇wasteWater in = 50l per person
and 24 hours

120 persons are in the building.

ctrWWTP Control signal, turns the treatment pro-
cess on and off.

Output Signals

VwasteWaterTank SOC Waste water tank level over time.
PWWTP Power consumed by the WWTP.
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Figure 4.3.1.1: Battery simulation:
black: ESOC [%] Energy stored in the battery
green: PWWTP [%] Energy consumed by the WWTP: When it is turned
on, it consumes 2.19kW , when it is in standby mode it uses roughly
700W .

Initial Values

VwasteWaterTank SOC,0 = 0 The tank is empty at the begin of the sim-
ulation.

Simulation Results

After 18 hours the tank is almost full and the WWTP is turned on. From then on
the maximum amount of energy is needed to treat the water.

4.3.3 Building

For this test the exemplary week was used also. The results are plotted in Figures
4.3.3.1 and 4.3.3.2.

Input Signals

Tenv = −7◦C Environment temperature
Q̇persons = 120 · 100 120 persons, 100W

person

Q̇HS2B = 0 The heating system is turned off.
Q̇sun = 0 No solar irradiation into the stairways

takes place.

The ventilation losses are calculated out of the heat exchanger efficiency and the
difference between the building and the outside temperature.

Output Signals

TB Mean temperature of the building over
time
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Figure 4.3.2.1: WWTP simulation:
black: VwasteWaterTank SOC [%] SOC of the waste water tank
green: PWWTP [%] Energy consumed by the WWTP: When it is turned
on, it consumes 2.19kW , when it is in standby mode it uses roughly
700W .

Initial Values

TB,0 = 7◦C Initial building temperature

Simulation Results
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Figure 4.3.3.1: Long-term simulation of the building:
black: TB [◦C] Temperature of the building

The building itself is a first order system, i. e., TB converges towards a finite value.
As in Figure 4.3.3.1 can be seen the final value is around 21◦C, which is pretty
warm.
However, the 120 persons are only at night inside the building, i. e., for maximum
10 hours. In this time period the mean temperature of the building increases more
than 0.5◦C, which is notable (see Figure 4.3.3.2).
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Figure 4.3.3.2: Short-term simulation of the building:
black: TB [◦C] Temperature of the building during one night

4.3.4 LTS, HTS & WDWS

The three heating tanks were first tested separately. Each tank is a first order
system and the inputs are simply added up.
What is shown here is a simulation, where all tanks are connected and interact. A
very big influence on the behavior has cHTS2LTS , which is the inverse heat exchange
time constant between the LTS and the HTS. The same simulation was repeated
with varying cHTS2LTS to determine a realistic behavior, so cHTS2LTS could be
chosen correctly.
For these simulations the exemplary week was used. The results are plotted in
Figures 4.3.4.1, 4.3.4.2, 4.3.4.3 and 4.3.4.4.

Input Signals

Q̇TSC WDWS = 0W No heat is transferred from the TSC to
the WDWS.

Q̇TSC HTS = Q̇TSC LTS The incoming heat is split up between
HTS and LTS.

Q̇HTS WDWS Heat is transferred, if THTS > TWDWS

and THTS > 50◦C.
Q̇warmDrinkingWater Warm drinking water consumption of the

HA and the visitors: The input vector is
from the exemplary week.

Q̇solar Energy generated by the thermal solar
collectors: The input vector is from the
exemplary week.

TB = 8◦C Target temperature for the building
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Q̇LTS2HS Heat, which is transferred from the LTS
to the building: This value is set to 16%
(where TLTS − TB = 30◦C) of the max-
imum mass flow, which is equivalent to
1.5kW heating power. This is in the same
order of magnitude as the effective heat-
ing power demand.

1
3600·cHT S2LT S

= [10, 50, 100, 500] Time constant in hours
ctrCHP = ctreH,HTS = 0 Neither the CHP nor the battery heats

the HTS.
Q̇HTS LTS ∼ cHTS2LTS Q̇HTS LTS is proportional to cHTS2LTS

(see Equation 4.8).

Output Signals

TWDWS Temperature of the WDWS over time
THTS Temperature of the HTS over time
TLTS Temperature of the LTS over time

Initial Values

QWDWS,0 = QHTS,0 = QLTS,0 =
0.5

The temperatures of the WDWS, HTS
and LTS tank are initially at 42.5◦C.

Simulation Results

In the first three days the weather is bad. That causes the LTS to cool down below
20◦C. In reality, the CHP would supply the tank with heat, before it reaches such
a critical level, where it is not able to heat the building anymore.
During the second half of the simulation period, the weather is good, so the HTS
reaches its maximum at 80◦C and heats up the WDWS.
Figures 4.3.4.1 to 4.3.4.4 show the big influence of cHTS2LTS . The more this con-
stant decreases, the less the HTS reacts on the run of the LTS. This causes the HTS
to keep its heat, while the LTS cools down dramatically. Notice, that distribution
of the thermal solar energy is held constant: One half of the energy is fed into the
LTS and the other half into the HTS, although the LTS needs much more heat than
the HTS.
Considering these results a time constant 1

cHT S2LT S
= 100 hours (i. e., cHTS2LTS =

0.01
3600 ) was chosen. One exception was made: When the CHP is turned on, the time
constant is reduced to 2 hours, because the CHP sucks cooling water in from the
LTS and gives the heated up water to the HTS at 80◦C. This causes a strong
mixing of the heating water of both tanks.

4.4 Model Validation

The model could not be validated, because the lodge is not built yet. No similar
buildings exist, which could have been used as a surrogate.
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Figure 4.3.4.1: Simulation of the heating system with 1
cHT S2LT S

= 10h:

green: TWDWS [◦C] Temperature of the WDWS
blue: TLTS [◦C] Temperature of the LTS
red: THTS [◦C] Temperature of the HTS
The time constant 1

cHT S2LT S
is set to 10 hours. The HTS follows every

move of the LTS. This is not realistic in a tank where a layering is part
of the concept.
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Figure 4.3.4.2: Simulation of the heating system with 1
cHT S2LT S

= 50h:

green: TWDWS [◦C] Temperature of the WDWS
blue: TLTS [◦C] Temperature of the LTS
red: THTS [◦C] Temperature of the HTS
The time constant 1

cHT S2LT S
is set to 50 hours.
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Figure 4.3.4.3: Simulation of the heating system with 1
cHT S2LT S

= 100h:

green: TWDWS [◦C] Temperature of the WDWS
blue: TLTS [◦C] Temperature of the LTS
red: THTS [◦C] Temperature of the HTS
The time constant 1

cHT S2LT S
is set to 100 hours. The HTS still follows

the moves of the LTS, but very moderate. The time constant has to be
chosen somewhere between 50 and 100 hours.
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Figure 4.3.4.4: Simulation of the heating system with 1
cHT S2LT S

= 500h:

green: TWDWS [◦C] Temperature of the WDWS
blue: TLTS [◦C] Temperature of the LTS
red: THTS [◦C] Temperature of the HTS
The time constant 1

cHT S2LT S
is set to 500 hours. The HTS does not

follow the moves of the LTS anymore, it behaves almost independent. A
time constant of 500 hours is too large.
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Chapter 5

Optimization

5.1 Derivation of the Optimization Modality

5.1.1 Structure of the Problem

To find a control signal which minimizes the fuel consumption of the entire system
the optimization methods LP and DP are used. With a LP the global minimum of
a convex function with affine constraints is calculated. As the system description
enters as a constraint to the problem a necessary condition is that the system is
linear. This was only the case in the subsystem containing the battery and the
WWTP, referred to as electric cycle. The thermal cycle, consisting of the WDWS,
HTS, LTS and the mass of the building, has several non-linear connections. This
is mainly because the in- and outputs of each component are heat flows, which
depend on the state (i. e., temperature) multiplied by the control input (i. e., mass
flow). Calculating the entire system using DP was not possible, either. A DP
grows exponentially with the number of state variables of the problem. The current
standard hardware is not sufficient to calculate a solution with a DP including all
six state variables of the system in a reasonable amount of time.

