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The aim of the present paper is to present a model-based predictive controller, combined with a Building
Energy Management System (BEMS). The overall system predicts the indoor environmental conditions of
a specific building and selects the most appropriate actions so as to reach the set points and contribute to
the indoor environmental quality by minimizing energy costs. The controller is tested using a BEMS
installation in Hania, Crete, Greece.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

During the last decades the contribution of Building Energy
Management Systems (BEMS) to energy efficiency, improvement of
the indoor comfort and environmental quality during a building’s
operational phase is well recognized. Advanced control techniques
based on artificial intelligence (neural networks, fuzzy logic,
genetic algorithms, etc.) and distributed control networks offer
numerous benefits towards that direction [1–5].

Building energy management and online control systems are
reactive to the climatic conditions, building operation and occu-
pancy interventions. Predictive control in conjunction with BEMS
on the other hand uses a model to estimate and predict the
optimum control strategy to be implemented [6]. While the online
control systems can react only to the actual building conditions [7],
a model-based predictive control can move forward in time to
predict the buildings’ reaction to alternative control schemes.
Therefore different control scenarios can be evaluated based on
suitable objective functions, and create a control state space that
corresponds to a building’s performance space [8].

A model can be either a ‘‘black box’’ or a ‘‘physical’’ model. In the
‘‘black box’’ or non-physical model approaches, self-learning
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algorithms, reinforced learning [9] or neural networks [10] are
some of the methodologies found in the literature. The benefits of
the mentioned approaches are low computational time and the fact
that they do not require any specific building modeling expertise,
while their limitations are (i) the fact that neural networks require
reliable training data that may not be available and (ii) self-learning
algorithms cannot move beyond the limits of their experience.
When physical models are utilized, the expert has the opportunity
to understand the cause-and-effect relationship between the
various building components, the control strategies and the
climatic conditions. The physical models approach can use
stochastic mathematical models [11] or simulation-assisted
predictive control [12]. Some physical models though require high
computational skills and effort.

In the present work a bilinear model-based predictive control is
utilized in conjunction with BEMS, so as to achieve optimum indoor
environmental conditions while minimizing energy costs. The
bilinear modeling procedure is selected as it is the simplest
extension of linear modeling and offers simplicity in the prediction
algorithms’ calculation procedure. The paper is organized in six
sections. Section 2 includes a short description of a building and the
installed BEMS. Section 3 incorporates the bilinear model analysis
and the identification procedure. Section 4 analyses the predictive
control strategy, while Section 5 presents shortly the graphical
environment of the predictive control scheme. The experimental
analysis including comparison between real and simulated
measurements and discussion is presented in Section 6. Finally,
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Fig. 2. The laboratory of Department of Production Engineering and Management.
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Section 7 accumulates the conclusions and discusses issues for
future research and development.

2. The building energy management system

2.1. Description of the building

The BEMS in which the predictive control scheme is tested, is
installed in the Industrial Control Laboratory of the Department of
Production and Management Engineering of the Technical
University of Crete at Hania, Crete, Greece (35�N latitude). The
climatic conditions, i.e., air temperature, humidity and solar radi-
ation on a horizontal surface, of Hania region extracted by
METEONORM are illustrated in Fig. 1. The laboratory has 125 m2

area with almost 3.5 m height, thus 437.5 m3 volume (see Fig. 2).
The building’s characteristics including envelope and building
services are tabulated in Table 1.

The heating and cooling system is a 30 kW air conditioning
system with a cooling power of almost 44 W (38,400 kcal/h). The
air conditioning system before the BEMS installation was controlled
manually.

The electric lighting in the laboratory uses 94 fluorescent lamps
of 58 W and 8 lamps of 18 W.

2.2. The energy management system

The energy management system interconnection is performed
using the European Installation Bus-KNX protocol and tools, and is
based on a small-scale application presented by the authors’
previous work [13]. The monitoring system consists of four
sensors for the indoor environment and an outdoor weather
station as tabulated in Table 2. The installed actuators are pre-
sented in Table 3.

