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Abstract

This paper is the second part of a two-part investigation of a novel approach to optimally control commercial building passive and active

thermal storage inventory. The proposed building control approach is based on simulated reinforcement learning, which is a hybrid control

scheme that combines features of model-based optimal control and model-free learning control. An experimental study was carried out to

analyze the performance of a hybrid controller installed in a full-scale laboratory facility. The first paper introduced the theoretical foundation

of this investigation including the fundamental theory of reinforcement learning control. This companion paper presents a discussion and

analysis of the experiment results. The results confirm the feasibility of the proposed control approach. Operating cost savings were attained

with the proposed control approach compared with conventional building control; however, the savings are lower than for the case of model-

based predictive optimal control As for the case of model-based predictive control, the performance of the hybrid controller is largely affected

by the quality of the training model, and extensive real-time learning is required for the learning controller to eliminate any false cues it

receives during the initial training period. Nevertheless, compared with standard reinforcement learning, the proposed hybrid controller is

much more readily implemented in a commercial building.

# 2005 Elsevier B.V. All rights reserved.

Keywords: Load shifting; Thermal Energy Storage (TES); Optimal control; Learning control; Reinforcement learning

www.elsevier.com/locate/enbuild

Energy and Buildings 38 (2006) 148–161
1. Introduction

As the first part of the report of this research, the

companion paper [1] has presented a brief introduction to the

general background of this project. The fundamental theory

of classic reinforcement learning and its variation, simulated

reinforcement learning has been introduced. The hybrid

learning controller was developed based on the architecture

of simulated reinforcement learning. In order to validate the

feasibility and evaluate the performance of the hybrid

control approach, an experiment was conducted at a full-
DOI of original article: 10.1016/j.enbuild.2005.06.002.

* Corresponding author.

E-mail addresses: sliu@mail.unomaha.edu (S. Liu),

ghenze@unl.edu (G.P. Henze).

URL: http://www.ae.unomaha.edu/ghenze

0378-7788/$ – see front matter # 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.enbuild.2005.06.001
scale laboratory facility called Energy Resource Station

(ERS) at the Iowa Energy Center in Ankeny, IA. A detailed

discussion and analysis of the experiment and its results are

presented in the following sections.
2. Description of experimental study

2.1. Introduction to the experimental facility

The experiment was carried out in the Energy Resource

Station, operated by the Iowa Energy Center (IEC). The ERS

is a unique demonstration and test facility, where laboratory-

testing capabilities are combined with real building

characteristics. The ERS is capable of simultaneously

testing two full-scale commercial building systems side-by-

side with identical thermal loading. The ERS building, a
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single-story structure with a concrete slab-on-grade, has a

height of 4.6 m and a total floor area of 855 m2. The building

is divided into a general area (office space, service rooms,

media center, two classrooms, etc.), and two sets of identical

test rooms, labeled A and B, adjacent to the general area. The

eight test rooms are organized in pairs with three sets of

zones having one exterior wall (east, south, and west) and

one set that is internal. Fig. 1 presents a layout of the ERS

including the four sets of identical test rooms used for the

experiment.
Fig. 1. Layout of the test facility at the Energ
The test facility has a central heating plant, consisting of a

natural gas-fired boiler, and a cooling plantwith three nominal

35 kW air-cooled chillers that operate in both chilled-water

and ice-making modes. The chilled-water loop is filled with

22%propyleneglycolwater solution. In addition, the building

includes a 440 kW h internal melt ice-on-tube thermal energy

storage tank aswell as pumps and auxiliary equipment needed

to provide cooling. Hence, several modes of operation

between these sources of cooling are possible in order to

supply chilled-water to the air-handling units (AHUs).
y Resource Station (ERS), Ankeny, IA.
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Table 2