5.1.2 A Promising Idea

Considering the conditions mentioned above, the idea of dividing the system into a
linear and a nonlinear part was promising. The solution of the linear part, consisting
of the elements of the electric cycle, could then be found with a LP. The solution
of the nonlinear part, i. e., the thermal cycle, could be obtained by solving a DP.
The optimal solution could then be determined by combining the solutions of the
sub problems.

5.1.3 Is a Separation of the Problem Possible?

In fact only two signals interconnect the thermal and the electric cycle: the CHP,
which always produces heat and electric energy simultaneously, and the ”electric
heating” where the battery dissipates energy into the HTS (see Figure 4.2.5.1).

4 Different Interaction Cases

In the following paragraph all four possible interaction cases between the two parts
of the system are analyzed. For each case it is to show how a desired action in
one part of the system would affect the other part in reality (e. g., the electric cycle
wants to dissipate energy from the battery; this causes a temperature increase in

43
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the HTS). This implies consequences of the missing communication between the two
parts in the simulation. The behavior has to be analyzed in the time span starting
at the desired interaction and ending at the end of the simulation (e. g., what is the
effect if the HTS temperature does not increase in the simulation although it would
so in reality; how does this affect the optimality of the solution).

Case 1: The CHP is turned on due to the lack of electric energy

Reality Split System
In reality the CHP provides the bat-
tery with electric energy and the heat-
ing tanks with thermal energy simul-
taneously. HTS and LTS can al-
ways take up heat, because the LTS
is connected to the fresh water supply
where compared to the modeled sys-
tem almost an infinite amount of heat
can be stored.

In the split system the CHP generates
electric power if the demand comes
from the electric cycle. The simulta-
neously produced heat is not consid-
ered in the calculation of the thermal
cycle. This is a valid conservative as-
sumption: the fuel consumption cal-
culated in the simulation might be
higher than the fuel consumption in
reality.

Case 2: The CHP is turned on due to the lack of thermal energy

Reality Split System
As mentioned in Case 1 the CHP pro-
vides the battery with electric energy
and the heating tanks with thermal
energy simultaneously. In case the
battery is already fully charged, it
could dissipate only 3kW of the in-
coming 12kW into the HTS and LTS.
Therefore the CHP could not work
with full load. What implies a sub-
optimal solution.

In the split system the CHP generates
thermal power if the demand comes
from the thermal cycle. The simul-
taneously produced electric power is
not considered in the optimization of
the electric cycle. Therefore the over-
all fuel consumption might be higher
than in reality.

Example on Case 1 & 2 Consider the situation, where there is a lack of electric
energy. The CHP is activated immediately in the LP (which optimizes the electric
cycle) for one hour. Because there is no connection to the thermal cycle, the DP
(which computes the optimal control inputs for the thermal cycle) does not take
into account the coproduced heat. Assume a lack of thermal energy at a later point
in time. The CHP is then activated in the DP for one hour, the LP does not take
the coproduced electricity into account, however. The overall fuel consumption is
then the sum of the fuel used by the DP and by the LP which is in this case the
consumption of the CHP during two hours, although the energy considered in the
calculation is one hour CHP. In reality, the coproduced heat during the first hour
might have been enough, such that the CHP would not have to be activated a
second time. The overall fuel consumption would be the consumption of one hour.
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Case 3: Electric heating is turned on due to excess of electric energy

Reality Split System
In reality the battery dissipates en-
ergy into the HTS, i. e., ESOC de-
creases by 3kW and QHTS increases
by 3kW . Electric heating can always
be activated by the electric cycle, be-
cause it is assumed that the thermal
cycle is always able to store additional
heat.

In the split system the battery is
allowed to dissipate energy, the en-
ergy gained in the HTS is not con-
sidered, however. This case is similar
to Case 1.

Case 4: Electric heating is turned on due to a lack of thermal energy

Reality Split System
In reality the battery dissipates en-
ergy into the HTS, i. e., ESOC de-
creases by 3kW and QHTS increases
by 3kW . However, the electric cy-
cle is not always able to provide heat.
Therefore, electric heating can only
be activated by the thermal cycle if
certain conditions are fulfilled.

In the split system it is not clear,
whether the battery is able to sup-
ply the heating tanks with thermal
energy. Therefore, to obtain a rea-
sonable solution, the electric heating
option is disabled (ctreH HTS = 0) in
the DP, i. e., the thermal cycle cannot
request energy from the electric one.

Summary In all four Cases some sort of iteration including LP and DP is needed
to find a control signal which is optimal for the entire system. This optimal con-
trol signal though is not guaranteed to be globally optimal. However, an iteration
algorithm is not implemented in this thesis out of the following reason: If it turns
out that the thermal cycle does not use any fuel at all during a certain period, the
maximal grade of autarky can be calculated without an iteration. As the results
show this is usually the case.
In the other case, if the electric cycle is autark but the thermal cycle needs energy
from the CHP, the calculated grade of autarky is almost the achievable maximum.
This is because the energy from the CHP into the thermal cycle might be substi-
tuted by energy from the battery which is fed by eletric heating into the thermal
cycle. However, the results show that the amount of energy, which can be shifted
from the electric to the thermal cycle, is quite small.
If both cycles need fuel in the same time period, the estimation of the grade of au-
tarky is not straight forward, only an iterating algorithm can provide a meaningful
result.
Following the arguments discussed above one can conclude, that the problem is di-
vidable indeed, although certain restrictions have to be taken into account in order
to derive a meaningful result.

Besides these two programs a heuristic controller was designed which is described
in Section 5.4. It was used firstly to get an idea of what the solution could look
like and secondly as a reference to the optimized solution. The heuristic controller
acted on the entire system, i. e., the system was not split.

5.2 Linear Program

This section illustrates the implementation of the LP and follows strictly the code of
the m-files lp init.m and lp calc.m on the appended CD. In lp init.m the program
is initialized, then lp calc.m is called which manipulates the matrices and calls the
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numeric optimizer provided by MATLABr. Finally lp plot.m is called to visualize
the results. The theoretical basics are explained in Chapter 2.4.