All monitoring and control devices are connected to the Euro-
pean Installation Bus-KNX either directly or by using specific I/O
modules (Fig. 3).

3. Predictive control techniques

3.1. Description of the control system

The block diagram of the control system is depicted in Fig. 4
where A represents the actuators and P is the overall BEMS
installation. If k is defined as the sample time of BEMS operation
then x(k) is the state vector, y(k) is the BEMS’ measurements vector,
Fig. 1. The climatic conditions in Hania, Crete, Greece.
n(k) is the unknown noise for the measurements vector, u(k) the
control vector, d(k) the disturbances vector (casual gains, door
opening, people smoking, etc.) and xs is the set-point vector.

The system is then governed by the following equations:

� Nonlinear state equation: xðkþ 1Þ ¼ f ðxðkÞ;uðkÞ; dðkÞÞ.
� Measurements with noise: yðkÞ ¼ xðkÞ þ nðkÞ.
� Controller’s output: uðkÞ ¼ gðxs; yðkÞÞ.

More specifically the state vector is:

xðkÞ ¼ ½CO2inðkÞ RHinðkÞ TinðkÞ EinðkÞ «

CO2outðkÞRHoutðkÞToutðkÞEoutðkÞ�T ¼
h

xT
inðkÞ xT

outðkÞ
iT

(1)

where CO2in(k) is the indoor CO2 concentration (in ppm), RHin(k) is
the indoor relative humidity (%), Tin(k) is the indoor temperature
(�C), Ein(k) is the indoor illuminance (lx), CO2out(k) is the atmo-
spheric CO2 concentration (ppm), RHout(k) is the outdoor relative
humidity (%), Tout(k) is the outdoor temperature (�C) and Eout(k) is
the outdoor illuminance (lx).

The control vector is

uðkÞ ¼ ½WðkÞ LðkÞ SðkÞ ACðkÞ �T (2)

where S is shading output (0: fully closed, 1: fully opened, linear
output), W is window opening output ((0: fully closed, 1: fully
Table 1
The building’s characteristics.

Layera Material Depth (m)

Building’s envelope characteristics
External walls
1 Plaster board 0.013
2 Concrete block 0.035
3 Plaster board 0.013
Floor/roof
1 Concrete slab 0.030
Door
1 Iron 0.035
Windows: single glazed iron framed
1 Glass 0.003

Building services

Air conditioning Split type
Electric lighting Fluorescent lamps

a From internal layer to external.



Table 2
The sensors of the BEMS.

Parameter Manufacturer Range Resolution

Indoor illuminance Siemens 5WG1
252-4AB02 KNX/EIB

200 to 1900 lx 7.68 lx

Indoor Temperature Siemens 5WG1
256-4AB01

�25 to 70 �C 0.5 �C

Indoor air quality
(CO2 and TVOC)

Siemens QPA63.2 0 to 2000 ppm 20 ppm

Relative humidity Siemens QFA2000 0 to 100% 1%
Weather station

5WG1 257-3AB11
Raining detection
sensor

1: Precipitation
0: No precipitation

Luminance sensor 0 to 40,000 lx 156.24 lx
Outdoor temperature
sensor

�20 3u2þ 40 �C. 0.24 �C

Wind speed sensor 0 to 35 m/s 0.27 m/s
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opened, linear output)), AC is heating or cooling output (�1:
cooling, þ1: heating, 0:closed, Pulse Width Modulation (PWM)), L,
lighting output (%) (0: lights OFF, 100: lights ON, linear output).

The desired values (set point) state vector is

xs ¼
�

CO2sp RHsp Tsp Esp
�T (3)

where CO2sp is CO2 concentration set point, RHsp is relative
humidity set point, Tsp is temperature set point and Esp is illumi-
nance set point.
3.2. Model development and model identification

3.2.1. Model description
The buildings’ environmental variables are modeled using

a bilinear approach [14] described by the following equation:

xpðkþ 1Þ ¼ xpðkÞ þ l1$f1
�
uðkÞ; xpðkÞ; dðkÞ

�
þ/

þ lm$fm
�
uðkÞ; xpðkÞ; dðkÞ

�
(4)

where li ¼ l1.lm are the coefficients that correspond to the
specific building operation and are estimated during the system’s
identification procedure [15].