State and action space configuration for the simulated learning phase

Simulation cases g a Action-selection

algorithm

Training

period (day)

e-Greedy Softmax, t

1 0.65 0.15 0.10 – 4000–6000

2 0.65 0.05 – 0.8 3000

3 0.65 0.05! 0 – 0.6 3000
A primary–secondary flow arrangement, with dedicated

constant-volume chiller pumps and secondary variable-flow

distribution pumps in the AHU loop using variable-frequency

drive (VFD) control, is installed in theERS. SecondaryHVAC

systems include three AHUs that condition the building; test

rooms A and B are served by two identical single-duct

variable air volume (VAV) units with reheat AHU systems A

and B, and the general area is served by a similar but larger

AHU-1. An overhead air-distribution system utilizing

pressure-independent VAV boxes supplies air to each test

room using hydronic or three-stage electrical resistance

reheat. Finally, there is an on-site weather station that

measures outdoor air dry-bulb temperature, relative humidity,

wind speed and direction, atmospheric pressure, total normal

incidence solar flux, and global horizontal solar flux.

The ERS is not a particularly good candidate for the use

of building thermal mass as documented by Braun [2] due to

three reasons:
� I
Ta

Sta

Sta

Ac
t is a lightweight single-story structure with a high

exterior surface area-to-volume ratio.
� S
ignificant thermal coupling with the ground, the ambient

environment and the zones adjacent to the test rooms is

present.
� T
he test zones are not equipped with a representative

amount of furniture, and the floor is carpeted, which

reduces thermal coupling to the massive structure.

2.2. Hybrid control phase I: simulated learning

A training model of the ERS facility was developed in the

Matlab/Simulink computing environment to model the

dynamic thermal response of the building and energy

consumption of the HVAC system. The model was

calibrated using the experimental data previously obtained

in the model-based predictive optimal control experiment.

The Q-learning algorithm was applied to train the

learning controller. The configuration of state and action

space, and Q-table, representing the evaluative information

on the state–action pairs, was set up as depicted in Table 1.

As previous analysis by [3,4] revealed, the training

procedure is strongly affected by the selection of learning

parameters a and g. A literature review shows that there is no

general rule that can be applied to identify the optimal

learning parameters. However, previous parametric analyses
ble 1

te and action space configuration for multi-task scenario

Variable name Dimension Value range

te space Building modes 3, 6 1–3, 1–6

State-of-charge 10 0.0–1.0

tion space Global zone air 10 20–24 8C on-peak

Temperature setpoint 15–30 8C off-peak

TES charging–

discharging rate

20 mmin � mmax
can provide a rule-of-thumb to initiate the learning and

training processes.

Time constraints did not allow us to carry out an extensive

parametric analysis to identify the optimal learning

parameters. The Q-table was initiated with zero for entries,

and then trained sequentially by different sets of learning

parameters. Three simulation cases primarily contributed to

the final formation of the Q-table. Table 2 lists the selected

learning parameters.

As Table 2 shows, the controller starts with a higher

learning rate. The selection of the e-greedy exploration

algorithmcanmake the controller exploremore evenly among

all the available actions. The second simulation then starts

with the previously trained Q-table, the learning rate

decreases and the softmax algorithm is applied with a higher

temperature. The third case is similar to the second case;

however, a dynamic learning rate,which exponentially decays

with training time, and a lower temperature are applied.

2.3. Hybrid control phase II: implemented learning

With the experience or knowledge from the simulated

training phase, the controller was implemented at the ERS

test facility. Control programs were developed for the

learning controller to govern the operation of the test facility

by the reinforcement learning algorithm. The control

sequence of the learning controller can be seen in Fig. 2.

All of the control programs were developed in Matlab, and

the overall structure is depicted in Fig. 2.