5.2.1 Initialization of the LP

The corresponding code is in the m-file lp init.m, which can be found on the CD.

1. The start and end dates of the simulation are defined

2. The linear part of the system consisting of the battery and the WWTP, is
extracted from the Simulinkr model and written in matrix form. This is
done with the MATLABr function called dlinmod 1.
Furthermore, the sampling time is fixed and the routine moroParameters.m
is loaded, which contains all system parameters. This routine automatically
returns the determined inputs for this time sequence.

3. The simulation horizon is calculated based on the start and the end dates.
Then, the weighting vectors are defined. Only the CHP and the electric heat-
ing control input are weighted. (Switching on the electric heating is punished
to keep a maximum amount of energy in the electric cycle. If this input would
not be punished, the optimized solution would act arbitrarily at the end of
the optimization horizon.)
An optimized input vector never switches CHP and electric heating on at the
same time. Therefore the weights can be arbitrary but positive.

4. The input and state bounds are defined. The waste water tank is allowed to
assume any state from empty to entirely full. The battery must not have a
SOC under 50% for technical reasons. The inputs are normalized and therefore
limited to values between 0 and 1. For the determined inputs the upper limit
is chosen sufficiently larger than the largest determined value.

5. The initial and the final states are set. The final state condition is an equality
condition; if the final state cannot be reached for some reason, the linear
program becomes unfeasible.

6. The m-file lp calc.m is called (see Section 5.2.2) which returns a vector Z
which contains all input and state trajectories over time

7. The input, output and state components are renamed and the entire workspace
is saved.

5.2.2 Transformation of the Given Information into Equality
and Inequality Constraints

The corresponding code is in the m-file lp calc.m, which can be found on the CD.
The code transforms all user-defined conditions into a LP. The corresponding the-
ory is found in 2.4.4.
Like mentioned in the theory, the LP can be written in a simplified way, if all con-
trol inputs and state vectors have positive entries only. This is indeed the case for
the conditions discussed above. The simplification reduces computational time and
memory usage dramatically.
The matrices containing all inequality and equality constraints are visualized in
Figures 5.2.2.1 and 5.2.2.2 to help the reader understanding the structure.
In a next step, these matrices are handed over to the linprog algorithm of MATLABr,

1dlinmod obtains linear models from systems of ODEs and discrete-time systems.
[A, B, C, D] = dlinmod(′SY S′, TS) obtains a discrete-time state-space linear model with sample
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Figure 5.2.2.1: Inequality constraints: The sub matrices are implemented this way in
lp calc.m which can be found on the appended CD.
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Figure 5.2.2.2: Equality constraints: The sub matrices are implemented this way in
lp calc.m which can be found on the appended CD.

which computes the solution of the linear program (see Chapter 2.4.5) and returns
vector Z = (XT UT )T to lp init.m.

5.2.3 Frequent Errors

When executing lp init.m the following errors occur now and then. They are doc-
umented below.

� Out of memory: The LP needs a great amount of memory during the prepa-
ration of the matrices, i. e., in parts 1, 2 and 3 of lp calc.m. The linprogr

algorithm called in part 4 does not need a lot of memory resources.
If this error occurs the length of the simulation should be decreased. On a
personal computer a simulation up to three weeks works well, on a workstation
a simulation with a time horizon up to 6 or 7 weeks can be computed.

� linprogr terminates because problem is infeasible: If this error occurs a small
variation of the initial (and final) condition or a small shift in the time period
is often sufficient to obtain a feasible solution.

5.3 Dynamic Programming

This section explains how the dynamic programming algorithm, which is explained
in Section 2.3), is applied on the thermal subsystem. To retrieve the plotted result
the algorithm is divided in three consecutive processes:

� Backward optimization

� Forward evaluation

� Plotting

time TS of the system of mixed continuous and discrete systems described in the block diagram
′SY S′ {. . . }. (Citation from the MATLABr help)
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For a process and file overview see Figure 5.3.0.1. The first two processes are
explained in the following sections. The explanation concentrates on points which
are not evident from the code and its comments. All the processes can be started
by cell-by-cell evaluation of the file dp.m. All files mentioned here can be found on
the appended CD. This section follows these files entirely, a parallel look at the files
can be helpful.

dp.m

dp_algorithm.m

dp_evaluation.m

dp_plots.m

job.m

ndgrid_moro_model.m

/Results/"Problem Name"

Figure 5.3.0.1: Connections of the separate m-files.
red: Backward optimization
green: Forward evaluation
yellow: Plotting
gray: optional path to run on a server

5.3.1 Backward Optimization

Initializing

1. After the file dp algorithm.m is called by dp.m the name of the problem is
composed out of the start/end points and the results directory is created. In
the following lines all the discretization relevant variables are set.

2. The function ndgrid creates more dimensional matrices which allow to carry
out a operation for all combinations of the operands at the same time. It
enables also to use the same functions independent of the discretization. The
inputs arguments of ndgrid contain the discretization of all dimensions (states
and inputs). Resulting is for each dimension a variable which holds the dis-
cretization of this dimension in a sort of grid, that creates all combinations of
the discrete points in the operation with the other dimension variables.

3. All external disturbances are grouped in one matrix w.

4. To avoid problems at the future interpolation a replacement of infinity is
created here. It is called ’Big’ and is chosen in such a way as to be higher
than the highest possible cost. In the further text called Big.

5. The hard constraints are set (see Table 5.3.1.1)
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6. If the result of an LP should be integrated, the resulting two control signals
from the LP are loaded (CHP & electric Heating). Finally all parameters are
saved to the results path.

Optimization Loop

1. Before the reverse time loop starts two other variables are set. J to go is
the matrix where the cost-to-go during the optimization is stored in. All
combinations which violate the final state constraint are directly set to Big.
This final state constraint will normally not be touched by the final state
values because the costs are interpolated between the discretization points
and like this the final state constraint border is pushed up. This fact was
respected when the final state values were chosen.

2. During the for-loop the system dynamics are analyzed, the constraints are
checked and the costs are determined.

3. If the problem would be solved in succession to the solving of the LP for the
electric cycle, some signal discretizations are replaced by the result of the LP.
This is the case for the control signals of the CHP and the electric heating.
In the case of the CHP the zeros (CHP ’off’) are replaced. For the electric
heating the control signal resulting from the LP is the only option, because
the DP has normally no possibility to turn the electric heating on.

4. In every loop step the lodge heat out struct is reinitialized at 0.5 for state and
Big for the cost elements. Cost is set to Big because afterwards all feasible
cost values are replaced.

5. All combinations are evaluated in the ndgrid moro model.m function. This
evaluation is done for one time step, here one hour. In the first loop step this
means the system is developing from step N − 1 to N . In this model function
the equations of the Sections 4.2.1 and 4.2.2 are implemented. Additionally
the model function generates costs depending on the state levels. These costs
are explained in Table 5.3.1.1. All soft constraints, the CHP penalty and the
heating hard constraint are at the end of the ndgrid moro model.m file. All
the others are in the dp algorithm.m file, at the lines following the function
call of ndgrid moro model.m.