The bilinear model takes different forms for each environmental
variable as analyzed below.

3.2.1.1. Carbon dioxide concentration. The indoor carbon dioxide
concentration at time (kþ 1) is a linear function of the indoor
carbon dioxide concentration at time (k), the window opening at
time (k) and the outdoor concentration as described in the
following equation:

CO2inðkþ 1Þ ¼ CO2inðkÞ þ a1WðkÞ½CO2outðkÞ � CO2inðkÞ� (5)

where a1 is a constant to be estimated during model identification
procedure.

3.2.1.2. Relative humidity. Similarly the indoor relative humidity at
time (kþ 1) is expressed as a linear function of the indoor relative
humidity, the window opening, the air conditioning output and
finally the outdoor relative humidity RHout at time (k).

RHinðkþ1Þ¼RHinðkÞþb1WðkÞ½RHoutðkÞ�RHinðkÞ�þb2ACðkÞ (6)

where b1 and b2 are parameters to be estimated during model
identification procedure.

3.2.1.3. Indoor temperature. The indoor temperature at time (kþ 1)
is a linear function of the parameters comprising the following
equation, i.e., the indoor temperature, the window opening
position, the outdoor temperature and the air conditioning output
at time (k).

Tinðkþ 1Þ ¼ TinðkÞ þ g1WðkÞ½ToutðkÞ � TinðkÞ� þ g2ACðkÞ
þ g3½ToutðkÞ � TinðkÞ� (7)

where g1, g2 and g3 are parameters to be estimated during model
identification procedure.

3.2.1.4. Lighting level. Finally, the indoor illuminance at time (kþ 1)
is a function of outdoor illuminance, shading output and lighting
output at time (k).

Einðkþ 1Þ ¼ d1SðkÞEoutðkÞ þ d2LðkÞ þ d3EoutðkÞ (8)

where d1, d2 and d3 are parameters to be estimated during model
identification procedure.

Therefore, based on Eqs. (5)–(8), the system is described by the
bilinear model of the form:

xðkþ 1Þ ¼

266666666664

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1� g3 0 0 0 g3 0
0 0 0 0 0 0 0 d3
0 0 0 0 f1ðkÞ 0 0 0
0 0 0 0 0 f2ðkÞ 0 0
0 0 0 0 0 0 f3ðkÞ 0
0 0 0 0 0 0 0 f4ðkÞ

377777777775
xðkÞ

þ

266666666664

�a1 0 0 0 a1 0 0 0
0 �b1 0 0 0 b1 0 0
0 0 �g2 0 0 0 g2 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

377777777775
xðkÞWðkÞ

þ

266666666664

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

377777777775
xðkÞSðkÞ þ 0$xðkÞLðkÞ

þ 0$xðkÞACðkÞ þ

266666666664

0 0 0 0
0 0 0 b2
0 0 0 g1
0 d2 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

377777777775
uðkÞ

(9)

or

xðkþ 1Þ¼ AxðkÞ þ
X4

j¼1

GjxðkÞujðkÞþBuðkÞ (10)

The outdoor variables (measured or assumed constant) are
modeled by dummy equations of the form

xiþ4ðkþ 1Þ ¼ 4iðkÞ � xiþ4ðkÞ (11)

for i¼ 1, ., 4.



Table 3
The actuators of the BEMS.

Output Device Type No. of actuators
required

Lighting control Electronic ballasts for
the fluorescent lamps
of 18 W and 58 W

DALI 49

Digital Addressable
Lighting Interface

DALI interface 1

Windows control Shutter switch
N524 N561

Siemens 5WG1
524-1AB01 0–100%

1 with 4
different
outputs

Shading control

Air conditioning
control

Binary output N561 KNX/EIB 1
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3.2.2. Model identification
The identification procedure consists of the estimation of the li,

parameters of Eq. (1). The methodology used is the standard least
squares defined by Eq. (12) or (13):266664