As shown in Fig. 2, a main supervisory control program

initiated the learning parameters and governed the control
Fig. 2. Control programs for the experiment.
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sequence. The control commands were issued hourly. The

following three major routines were called sequentially each

hour:
(1) R
einforcement learning control: At the beginning of

each hour, the control action was selected by the

learning agent. It used the softmax exploration

algorithm to select an action according to the current

knowledge base of the learning controller. The knowl-

edge is contained in the form of a state–action pair

lookup table, which was previously trained.
(2) P
ost-processing program: The control strategy was then

interpreted by a post-processing program, which was

responsible for: (a) setting up the communication

channel with the ERS and (b) sending the post-

processed command to the BAS.
(3) B
uilding feedback: This program monitored the power

consumption of the HVAC system including the chillers,

pumps, and AHU fans. At the end of each hour, the

monitored power consumption was summarized and the

current hourly cost was then calculated. This informa-

tion was used to update the knowledge base of the

learning controller.
Table 3

Learning parameters for the experiment

Hybrid control phase g a Action-selection

algorithm

e-Greedy Softmax, t

Simulated learning 0.65 0.05! 0 – 0.6

Implemented learning 0.65 0.01 – 0.1
3. Analysis of experimental results

The experimentation was carried out from September 6 to

16, 2004 covering two experimental cases. In the first case, the

learning controller operated hourly, and in the secondcase, the

controller ran in 30 min intervals. It was expected that the

learning controller would evolve faster with higher sampling

frequency.However, due to physical limitations of the cooling

plant, operation at a 30 min frequency caused the plant to have

problems for executing the action selected by the controller.

Transitions between different operating modes made it

difficult to operate stably within a 30 min period. As a result,

the action selected by the controller could not be executed

fully, and the state transition was not accomplished as

intended. On the other hand, this effect did not significantly

influence theoverall performanceof thehourly case, since this

frequency was acceptable for plant operation. For this reason,

the discussion of experimentmainly focuses on the analysis of

data for the hourly case. It should be noted that the limited

experimentation time did not allow for the effect of learning

control to be clearly observed, but it still allows for the

evaluation of reinforcement learning control in terms of

feasibility, robustness, and adaptiveness.

3.1. Experimental data analysis

The experiments carried out can be considered as the

second phase of the hybrid control scheme, i.e., the

implemented learning phase. In this phase, the learning

parameter settings were different from the ones used in the

simulated learning phase due to the following reasons:
(1) T
he learning controller had been trained in the simulated

learning phase. Even though the controller was not

expected to work truly optimally, it would have found

the fundamentally correct action patterns through

training by the simulator. As the parametric analysis

showed, the learning rate should decrease over time. As

a consequence, smaller learning rate is expected to be

applied in the implemented learning phase.
(2) I
n the ERS field implementation, the objective of the

implemented learning phase was not only to guide the

learning controller to find the optimal policy, but also to

let the learning controller take control of the overall

building to save operating costs. To meet this objective,

the learning controller was encouraged to select the

action that would bring the highest cost savings most of

the time. This is referred to as the greedy policy in our

previous discussion. The greedy policy is achieved

either by using lower e in e-greedy exploration method,

or by choosing lower temperature t value in the softmax

method. Both methods encourage the controller to take

the greedy policy most of the time but to periodically

select exploratory actions.
The learning parameters for the simulated learning phase

were shown in Table 2. Table 3 compares the learning

parameters applied in the experiment and simulation

training for the last case, which refers to case 3 in Table 2.

As shown in Table 3, both the learning rate, a, and

softmax exploration parameter, t, are reduced compared

with the value used in the simulated learning phase. By

doing so, the learning controller is expected to prefer the

greedy policy during most of the experiment time. The first

experiment case ran from midnight September 6 to midnight

12, 2004. Fig. 3 depicts the ambient conditions during the

experiment.

Fig. 4 depicts the profiles of the zone air temperature

setpoint, one of the two control actions of the learning

controller, and the measured room air temperature, which is

taken as the hourly average value of all eight test rooms.

From Fig. 4, we can see that the actual room temperature

follows the setpoint profile in general, which implies the

action was well executed by the plant As shown in Fig. 3, the

weather during the test was not a typical late summer

condition, but cooler than expected, especially, from

September 7 to 9. For this reason, the room temperature

did not float up much during the off-peak period even though

the controller chose a setpoint of 30 8C. The setpoint at the
on-peak period, which is also the occupied period, was
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Fig. 3. Ambient conditions during first experiment.