6. The J to go from the last loop step is replaced by one that is interpolated for
the states at the end point of the model evaluation (lodge heat out.x* ) at this
step.

7. Before the lowest costs are searched, those resulting of the model evaluation
are added to the J to go.

8. Finally the optimal control signals for the starting point at this loop step are
determined by the minimal costs and these are assigned to J to go for the
next loop step. This is where the loop restarts.

After the loop all the results are saved to the /Results/’Problem Name’ folder.
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Name Description
Building soft con-
straint

The deviation of the building temperature from a comfort
temperature (17◦C) is weighted inversely proportional.
If all soft constraints are fully violated over the whole
time period, the total costs which arise are lower than
turning on the CHP once. This is assured by dividing
all soft constraints by the term (numberofsoftconstraint ·
(N+1))

WDWS (HTS, LTS)
soft constraint

Similar to the building soft constraint, but the comfort
temperature is 40◦C for all tanks.

CHP penalty When the CHP is turned on a penalty of 2 arises
Heating hard con-
straint

To turn on the heating system the LTS has to be above
35◦C, a violation of this constraint adds Big to the cost.

HTS/LTS hard con-
straint

The HTS temperature has to be above the LTS temper-
ature to satisfy the layering assumption. Violation cost
is Big.

Limit hard con-
straint

As soon as a state exceeds the lower discretization limit
0 Big arises as cost. To simplify the cost structure all
heat tanks do saturate at their upper limit. This im-
plicit constraint can be easily justified for the building
and the LTS, where at the upper limit the warden would
be requested to open the windows of the sleeping rooms
respectively the warm water surplus can be brought to
the fresh water supply tanks, where the energy storage
amount is almost infinite. For the HTS and the WDWS
this assumption violates in reality some physical con-
straints, because they do not have a physical connection
to the fresh water supply. But as this saturation is only
relevant in the case of an energy surplus it is not relevant
for the optimality of the solution even though it has to
be taken into account for further development of the heat
tanks model.

Table 5.3.1.1: Cost structure
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5.3.2 Forward Evaluation

1. All results and parameters of the optimization are loaded into the workspace.

2. An output struct is initialized (out.* ). To this struct the initial conditions
entered by the function call from dp.m are assigned. For debugging and other
purposes the cost development during the forward evaluation is stored too.
Also some relevant variables for the autarky determination are initialized.

3. The forward time loop starts. At every step all the control signals are inter-
polated from the final state of the last time step. After the interpolation the
control signals are rounded to the discrete values (0, 1) due to rounding errors
and equation validity. (See Equation 4.9)

4. Like in the backward optimization the control signals for the CHP and the
electric heating are replaced, but the CHP signal is only replaced if the LP
signal is bigger then the signal determined by the interpolation.

5. The model function is evaluated, the costs are calculated and the loop restarts
with the next time step.

6. The results are saved for further processing, e. g., plotting.

5.4 Heuristic Controller

The heuristic controller (HC) is a combination of hysteresis and threshold switches.
The switch-points are determined either based on information from the manufac-
turer or empirically. Some ideas to set switch-points were copied from the optimized
solutions to improve the benchmark which the optimized problems are compared
to. Those are especially the lower switch-point of the heating system and the con-
sequent discharge of the LTS to leave room for new solar energy.

Supplier Demander Supplier
enabled

Supplier
disabled

Constraints/
Remarks

CHP LTS 25◦C 30◦C
CHP HTS 30◦C 35◦C
CHP Battery 50% SOC 60% SOC
Battery HTS 98% SOC 95% SOC Energy dissipation
Battery LTS 27◦C 30◦C ESOC ≥ 60%
Battery HTS 32◦C 35◦C ESOC ≥ 60%
HTS WDWS 35◦C 45◦C THTS ≥ 40◦C ≥

TWDWS

Battery WWTP 100% WWTP-
SOC

0% WWTP-
SOC

HS Building 10◦C 12◦C
HS Building TLTS > 50◦C TLTS < 30◦C

Table 5.4.0.1: Settings of the heuristic controller

The settings for the solar energy distribution are listed in Table 5.4.0.2. The goal
was to represent the heuristically system behavior realistic with the TSC model.
With the following quite simple rule, an acceptable system behavior resulted: The
incoming energy is split between all active receivers. A receiver is active, if the
associated constraints are fulfilled.
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Receiver Constraints/ Remarks
LTS TLTS ≤ 50◦C and TLTS ≤ THTS
HTS THTS ≤ 70◦C
WDWS TLTS ≥ 35◦C and THTS ≥ 40◦C and TWDWS ≤ 70◦C

Table 5.4.0.2: Solar energy distribution by the heuristic controller.

In the model for the heuristic controller the same saturations for the warm water
tanks were introduced. This was necessary to make a comparison to the optimized
solution possible. Details about the saturations are listed in Table 5.3.1.1.
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Results and Discussion

Because the optimization process over the whole lodge service period leads even in
the 64-bit MATLABr to memory allocation problems, simulations where made for
shorter periods of about three weeks. In the following section the results of three
example time periods are discussed. These periods are:

1. March: 01.03.2006 - 31.03.2006

2. April/May: 22.04.2006 - 14.05.2006

3. September: 01.09.2006 - 20.09.2006

6.1 Grade of Autarky

Definition: Autarky; adj. autarkic, self-sufficient; needing no help from others [7]

As this definition is used mostly in an economic sense, it is freely adapted for
physical systems as: A system’s needs are met by the resources produced inside
it and therefore no transactions across the system boarders are necessary. In this
sense the sun is included in the system of the New Monte Rosa Lodge. The Grade
of Autarky is a ratio to signify the self-sufficiency of the system. It maps the most
important information provided by a simulation into a single number between 0%
and 100%. This makes it easy to compare the performance of different controller
behaviors.
The HA of the New Monte Rose Lodge is chosen such that it is able to reach a Grade
of Autarky of at least 90% over a year period, whereas the non-electric energy for
cooking is excluded [16]. This means that the energy supplied to the electric and
the thermal cycle should be provided at least 90% from the PV cells and thermal
solar collectors and at most by 10% from the CHP.

6.1.1 Grade of Autarky

The Grade of Autarky goa is defined as follows:

goa =
(

1− ECHP +QCHP
Eloss +Qloss

)
· 100 [%] (6.1)

goaelectric =
(

1− ECHP
Eloss

)
· 100 [%] (6.2)

goathermal =
(

1− QCHP
Qloss

)
· 100 [%] (6.3)

53



Chapter 6. Results and Discussion 54

ECHP Electric energy provided by the CHP
QCHP Thermal energy provided by the CHP
Eloss Total electric losses
Qloss Total thermal losses

If the goa is close to 100%, almost all power used is supplied by the PV or thermal
solar collectors. A low goa denotes an high percentage of power supplied by the
CHP.
The LP and DP algorithms are constrained such that the integrators have equal
start and end values. However, the HC cannot be constrained in such a way, which
leads to some impreciseness when calculating the autarky of the HC solution.

6.1.2 Autarky Overview

The following table gives an overview over the achieved grade of autarky in each
simulated period.