xpð2Þ � xpð1Þ
xpð3Þ � xpð2Þ

«
xpðn� 1Þ � xpðn� 2Þ

xpðnÞ � xpðn� 1Þ

377775 ¼
266664

f1
�
uð1Þ; xpð1Þ

�
/ fm

�
uð1Þ; xpð1Þ

�
f1
�
uð2Þ; xpð2Þ

�
/ fm

�
uð2Þ; xpð2Þ

�
« 1 «

f1
�
uðn� 2Þ; xpðn� 2Þ

�
/ fm

�
uðn� 2Þ; xpðn� 2Þ

�
f1
�
uðn� 1Þ; xpðn� 1Þ

�
/ fm

�
uðn� 1Þ; xpðn� 1Þ

�

377775
24 l1

«
lm

35
(12)

or

x ¼ Fl (13)
Fig. 3. The energy management
where xp(k) are the predicted values. The least squares estimator is
defined by

bl ¼ �FTF
��1

FTx (14)

Based on Eq. (14) the next time step value xp(kþ 1) is predicted
given the present time step values xp(k), u(k) by

xpðkþ 1Þ ¼ xpðkÞ þ bl1f1
�
uðkÞ; xpðkÞ

�
þ/þ blmfm

�
uðkÞ; xpðkÞ

�
(15)

The least squares estimation is performed separately for each
actuator by putting the BEMS in continuous operation mode for at
least 48 h with sample time equal to 2 min. During the estimation
and identification process the actuators’ position is moving grad-
ually from its minimum to its maximum value with a 10% step in
order to cover the overall range in the first 24 h. This procedure is
repeated for the next 24 h. At the end, each actuator is interrelated
to the four environmental variables.

The least squares estimation is also tested under various climatic
conditions providing similar outputs.

In the following paragraphs the model identification procedure
is presented for each environmental variable.
3.2.2.1. Carbon dioxide concentration. Before estimating the rele-
vant constants in the CO2 equation the outdoor carbon dioxide
concentration must be estimated. Due to lack of an extra CO2

sensor, the indoor CO2 sensor was positioned outdoors for a 10-day
period. During this period the outdoor CO2 measurements fluctu-
ated between 475 and 520 ppm with an average almost equal to
497 ppm. Consequently the outdoor CO2 concentration can be
considered constant and equal to the average value. The model
extracted is presented by Eq. (15). The predicted values follow
closely the real ones as depicted in Fig. 5.
system installation layout.



Fig. 4. The control system’s block diagram.
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The R2 is equal to 0.466, while the root mean square error
(RMSE) is equal to 4.658 ppm.

CO2inðkþ 1Þ ¼ CO2inðkÞ þ 0:215WðkÞ½497� CO2inðkÞ� (16)

3.2.2.2. Lighting level. The illuminance model is described by Eq.
(16). The model identification is performed separately for the
electric lighting regulation and shading regulation. The model
identification for electric lighting regulation and for shading
regulation only is depicted in Fig. 6 and Fig. 7, respectively. The R2

between the real and predicted measurements is equal to 0.9026,
while the RMSE is between 60 and 67 lx.

Einðkþ1Þ¼0:0033$SðkÞ$EoutðkÞþ4:05LðkÞþ0:008$EoutðkÞ (17)
Fig. 5. The carbon
3.2.2.3. Indoor temperature. The indoor temperature model is
described for the specific building characteristics by the following
equation:

Tinðkþ 1Þ ¼ TinðkÞ þ 0:0029$WðkÞ½ToutðkÞ � TinðkÞ�
þ 0:0756$ACðkÞ þ 0:0039½ToutðkÞ � TinðkÞ� (18)

Fig. 8 illustrates the real and predicted temperature values for
closed windows and air conditioning system operation only, while
Fig. 9 depicts the real and predicted temperature for closed air
conditioning systems and windows regulation only. The R2

between the real and predicted measurements is equal to 0.9981,
while the RMSE is 0.18 �C.
dioxide model.



Fig. 6. The lighting model with closed shading devices.

Fig. 7. The lighting model with closed electric lighting.
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Fig. 8. The temperature model with closed windows.