Fig. 4. Test room temperature profiles.
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around the upper bound of the feasible range, which is

24 8C. The controller set the setpoint as low as 19–22 8C
from midnight until the onset of the on-peak period. This

shows that the controller found the benefit of utilizing the

passive thermal storage by precooling the building with the

knowledge from the simulation training. As mentioned

earlier, the ERS test facility is not a good candidate for

demonstrating the effect of passive thermal storage, which

was also revealed by the experiment with model-based

predictive optimal control the previous year [5]. As observed

in the simulated learning phase, even though the controller

had realized the merit of precooling, it was still hard for the

controller to identify the truly optimal action. For this

reason, the setpoint profile was not smooth during the early-

morning off-peak period. After the on-peak period but

before midnight, the controller decided to let the setpoint

float because precooling would not be effective this many

hours before the next on-peak period.

Fig. 5 depicts the action profiles of the TES system and

the resultant state-of-charge. It can be observed that the TES

is cyclically charged in the off-peak period and discharged

during the on-peak period as expected. It should be pointed

out that there are modifications that were made to the

configuration of the action space during the experiment. The

upper bound umax of the charge rate during the on-peak

period and the lower bound of the discharge rate umin during

the off-peak period were set to zero. By doing so, action for

the TES was restricted to charging in the off-peak period,
Fig. 5. TES action and sta
and discharging during the on-peak period. The modification

was made with two considerations in mind. One is that such

operation is almost common sense for TES operation, and

can be considered as a priori knowledge for the controller,

before it is implemented in the real application. In the

previously conducted simulation analysis, the learning

controller did find the charging–discharging cyclical

operation pattern given enough training time. The other

reason is relative to the plant operation in the ERS.

Switching modes between charging and discharging

involves complicated valve operations in the piping system.

Immediately after switching modes, the cooling coil load

may not be met due to the fact that chilled-water temperature

cannot immediately be maintained at the desired setpoint.

Since the learning controller is operated hourly, the original

action space would allow the plant to oscillate between

charging and discharging, especially when the plant is not

operating according to the greedy policy but is exploring the

benefit of unseen actions. This could lead to the room

temperature not being maintained, and potentially damage

the system because of the frequent changes in the operation

mode. Furthermore, the learning controller in the imple-

mented learning phase is supposed to be trained with

previous experience. It would not make sense to allow the

controller to make ice in the occupied and on-peak period

when we know this is not a good choice.

Fig. 5 also indicates that the TES is only partially utilized.

The state-of-charge is only charged to <50%, and the main
te-of-charge profiles.
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chiller still needs to be turned on to meet the load even

though TES inventory is available. This indicates that the

learning controller did not fully discover the benefit of

utilizing the TES system. However, manually calculating the

cumulative charging rate of the TES shows that the state-of-

charge should be higher than the measured value. In fact, this

phenomenon was also observed in the predictive optimal

control experiment in 2003, where approximately, 13%

charging load was not deposited into the TES due to heat

loss. The same effect was found in the hybrid control

approach experiment. Besides, heat loss, there is another

reason that contributes to the ineffectiveness in the TES

charging mode. In the off-peak period, there are two

operational modes most often invoked by the learning

controller: charging the TES and dormancy of the HVAC

plant. According to ERS historical data, the TES can be

charged up to 70% overnight if there are no interruptions.

However, the controller may switch the plant operation

mode between charging and dormant because the learning

controller runs hourly. During the transition mode, the

chilled-water cannot immediately reach the desired setpoint,

which is about �5 8C. As a result, the chiller needs to be

cooled down to effectively charge the TES every time the

mode is changed. This effect cannot be neglected when there

are many operating mode changes.

Even though the learning controller did not fully utilize

the TES due to the reasons provided above, the control

strategy is still reasonable because the controller did find the

right control action pattern. Comparison of the entries of the
Fig. 6. Cooling load profiles of m
Q-table before and after the experiment shows that the 5-day

operation is not enough to change the values much because

of the limited test time and the low learning rate.