The optimized controller is completely autarkic either in the electric or in the

Period electric thermal overall
Optimized Optimized HC Optimized

March 100.0% 93.0% 86.4% 93.0%
April / May 100.0% 100.0% 94.6% 100.0%
September 95.9% 100.0% 94.2% 95.9%

Table 6.1.2.1: Autarky overview

thermal subsystem in each simulated period. Therefore the overall autarky of the
optimized controller can be calculated with the values listed in Table 6.1.2.2 and
Equation 6.1, where

ECHP +QCHP = tCHP · 3600
s

h
· (PCHP,opt + Q̇CHP,opt) (6.4)

tCHP · 3600 sh [s] Total seconds of CHP operation in the non-autarkic
subsystem;

PCHP,opt = 14000 [W] Produced electric power by the CHP in the oper-
ation point with the highest electric efficiency;

Q̇CHP,opt = 27000 [W] Produced heat by the CHP in the operation point
with the highest electric efficiency.

This calculation implies that the autarkic subsystem receives additional energy from
the CHP. The assumption does not influence the goa, however.

ECHP [GJ ] QCHP [GJ ] tCHP [h] Eloss[GJ ] Qloss[GJ ]
March 0 1.75 8 4.43 25.0
April / May 0 0 0 3.72 18.2
September 0.13 0 2.5 3.08 12.3

Table 6.1.2.2: CHP energy and total energy consumed by the HA and the lodge.
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6.2 Discussion of the LP-optimized Battery-WWTP
Subsystem

6.2.1 Expected Results

First of all the goal is to sensitize the reader to the information a result plot con-
tains. For this reason, an easy virtual case is discussed. On the basis of Figure
6.2.1.1 it is easy to explain, what kind of results have to be expected. The upper
graph shows the state of charge of the battery and the WWTP over time. During
the weekend a lot of people are in the lodge, even if the weather is moderate only.
Hence, the electric power consumption and the waste water production are high.
On weekdays, there are only few people in the lodge. This is why almost no energy
is consumed and no waste water is produced. The red line shows the behavior of a
heuristic controller, the green line represents how a MPC manages the same situa-
tion. The lower graph shows on which days CHP action is necessary.
So let us have a look on this particular situation: After a weekend with a lot of vis-
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Figure 6.2.1.1: Qualitative representation of the expected results.

itors and moderate weather the energy budget of the system is at a marginal point.
In this situation the heuristic controller would behave ”conservative”, because it
simply follows certain algorithms, which are programmed the way some important
constraints are never violated, even if the worst possible case would arrive. This
means for this case, that it starts treating the waste water on Monday, which con-
sumes a lot of electric power. This entails the activation of the CHP on Tuesday to
charge the almost empty battery.
The MPC would handle the same time period differently. It has information about
the future weather and booking schedule and has knowledge on the system behav-
ior. Thus it knows, that only few visitors will come the next days and the waste
water tank SOC will stagnate. That is why it does not treat the waste water until
the bad weather period is over.
On Wednesday finally the weather is good again. Now there is sufficient energy to
treat the waste water and fill the battery, so the system can start into the weekend
with a full battery and an empty waste water tank. Unfortunately the heuristic
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controller cannot profit as well as the MPC from the good weather period starting
on Wednesday, because the battery has already been charged with the CHP on
Tuesday. All solar energy won on Thursday and Friday must be dissipated, because
the battery cannot store the whole amount.
This example illustrates the main advantages of MPC: It has information about the
system behavior and future events and is able to include this additional information
into the control algorithm. Because the MPC can drive the system to its bound-
aries, it can avoid ineffective power consumption.
An important remark: The question was never, if a model predictive controller with
its outperforming but also computationally intensive technology is able to save en-
ergy at all, but how much it can save. That is why all simulations were made with
an ideal MPC. With this setup, the performance bound of the present HA could
be determined; a minimum necessary amount of fossil energy the HA consumes in
order to fulfill the needs of the lodge.

6.2.2 Computed Results

In the following the results of the system optimization are presented; First a three
week time period in September is discussed in detail. A second example is given in
Section 6.2.4 where a time period in April/May is chosen to illustrate some further
details. Finally the time period from the March 1st to 31st is discussed in Section
6.2.5.

6.2.3 September Period

Figure 6.2.3.2 shows the behavior of the system in the September period, when it is
controlled with the optimal strategy computed by the LP, so that the performance
bound is reached. Figure 6.2.3.1 shows the behavior of a simple heuristic controller.

Legend of Figures 6.2.3.1 and 6.2.3.2
Upper Subplot:
black: ESOC [%]
red: PCHP [100 ·W ]
cyan: PPV [100 ·W ]
magenta: −PeH HTS [100 ·W ]
green dotted: −PWWTP [100 ·W ]
green dashed: −Pstoch[100 ·W ]
green solid: −PHA[100 ·W ]
blue: Sum of outgoing Powers [100 ·W ]

Middle Subplot:
black: VWasteWaterP lant SOC [%]
blue: V̇WasteWater out[10−6m3]
cyan: V̇WasteWater in[10−6m3]

Lower Subplot:
red: PCHP [% of PCHP,max]
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Figure 6.2.3.1: Battery and WWTP behavior in the time period from the September 1st to the 20th , when the system is heuristically controlled.
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Figure 6.2.3.2: Optimized battery and WWTP behavior in the time period from the September 1st to the 20th .
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Deterministic Inputs

The weather period and the number of visitors, which determine various system
inputs, are equal for both controllers. These two inputs can be derived from the
cyan curves. The weather is ”proportional” to the cyan curve of the upper plot, e. g.,
a high power input into the battery implies sunny weather. The number of persons
in the building is proportional to the waste water produced, which is represented
by the cyan graph of the plot in the middle.
In the chosen time period the weather is rather bad. This is indicated by the
produced peak power of the PV cells, which is approximately 5kW during 7 days.
Besides that, the environmental temperature is around 0◦C which can be seen in
Figure 6.3.3.4. Furthermore, on two of three weekends the lodge is fully booked,
i. e., 120 persons stay overnight. Bad weather combined with a high occupancy rate
is very demanding for the system and therefore causes a higher CHP demand than
a ”regular” period. Nevertheless such a period is more interesting to discuss.
The blue curve in the upper plot indicates the energy leaving the battery. This
amount of energy is determined only partly by the controller: The disturbance
inputs influence the electric power consumption. Out of all energy flows leaving
the battery only ctreH HTS and ctrWWTP can be controlled. (All power in- and
outflows of the battery are described in Section 4.2.3.)
The blue curve in the middle plot describes the amount of waste water treated by
the WWTP, which is proportional to ctrWWTP .
Besides these signals also ctrCHP is set by the controller. The red curve in the
upper plot indicates the power supplied by the CHP.