Fig. 9. The temperature model with closed air conditioning system.
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3.2.2.4. Relative humidity. The humidity identification model is
represented by Eq. (18) and the relevant graphs are Fig. 10 and
Fig. 11, respectively.

RHinðkþ 1Þ ¼ RHinðkÞ þ 0:0077$WðkÞ½RHoutðkÞ � HuminðkÞ�
þ 0:0747$ACðkÞ

(19)
The R2 between the real and predicted measurements is equal to

0.9947 and the RMSE is 0.39.
In all graphs we can see that the predicted values follow closely

the real values. Therefore the identification procedure for the
bilinear model can be considered quite accurate.
4. Controller design and development

The controller is designed to minimize a performance index J(k),
which aims to keep the environmental variables as close as possible
to the defined set points xs and simultaneously minimize the
energy consumption. J(k) is defined as

JðkÞ ¼ kxinðkþ 1Þ � xsk2
QþkuðkÞk

2
R (20)

where Q and R are weight matrices corresponding to the proximity
of the set points and the actuators’ electric energy cost, respec-
tively [14].

The J(k) index can be estimated after a series of N sample times
where each sample time is set equal to 2 min. Therefore the
objective is to

min
u˛U

J ¼ kxinðkþ NÞ � xsk2
QþkuðkÞk

2
R (21)
Fig. 10. The humidity mode
The following assumptions are made:
� The control values remain constant for the prediction horizon,
u(k)¼ u(kþ 1)¼/¼ u(kþN).
� The external disturbances future values are assumed constant

and equal to their last measured values, i.e.,
xoutðkÞ ¼ xoutðkþ 1Þ ¼ / ¼ xoutðkþ NÞ ¼ ~xoutðkÞ.
� The actuators for the shading devices (S) and window opening

(W) do not include ‘‘energy costs’’ and therefore receive zero
weight in matrix R.
� The lighting actuator (L) can influence only the state of lighting

and consequently can be minimized independently.

As a result the weight matrices are defined as

Q ¼ a$diag½ q1 q2 q3 q4 � (22)

R ¼ ð1� aÞ$diag½ r1 r2 r3 r4 � (23)

where a, qi¼ q1, q2, q3, q4 and ri¼ r1, r2, r3, r4 are selected based on
trial and error in order to reflect the differences between the scales
of the environmental variables as well as to establish a balance
between a variable’s value and the corresponding control cost.

Moreover the control space U is discretized to simplify the
minimization procedure. The discrete space is the following:

Ud;W ¼ f0;0:1;0:2;.;1g for window opening output;
Ud;L ¼ f0;10;20;.;100g for electric lighting output;
Ud;S ¼ f0;0:1;0:2;.;1g for shading output; and
Ud;AC ¼ f�1;�0:9;.0;0:1;0:2;.;1g for air conditioning
output.
l with closed windows.



Fig. 11. The humidity model with closed air conditioning system.

Table 5
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4.1. Controller design parameters

4.1.1. Set points
The set points for the environmental variables are based on the

international literature and are summarized in Table 4.
More specifically for the indoor air quality, CO2 concentration

levels above 1000 ppm create unhealthy environment for the
occupants based on standards and guidelines [16,17]. Moreover the
National Institute for Occupational Safety and Health (NIOSH)
indicates that CO2 concentration levels above 1000 ppm indicate
poor ventilation rates [18]. Following the above analysis the set
point is set equal to 600 ppm with a 100 ppm dead band.

Based on the ASHRAE standard 55.2004 [19] for thermal
comfort, the set point for relative humidity is equal to 50% with
a 10% dead band.

The indoor temperature set point depends upon the climatic
conditions and has a seasonal variation based on EN 15251 [20] (see
Table 4).

The indoor illuminance level according to the standard 1926.56
of the Occupational Safety & Health Administration (OSHA) should
be at least 300 lx [21]. In the laboratory a 350 lx set point is
selected.
Table 4
The environmental parameters set points.