3.2. Calibration of the training model

Another important concern is whether the model used in

the simulated learning phasematches the actual environment.

Even though the calibration procedure was carried out before

the experiment, it is still necessary to evaluate the accuracy of

the training model as it determines the pre-trained experience

of the controller. Fig. 6 compares the measured cooling load

during the test days and the simulated load that uses the actual

weather condition, recorded zone air temperature setpoint,

and TES charging–discharging rate during the experiment.

It can be seen that there are deviations between the two

profiles, but the simulated cooling load fundamentally

captures the trend of the measured data, and the agreement is

considered acceptable. However, in the simulated learning

phase, the TES is modeled as a simple ideal thermal storage

system. The ineffective TES chargingmode and the heat loss

due to the poor insulation of the ice tank had not been

considered, and as a result, drastic deviations were found

between the measured TES inventory, and the simulated one.

In addition, the actual discharging rate was higher than the

simulated value due to heat loss through the ice tank

insulation.

The simulated learning phase serves in the role of a

teacher who is responsible for offering the student, which in
easured and simulated data.
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Table 4

Calibration of training model

Parameters F1 F2

Calibration of state-of-charge (SOC)

Initial value 1.00 1.00

Calibrated value 0.62 1.28

Parameters hfan hpump COPchw COPpre COPice

Calibration of power data

Initial value 0.85 0.85 2.1 3.4 2.4

Calibrated value 0.65 0.8 2.4 2.9 2.8
our case, is the learning controller, fundamental process

knowledge before the student is exposed to the actual

environment. An obvious question is how the mismatch of

the training model affects this knowledge and consequent

control actions. In order to answer this question, the training

model needs to be calibrated, and the simulated learning

phase should be repeated using the refined model. The

model will also be used to evaluate the performance of the

learning controller by comparing it with other control

strategies. It is not possible to carry out the comparison of

these control strategies in the actual facility due to lack of

available testing time and inability to replicate exact weather

conditions. Therefore, the training model should be

calibrated as close as possible to the actual HVAC plant.

The model was calibrated through system identification

[6]. Two calibration procedures were carried out consecu-

tively. The first one aimed at minimizing the deviation of the

state-of-charge profiles between simulated and measured

values. Two correction factorswere introduced to reflect these

factors contributing to the loss of state-of-charge. One

correction factor is a discount factor F1 2 (0, 1] that was

applied in the charging process. In themodel-based predictive

optimal control experiment [5], about 12% charging load was

lost due to heat losses, which implies that F1 = 0.88. This

valuewasused as the initial value in our calibration procedure.

The second factor is an amplification parameter F2 > 1,

which was applied in the discharging process. It is not

necessarily the reciprocal of F1 because other factors may
Fig. 7. State-of-charge profiles
contribute to the ineffectiveness of heat transfer as explained

in the last section. The second calibration is intended to

improve the match of the HVAC plant power profiles, and the

calibrated parameters are the equipment efficiencies for

pumps, fans, and chillers. Table 4 lists the initial and

calibrated parameter values for the calibration procedures.

In Table 4, hfan and hpump stand for the motor efficiency of

the circulation fans and pumps; COPchw and COPice indicate

the COP for the main chiller in chilled-water making mode

and ice-making mode. COPpre is the efficiency of the

additional precooling chiller that is responsible for the pre-

cooling load when the main chiller is not available. Figs. 7

and 8 present the state-of-charge profiles and power

consumption profiles of the plant with the calibrated model.

It can be seen from both Figs. 7 and 8 that better

agreement between the measured and simulated data was
of the calibrated model.
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Fig. 8. Power profiles of the calibrated model.
achieved through the calibration process. The discount

factor F1 is lower than the value calculated in the experiment

of the model-based predictive optimal control approach. The

power-data deviation is mainly attributed to the incorrect

initial efficiency values for fans and pumps, which are higher

than the calibrated values.