How to Interpret the Results

Before analyzing the behavior of the optimized controller and comparing it to the
heuristic one, a short side note is given on the computed output of the controllers
(e. g., ctrCHP ): The heuristic controller consists of threshold switches, which always
give either 0 or 1 as output. Unlike the output calculated by the LP, it takes
arbitrary values between 0 and 1 although in reality the CHP will only be turned
on with full load to reach the maximum efficiency (i. e., like the resulting output of
the HC). However, this is not a problem for the interpretation of the results provided
by the LP. A short example is given to illustrate this: The optimal solution asks for
turning the CHP on with 25% load during one hour. This is equivalent to turning the
CHP on with full load for 15 minutes. The same principal is effectual for ctrWWTP

and ctreH HTS . To constrain the solution of the optimization problem to values of
either 0 or 1 leads to a mixed integer problem. Such a system could be modeled with
Hysdel, the hybrid system description language developed by the Automatic Control
Laboratory of ETH Zurich. (Check http://control.ee.ethz.ch/∼hybrid/hysdel/). In
general, these problems are computationally more intensive.

Configuration of the HC

The heuristic controller is configured as follows: It empties the waste water tank
completely, when it reaches its maximum level. It starts the CHP to generate
electric power, if the battery SOC is under 50%. It enables electric heating, when
the battery SOC reaches 98% and disables it at 95%. It also activates electric
heating and the CHP, if elements of the heating cycle fulfill certain constraints.
(For further details see Section5.4.) Therefore one must pay attention to the point
of time the CHP is activated. From that one can conclude, if the CHP is activated
due to a demand of energy from the electric or the thermal cycle.
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CHP and Electric Heating Handling of the HC

Over the time period of three weeks, the CHP is activated for 6 hours and consumes
27.2kg of fuel which leads to a partial autarky of the electric cycle of goaelectric = 90%.
The CHP supplies the electric cycle with overall 6h · 14kW = 84kWh. In the same
period electric heating is activated for 29 hours due to excess of electric energy in
the battery. This is equivalent to 29h · 3kW = 87kWh electric energy, i. e., more
than supplied by the CHP. Although more energy is dissipated due to excess than
demanded by the CHP, it cannot be concluded that their exists a better controller
strategy, which necessarily can avoid CHP usage. This is because the size of the
battery has to be considered, which limits the amount of energy that can be shifted
in time.

Waste Water Treatment Handling of the HC

The blue curve of the middle plot shows, that the waste water is treated at the
same time as the lodge is fully booked, which is not a desirable situation. During
these weekends the electric power demand is high anyway due to the large number
of visitors, therefore the waste water tank should ideally not be emptied at that
point of time. On September 3rd and 4th , the treatment does not have any negative
consequences due to the good weather, which allows the battery to recharge during
the day. However, on the weekend of the 17th the incoming solar power added up
with the energy stored in the battery is not sufficient to meet the entire electric
power demand. As a consequence the battery reaches its lower SOC bound and the
CHP must be turned on.

Configuration of the Optimized Controller

The problem is set up, such that the total fuel consumption is minimized. The final
state of the system is constrained to be equal to the initial state. The initial state
can be chosen arbitrarily. Of course all constraints must be satisfied.

CHP and Electric Heating Handling of the Optimized Controller

Actually, only three out of four possible combinations of the input signals ctrCHP
and ctreH HTS occur over time: ctrCHP = 0 and ctreH HTS > 0, ctrCHP > 0 and
ctreH HTS = 0, or ctrCHP = 0 and ctreH HTS = 0. Both control inputs set to a
positive value at the same point in time is never an optimal solution. Thus, one
can assign each time period to one of these three modes:

1. Mode 1: ctrCHP = 0 and ctreH HTS > 0: The system dissipates energy due
to excess of electric power provided by the PV. Here, this can be seen in the
time period from September 1st to 10th .

2. Mode 2: ctrCHP > 0 and ctreH HTS = 0: The system has insufficient power
input, it needs additional energy from the CHP. The time period from Septem-
ber 10th to 19th can be assigned to this case.

3. Mode 3: ctrCHP = 0 and ctreH HTS = 0: The system is balanced, no energy
has to be dissipated or additionally supplied by the CHP. This case occurs
from the September 19th to 21st .

When the system changes from Mode 1 to Mode 2, the battery is filled completely
und the WWTP is empty. This is obvious, because otherwise the energy would not
be dissipated during Mode 1 but instead stored in the battery or used to treat the
waste water to avoid using energy from the CHP.
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When the system changes from Mode 2 to Mode 1, the battery is empty and the
WWTP completely filled. If this would not be the case, less energy could be pro-
vided by the CHP during Mode 2.

Interpretation of the Waste Water Tank as Inverse Battery

The wastewater tank is able to store up to 5.5m3 waste water. To treat this
1494W · 14h ≈ 75MJ is needed, which is approximately 1

7 of the suitable energy
stored in the battery. Actually, the following is true: The case where the WWTP
is completely full and the energy to treat the contained waste water is stored in
the battery is equivalent to the case where the WWTP is empty and the energy to
treat the waste water is no more in the battery. Thus, one can interpret the waste
water tank as an inverse battery. This idea is sketched in Figure 6.2.3.3.

Merge Waste Water Tank and Battery into a Single State Variable

From this sight can be concluded, that the WWTP and battery can be viewed
together as one state. There is only one direction to move along namely normal
to the equipotential lines. The constraints can easily be converted to rules for
the merged state Etot. A simple underlying controller can adopt, when exactly
the WWTP should be activated. Treating the waste water is moving along an
equipotential line, i. e., does not generate any cost in the optimization algorithm.
However, this fact is not explored in detail in this thesis, further analysis should

E_tot

E_SOC

W
W

T
P

_S
O

C

10

1

0

Equipotent ial Lines

Figure 6.2.3.3: Draft of the new state variable ”Etot”. Moving along the equipotential
lines needs some time but does not induce cost to the system. The
maximum value of Etot is reached, when ESOC = 1 and WWTPSOC = 0.
The minimum value is reached in the opposite case.

follow in order to prove what has been derived theoretically here.

6.2.4 April/May Period

Heuristic Control

This example illustrates very well, how bad a heuristic controller can drive the
system compared to an optimized one. The upper graph of Figure 6.2.4.1 shows a
very high CHP activity around May 1st . Also one can see, that ESOC never reaches
the lower bound, which induces, that the CHP is always activated due to a demand
of heat by the thermal cycle. From first sight one might guess, that there is plenty
of energy in the system overall but badly distributed, i. e., changing the conditions
in which electric heating is turned on solves the problem. However, this is not
the case, as shown in Figure 6.2.4.3): Changing the switch-points on the electric
heating even worsens the autarky because it immediately leads to a lack of electric
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energy. It turns out, that the heuristic solution cannot be improved significantly,
unless comfort is reduced dramatically.

Optimized Control

By treating the waste water constantly instead of dissipating energy into the HTS
the optimized controller makes use of the large amount of electric energy produced
by the PV cells at the beginning of the time period. Like this, the battery is fully
charged on April 27th and the tank is filled by 20%. The energy stored in battery
and the almost empty tank are together sufficient to bridge the critical phase up to
May 4th . This is an acceptable behavior: The optimized controller does not use
the CHP at all and still fulfills the constraints. Up to the April 25th and from May
4th to the end of the simulation the system is in Mode 1, while in the rest of the
time the system is in Mode 3.