Environmental parameter Set points

Indoor temperature WINTER Tsp SUMMER Tsp

21 �C 26 �C
Relative humidity 50%
CO2 concentration 600 ppm
Illuminance 350 lx
Therefore the set-point vector is

xs ¼
�

600 50 Tsp 350
�

(24)

4.1.2. The prediction horizon
After trial and error the prediction horizon is set equal to N¼ 5

samples. This is decided in order not to move away from the
present realistic conditions for the external disturbances and also
not to limit the prediction margin.

4.1.3. The Q and R weight matrices
As mentioned in the previous sections, the Q matrix refers to the

set points’ proximity. The weight values are selected in order to
achieve normalization between the environmental variables.
Normalization is performed by dividing the maximum value from
the set-point vector with the set point for each variable.

This leads to

wCO2
¼ 600=600 ¼ 1;wRH ¼ 600=50 ¼ 12;wTin

¼ 600=25

¼ 24
The Q matrix weights.

Environmental parameter Weights

Indoor temperature
wTin

¼
(

0 if 21 �C � Tin < 26 �C
20 if Tin � 26 �C or Tin < 21 �C

)

Relative humidity wRH ¼
(

0 if 40% � RHin � 60%
12 if RHin < 40% or RHin > 60%

)

CO2 concentration wCO2
¼
(

0 if CO2;in < 600 ppm
1 if CO2;in � 600 ppm

)
0

Illuminance 1



Fig. 12. The user interface.
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Indoor temperature weight is evaluated by dividing by 25 �C,
which represents the average outdoor temperature conditions. The
lighting levels are minimized independently and the weight
selected is equal to 1,

WE ¼ 1

For the external disturbances we put

wCO2;ext ¼ 0;wRH;ext ¼ 0;wT;ext ¼ 0;wE;ext ¼ 0

The weights are set according to the variables’ values measured as
tabulated in Table 5.

For instance if the carbon dioxide concentration is lower than
600 ppm then the system should not act in order to reach the set
point and therefore the Q matrix weight is set equal to 0. The same
applies if the measured relative humidity is between 40 and 60%
and if the indoor temperature is between 21 and 26 �C.

Therefore the Q matrix is set as

Q ¼ a$diag½ q1 q2 q3 q4 � ¼ a$diag
�

wCO2
wRH wTin

1
�

(25)
The R matrix expresses the electricity cost for the actuators’ oper-
ation. The windows and shading operation cost is almost zero
compared to the air conditioning operation cost. Consequently,
r1¼ r3¼ 0 for the R matrix. The weighting for the air conditioning
system is set equal to 8 to express its large contribution to the
energy cost. The weighting for the lights is equal to 1. Following the
above, R is expressed as follows:

R ¼ ð1� aÞ$diag½ r1 r2 r3 r4 �
¼ ð1� aÞ$diag½ 0 1 0 8 � (26)

Finally we select a¼ 0.5 since the two minimization matrices Q and
R are equally important.
4.1.4. Sample time
Although in the initial design phase the sample time was 2 min,

the final sample time selected is 10 min to avoid fatigue especially
for the air conditioning system due to continuous opening and
closing.
5. The system–user interface

The role of building users is very critical for the system’s
performance nowadays where the shifting towards passive
sustainable buildings instead of tight controlled air conditioned



Fig. 13. Carbon dioxide measurements.

Fig. 14. Relative humidity measurements.
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Fig. 15. Temperature measurements.
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buildings requires more active users with higher comfort expec-
tations [22]. Moreover users demand control of their environment.
Therefore a graphical environment and a system–user interface
application are considered necessary.

Fig. 12 illustrates the graphical environment of the proposed
predictive building energy management system. The graphical
environment includes (a) the start/stop button; (b) the sensors’
current values; (c) the actuators position; (d) the set-point bars and
finally the button to extract 24 h graphs.

The interface is used by the user to perform the following
operations:
Fig. 16. Illuminance
0 To set the system on or off.

2 To change the set points according to users’ comfort require-
ments by using the roller bar.

2 To monitor the indoor environmental conditions.
2 To change the actuators’ position manually when needed (for

example in case of a presentation).