The COP value of the new chiller is lower than previously

assumed, and the calibration confirmed the idiosyncratic fact

that the main chiller operation in the ice-making mode was

more energy efficient than in the chilled-water mode, which

was also revealed in [5].

3.3. Performance evaluation

With the calibrated model, the performance of the

controller can be evaluated from the perspective of cost

savings. The hybrid controller is compared with the

following five control strategies:
� B
ase case: This case stands for the simplest but most

costly scenario, in which neither active nor passive

thermal storage is considered. The zone air temperature is

controlled by nighttime setback control.
� S
torage-priority with night setback: This case stands for

the situation that utilizes the active thermal storage only

using storage-priority strategy. Standard chiller-priority is

not discussed because the main chiller is sized to meet the

entire load. The zone air temperature is controlled by

nighttime setback control, like the base case.
� O
ptimal control of passive thermal storage only: In this

case, no active TES system is considered, but the building

is controlled with optimized zone air temperature

setpoints that are found by model-based optimization.
� O
ptimal control of passive thermal storage with storage-

priority: This case considers both thermal storage media.

The building is controlled with the optimized zone air

temperature setpoints, which are found by model-based

optimization, and storage-priority is used to control the

active thermal storage.
� M
odel-based optimization of active and passive thermal

storage: By using the recorded actual weather condition

and the calibrated model, model-based optimization can

be carried out assuming no mismatch in modeling and

weather prediction. This is considered to be the true

optimal control strategy, and is supposed to have the

maximum cost savings among all cases.

Table 5 summarizes the plant operating cost and savings

for the investigated cases. Case 6 uses the measured data

from 13:00 p.m. on September 7 to 9:00 a.m. on September

12, 2004, which is the execution period of the first

experiment hybrid control. All other cases are carried out

using the calibrated model, and the recorded actual weather

conditions are used for the same time period. As mentioned

earlier, the ERS test facility is not a good candidate for

demonstrating the effect of passive thermal storage. In our

analysis, utilizing the passive thermal storage only yields

6.7% cost savings. Storage-priority control is able to meet all
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Table 5

Comparison of costs and savings of hybrid control strategy with other cases

No. Case Cost ($) Saving (%)

1 Base case 102 –

2 Active thermal storage only (storage-priority control) 92 9.8

3 Passive thermal storage only (optimized Tsp) 95.1 6.7

4 Active and passive thermal storage (storage-priority control with optimized Tsp) 86.6 15

5 Active and passive thermal storage (model-based optimization) 68 34

6 Measured hybrid learning control 93.5 8.3

7 Simulated hybrid learning control 91.9 9.9
the on-peak cooling load only with the TES, the savings are

reduced by excessive charging and the ice-making COP is

not particularly favorable. As expected, case 5 of model-

based optimization offers the highest savings by accurately

and judiciously using both active and passive thermal

storage media. However, these savings can only can be

achieved when the model and prediction is perfect. Case 4

also provides better cost savings compared with utilizing

either passive or active thermal storage only, but the TES is

still overcharged. It can be seen that even though the

model is calibrated, the simulated operating costs (case 7)

are still not identical with the measured value. Both achieve

cost savings between the best cases (cases 4 and 5) and

the worst cases (cases 1 and 2). They provide unimpressive

but reasonable cost savings because both active and
Fig. 9. Learning of Tsp with ca
passive thermal storage inventory have been only partially

utilized.

3.4. Refined simulation analysis

The performance analysis in the last section shows that

the hybrid controller did bring about cost savings compared

with the base case. However, the simulation studies, where

different control strategies were applied to the calibrated

model also revealed that there is a greater savings potential

that the learning controller did not fully realize. Since

limited experimental time did not allow the controller to

explore further, a simulation study was carried out using the

calibrated model in order to further analyze the hybrid

control approach. The simulated learning phase was
librated training model.
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Table 6

Comparison of optimization case 1 with experiment

Case Cumulative charge rate Cumulative discharge rate Cost ($) Savings (%)

Actual experiment 1.82 �1.32 93.5 8.3

Simulated experiment 1.93 �1.47 91.9 9.9

Simulated experiment with calibrated model 2.38 �1.85 89.6 12.1
repeated to re-train the learning controller with the

calibrated training model. The controller was then imple-

mented in the simulation environment to repeat the

experiment for the same weather data and plant conditions,

e.g., initial state-of-charge of the TES. The objective of the

simulation study was to see if the controller performed better

or differently than with the uncalibrated training model.