Legend of Figures 6.2.4.1, 6.2.4.2 and 6.2.4.3
Upper Subplot:
black: ESOC [%]
red: PCHP [100 ·W ]
cyan: PPV [100 ·W ]
magenta: −PeH HTS [100 ·W ]
green dotted: −PWWTP [100 ·W ]
green dashed: −Pstoch[100 ·W ]
green solid: −PHA[100 ·W ]
blue: Sum of outgoing Powers [100 ·W ]

Middle Subplot:
black: VWasteWaterP lant SOC [%]
blue: V̇WasteWater out[10−6m3]
cyan: V̇WasteWater in[10−6m3]

Lower Subplot:
red: PCHP [% of PCHP,max]
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Figure 6.2.4.1: Battery and WWTP behavior in the time period from April 22nd to May 14th , when the system is heuristically controlled.
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Figure 6.2.4.2: Optimized battery and WWTP behavior in the time period from April 22nd to May 14th .
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Figure 6.2.4.3: Battery and WWTP behavior in the time period from April 22nd to May 14th , when the system is heuristically controlled and the electric
heating switch-points are augmented, such that altogether more energy is transferred from the electric to the thermal cycle.
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6.2.5 March Period

In March the outside temperature is quite low and only few people visit the lodge.
This implies, that electricity use and waste water production are reduced. The
solution of the LP reflect this fact: the optimized solution demands no energy from
the CHP for the electric cycle. In contrast the heuristic controller turns on the
CHP for 27 hours. This is due to the fact, that even the optimized thermal cycle
demands a huge amount of heat from the CHP, which can be seen in Figure 6.3.3.6.

Legend of Figures 6.2.5.1 and 6.2.5.2
Upper Subplot:
black: ESOC [%]
red: PCHP [100 ·W ]
cyan: PPV [100 ·W ]
magenta: −PeH HTS [100 ·W ]
green dotted: −PWWTP [100 ·W ]
green dashed: −Pstoch[100 ·W ]
green solid: −PHA[100 ·W ]
blue: Sum of outgoing Powers [100 ·W ]

Middle Subplot:
black: VWasteWaterP lant SOC [%]
blue: V̇WasteWater out[10−6m3]
cyan: V̇WasteWater in[10−6m3]

Lower Subplot:
red: PCHP [% of PCHP,max]
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Figure 6.2.5.1: Battery and WWTP behavior in the time period from March 1st to 31st , when the system is heuristically controlled.
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Figure 6.2.5.2: Optimized battery and WWTP behavior in the time period from March 1st to 31st .
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6.3 Discussion of the DP-optimized Thermal Sub-
system

The main advantage of the optimized controller is the heat management between
the different warm water tanks. As explained below the final settings for the HC
concerning the building temperature produce an almost as good behavior as the
DP solution does.
It is to say that the HC was adapted after some simulations and comparisons with
the optimized solutions from different time periods. In the final setting some switch-
points are set very similar to the ones of the DP solution, e. g., the lower building
temperature switch-point is set to 10◦C. This is the critical temperature where even
the optimized controller turns on the CHP to support the heating, although this is
a very rare case in the optimized solution. With these adaptations of the HC it is
now possible to compare the solutions and the autarky of the two concepts. The
10◦C boundary of the optimized solution is caused by interpolation errors which
appear if the DP algorithm interpolates the hard constraint at 7◦C. Due to the
interpolation the high cost level of the hard constraint is moved into the feasible
area.
In the following sections three different periods are discussed. Only the important
differences are outlined, but the general behavior of the two concepts is similar.
A difference between the results of the HC and the DP which could lead to misin-
terpretation is actually only an issue of configuration. The HC keeps control signals
set on as long as the conditions are satisfied. This induces, e. g., in the case of
ctrTSC LTS , that it is turned on also at night when no energy is available from the
thermal solar collectors. Unlike the optimized solution: it turns on the separate
signals only when energy is available. This difference does not affect the energy
household, both concepts use the whole amount of available energy.

Special Case: Electric Heating

As the electric heating is part of both, thermal and electric, cycles it is only part of
the heuristic solutions. In the optimized solution ctrelH HTS is set to 0 at all time.
This leads to more available heat energy for the heuristic case what helps the HC to
achieve a higher grade of autarky goa. In the Figures 6.3.3.1 to 6.3.3.6 the electric
heating control signal is not visualized, but always when the HTS is heated without
ctrCHP or ctrTSC HTS turned on the electric heating is the energy source. This is
mostly the case at the second half of sunny days, where the battery normally gets
close to the upper limit.

6.3.1 April/May Period

This period is visualized in Figures 6.3.3.1 and 6.3.3.2.

Building Temperature

The building temperature behaves very similar in both concepts, except that it is
constantly some degrees higher in the optimized solution. The optimized controller
distributes the energy better between the tanks which improves the losses and the
heat transitions.
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CHP

On May 1st the HC is urged to activate the CHP several times. After the switch-
point of 10◦C is hit the HC heats up the building to 12◦C. This causes a lot of
’ unnecessary ’ CHP action. The margin of 2◦C is set to avoid oscillations of the
CHP over a longer period. But in this case the CHP action is not unnecessary at
all because the electric cycle demands exactly the same amount of CHP at almost
the same time. This can be checked by setting the heating switch-point to a lower
level (e. g., 7◦C), such that no CHP is needed from the thermal cycle.
During the same days the optimized controller uses also the little available solar
energy to heat the building. Like this a temperature between 10 and 11◦C is main-
tained until more solar energy is available and therefore no CHP support is needed
by the optimized controller. This is a clear advantage of the predictive controller
as it can estimate how much energy is needed to bridge the bad weather period.

Warm Water Tanks

In the optimized solution the WDWS is heated by the HTS. This interconnection is
only barely used by the HC. This is because the WDWS is heated with solar energy
in the HC solution although this energy would be needed to heat the building. In
general the optimal solution keeps the temperature of the WDWS and the HTS
closer to each other than the HC does. In general the optimized controller is able
to provide more warm drinking water.
The HC suffers from the assumption about the HTS and LTS interconnection. A
further example for this problem is discussed in Section 6.3.3 about the March
period.

6.3.2 September Period

(See Figures 6.3.3.3 and 6.3.3.4)
Both, the optimized and the heuristic controller use the available solar energy at
the beginning of the period to heat the building. With this big amount of energy
stored in the building mass the bad weather period after September 11th can be
bridged easily. With both concepts the building temperature is always above 15◦C,
what represents a very high comfort level.

CHP

With support of the CHP, which is caused by the electric cycle during the second
weekend of this period, the HC has over all more energy available in the warm water
tanks. One consequence is that it could provide a little bit more warm drinking wa-
ter than the optimized controller. But as the temperature in both systems is always
above 35◦C the warm water supply is anyway guaranteed at all time. Obviously,
the HC benefits also from the CHP energy to heat the building.