The graphical user interface provides the capability to the user
to interact with BEMS. Also the user can overcome the BEMS
operation according to his/her needs.
measurements.
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6. Experimental results analysis and discussion

The overall system was tested for various periods. The sample
time measurements were 10 min to coincide with the operational
period of the predictive controller. The measurements were stored
in specific files and were also used for the state vector of the
controller (Eq. (1)). Although the results are discrete, they are
presented in a continuous format for visualization purposes.

The experimental analysis presented below is performed
between 11 January 2008 and 14 January 2008 for an overall period
of 3900 min or 65 h. It should be noted that a time programming is
also applied to set the system off each night between 20:00 and
8:00.

The carbon dioxide measurements while the predictive
controller was operating are presented in Fig. 13. The upper graph
includes the CO2 set point, the real measurements of the sensors
and the predicted values by the bilinear model. The lower graph
indicates the actuators’ (window) position. In the bottom of each
graph an on/off diagram illustrates the time periods that the system
was operating (using the START/STOP button of the graphical user
interface). As we can see in Fig. 13 the real measurements coincide
with the predicted ones while there is no presence in the lab. When
students enter the lab the systems react immediately and open the
windows to reduce the carbon dioxide concentration.

For the humidity measurements (Fig. 14) four graphs are illus-
trated. The first upper graph incorporates the indoor measure-
ments, the predicted values by the bilinear model and the set point.
The 40–60% window is defined by the dashed lines. The second
graph illustrates the window positions while the third one repre-
sents the air conditioning operation positions. Finally the fourth
graph indicates the outdoor relative humidity measurements. The
relative humidity is always between the respected margins as
illustrated in Fig. 14.

When the system is in operation the indoor temperature is
within the acceptable margins. The windows are kept closed due to
the external climatic conditions and are opened for ventilation
purposes only (Fig. 15).

Temperature measurements are also presented in four graphs
(Fig. 15) with the same logic as for the relative humidity
measurements. Finally the lighting levels are depicted in Fig. 16.
The four graphs of Fig. 16 correspond to the illuminance
measurements, shading outputs, lighting outputs and outdoor
lighting levels, respectively.

Finally the indoor illuminance is kept close to the desired set
point with fluctuations that attributed to the external illuminance
and are not considered important for the visual comfort.
Fig. 17. Users’ comfort assessment.
In all graphs the x-axis represents the time period of the sys-
tem’s operation. In each figure there is a graph at the bottom which
indicates the periods that the system is operating ((ON(1) – blue
color) or not (OFF(0))).

The BEMS is operating continuously since December 2007 in
order to test it under different climatic conditions. The model
identification procedure does not show any seasonal variation.
Therefore the models extracted can be used under any climatic
conditions.

Another significant issue is the occupants’ perception of comfort
while the BEMS is in operation. The indoor comfort conditions were
assessed during summer 2008 using a questionnaire. The users’
perception on indoor thermal comfort is illustrated in Fig. 17 where
the majority of the students found the indoor environmental
conditions quite satisfactory.

7. Conclusions and future prospects

The present BEMS supported by a model-based predictive
controller follows the initial design specifications and objectives.
The system’s response to the environmental variables’ fluctuations
is fast and stable.

Considerable variations between the predicted and the real
values are observed for the carbon dioxide concentration. This can
be attributed to the fact that the window opening is small in
comparison with to the building’s volume and cannot contribute
significantly to regulate the people’s contribution and disturbances
satisfactorily. The CO2 concentration though is kept close to the
requested set point.

Finally the controller’s performance is quite satisfactory and
selects the optimum solutions based on the energy consumption
and the set-point proximity by satisfying the performance index J. It
remains to future investigations to expand the performance index J
to include indoor comfort requirements and improve the predictive
control algorithm using different prediction techniques.
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Karatasou S, Kim J, Santamouris M, Strachan PA. The role of simulation in
support of Internet-based energy services. Energy and Buildings
2004;36(8):837–46.

[7] Doukas H, Patlitzianas KD, Iatropoulos K, Psarras J. Intelligent building energy
management system using rule sets. Building and Environment
2007;42(10):3562–9.
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