Heating System

As the HC controller stops heating as soon as the building temperature reaches the
upper limit, the optimized controller realizes that this heating energy would be lost
and stops heating by itself. It stops at that exact moment to provide enough stor-
age room in the LTS to save all the available solar energy the next day, otherwise
it uses the heating energy surplus above the saturation to compensate the losses.
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This is possible since the difference equation is evaluated every hour and after the
evaluation the saturation limits are applied.
The heating of the building is represented by the lilac signal row. In the Septem-
ber period the heating breaks occur during the lilac gaps on September 6th and
September 9th .
The saturation was set because a temperature far above 20◦C is not very comfort-
able for the sleeping rooms. In reality the saturation could stand for guests asking
the warden to open the windows. For the DP solution first a cost at the upper limit
was introduced to avoid the saturation problem. Unfortunately, this led to cost
rounding errors so that the temperature of the building was decreased by several
degrees. The saturation leads to a much nicer solution and has the same effect.

6.3.3 March Period

This period illustrates in the Figures 6.3.3.5 and 6.3.3.6 that the optimized con-
troller needs the CHP in some cases. The outside temperature is very low in this
period and the solar irradiation is not always that strong as it is in the high season.
The HC consumes 123kg fuel and the optimized controller consumes 82kg. It is to
say that the HC takes also the electric cycle into account, which may cause a part
of the fuel consumption. However, in this case the electric cycle does not need any
CHP (see Figure 6.2.5.2). The performance of the HC is improved marginally by
changing the switch-points of electric heating (like in the May example of the LP
results, Section 6.2.4). With the additional electric heating the HC fuel consump-
tion is about 118kg.

CHP / Warm Water Tanks

From May 9th to the 17th the CHP is turned on by the HC and by the optimized
controller. In the case the HC controls the system, the HTS is already at a high
temperature at the beginning of the period and therefore hits the upper saturation
limit very fast. The HTS dissipates energy and the CHP is turned on over and over
again to heat the LTS. As discussed in Table 5.3.1.1 the saturation of the HTS in not
physically realizable. Those are weak points of the warm water tank model. Among
others the layering assumption of the tanks is challenged to be inaccurate or even
wrong. The model could probably be improved by a parameter identification for
the time constant (Equation 4.8), which determines the speed of the heat transfer
from the HTS to the LTS. As the heating of the building only takes energy from
the LTS, a distributed heating energy source, e. g., from HTS and LTS, could also
help to solve this problem. But a validation of any improvement of the modeling of
the heating tanks as well as for the whole model is not possible as long as the lodge
is not built.
During the other periods this problem is less obvious as there is no repeated CHP
action. For the optimized controller this is in general a smaller problem as it uses
the interconnection to the WDWS to lower the HTS.
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Legend of Figures 6.3.3.1, 6.3.3.2, 6.3.3.3, 6.3.3.4, 6.3.3.5 and 6.3.3.6

Upper Subplot:
blue: TWDWS [◦C]
red: THTS [◦C]
green: TLTS [◦C]

Middle Subplot:
blue: Q̇WDWS [103W ]
red: Q̇persons[103W ]
yellow: Q̇Solar[2.8 · 103W ]
magenta: TB [◦C]
dark green: Tenv[◦C]

Lower Subplot:
black: ctrCHP [−]
lila: ctrHS [−]
magenta: ctrWDWS HTS [−]
blue: ctrTSC WDWS [−]
red: ctrTSC HTS [−]
green: ctrTSC LTS [−]
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Figure 6.3.3.1: Thermal cycle behavior in the time period from April 22nd to May 14th, when the system is heuristically controlled.
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Figure 6.3.3.2: Optimized behavior of the thermal cycle in the time period from April 22nd to May 14th.
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Figure 6.3.3.3: Thermal cycle behavior in the time period from September 1st to September 20th, when the system is heuristically controlled.
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Figure 6.3.3.4: Optimized behavior of the thermal cycle in the time period from September 1st to September 20th.
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Figure 6.3.3.5: Thermal cycle behavior in the time period from March 1st to March 31th, when the system is heuristically controlled.
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Figure 6.3.3.6: Optimized behavior thermal cycle in the time period from the March 1st to March 31th.
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6.4 Conclusions and Future Prospect

6.4.1 Some General Facts Explored

Energy shortages for the thermal or the electric subsystem occur always at similar
situations: From the simulation one can clearly see, that the thermal subsystem
suffers a lack of energy when the outside temperature Tenv is low and only few
people are in the lodge. The electric cycle experiences an energy shortage when a
lot of people visit the lodge.

6.4.2 Modeling

Conclusions concerning the model are the following: From the results one can con-
clude, that the SOC of the battery ESOC and the filling level of the WWTP tank
WWTPSOC can be merged into a single state. This idea is derived in Section 6.2.3
but not implemented in this thesis. This is a very interesting result due to the fact
that reducing the number of states of the model without losing information is very
favorable: the optimizing algorithm is evaluated faster without loss of accuracy.
Besides that, the behavior of the heating tanks shows, that the heat transfer from
the thermal solar collectors into the building takes place mainly through the daily
warming up and cooling down of the LTS. This behavior is apparent in all three
periods discussed in Section 6.3.
As already discussed several times in this thesis the separation of LTS and HTS
leads sometimes to unrealistic behavior like in March where the CHP is turned
on several times because of the LTS even though the HTS saturates immediately.
Some ideas to improve the model is to change the volume ratio which splits up the
two storages or even to merge the two storages into one. Either way a good model
for the heating tanks depends on a not yet possible parameter identification on the
real system. This concludes, that the model of the heating tanks must be proved
carefully in order to derive the exact behavior of the heating system.
The link between the electric and the thermal cycle, the electric heating, is useful.
However, from the results of the heuristic controller can be concluded, that a lack of
energy in the thermal cycle cannot be compensated significantly by electric heating.
Because the LTS, which shows the biggest energy shortage in the simulations, is
not controllable by the electric heating. In contrast are the two other tanks, HTS
and WDWS, directly respectively indirectly reachable by the electric heating.

6.4.3 Optimization

The goal to find goa-maximizing control inputs to a non-linear system with 6 states
was achieved. The chosen way of splitting the system in a linear and a non-linear
part turned out to be a success. This is first of all because either the thermal or the
electric cycle has a goa of 100% in each time period, this fact simplifies the overall
goa calculation a lot. This comes from the unequal booking schedule and weather
impact on the two subsystems.
The implementation of the DP brought a lot of degrees of freedom, especially for the
definition of the cost function, which was adapted such that reality is represented as
accurate as possible. Tuning the cost assignment and the boundary conditions was
an iterative procedure with the goal, that the algorithm computes realistic results.
The implementation of the LP was compared to the DP rather straight forward.
Only few parameters had to be fixed (the weighting vectors q and r) which allowed
a quick implementation.
The tuned algorithms compute easily interpretable results which formed the basis
to gain a lot of insights into the various processes in the system.
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A further benefit is some knowledge which can be gained for the tuning of HC
for such systems. The most important is that on sunny days the available energy
should be fed as fast as possible to the building storage instead of storing it in the
LTS, which should be at a low state in the morning to save the next day’s solar
energy.
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