Simulation cases have been carried out with different

learning parameter settings. It is interesting to note that in

most cases, the learning controller behaves differently after

using the calibrated model. In general, the learning

controller tends to use the active TES system more than

the passive thermal storage inventory. Figs. 9 and 10 depict

the learning process of a typical case.

In Fig. 9, the setpoints in the off-peak period (building

modes 1, 2, 5, and 6) remained around 24 8C, but did not go
down as had previously occurred. On the other hand, the

TES charging rate increased in building modes 1, 2, and 6,

and the discharging rate increased also in the on-peak period.
Fig. 10. Learning of u-rate with
This implies that the learning controller recognized that the

TES needed to be commanded with higher values of charging

and discharging activity due to the introduced discount factor,

which represents the heat loss of the TES system. Applying

the re-trained Q-table, the experiment was repeated in the

simulation environment with the calibrated model.

Figs. 11 and 12 compare the control actions of the

learning controller in the repeated simulation and the actual

experiment The Tsp profiles shows that less precooling

occurred in the repeated simulation, which confirms the

inference of Fig. 9. In Fig. 12, the repeated simulation shows

that more active storage activity had been commanded.

Table 6 compares the cumulative TES activity in the refined

simulation study with the measured data and previous

simulation.

It can be clearly seen that the active TES system is more

extensively utilized in terms of cumulative charging–

discharging rates. This can be explained as follows: first,

through calibration, it was found that during charging of the
calibrating training model.
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Fig. 11. Tsp with re-trained learning controller.

Fig. 12. u-Rate with re-trained learning controller.
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active TES system, only 62% (F1 = 0.62) of the ice-making

chiller load leads to state-of-charge changes. Therefore, for

the same change in TES inventory, the charge rate has to be

1/F1 times what it would be for an ideal lossless TES system,

leading to substantially higher charge rates. Conversely,

during discharging for the same contribution to the cooling

load, the TES tank has to be discharged by F2 = 1.28 times

the value of a perfect TES system, i.e, the tank is depleted

28% faster, and consequently, the discharge rates are higher.

Secondly, the COP value of the main chiller in ice-making

mode COPice proved to be higher than initially assumed. As

a consequence, the learning controller realized that charging

active TES inventory at night was less costly, and thus, more

TES inventory was used.

On the other hand, the utilization of passive thermal

storage was not clearly observed in the refined simulation

study as shown in Fig. 11, compared with the uncalibrated

simulation. This is due to several factors. First, the building

itself is relatively lightweight and the possible load shifting

effect was small. Second, the learning parameters previously

found for the uncalibrated training model were no longer

effective in the refined simulation study, and modified

learning parameters had not been found for the calibrated

training model. Third, the COP value of the precooling

chiller was lower than the initially assumed value. This

reduces the potential benefits of precooling and makes it

harder to be discovered by the learning controller. Overall,

the learning controller in the calibrated training model

achieves higher savings by utilizing active thermal storage

inventory more extensively as shown in Table 6.
4. Conclusions

A hybrid control approach that is based on simulated

reinforcement learning has been introduced in this paper.

The hybrid approach was validated by an experiment carried

out in the Energy Resource Station Laboratory building in

Ankeny, IA, and an evaluation was made by analyzing the

experimental data regarding the following aspects.

4.1. Feasibility

The performance analysis demonstrated that the hybrid

control approach can provide reliable control utilizing both

active and passive thermal storage inventories. Data analysis

showed that the actions selected by the controller were well

interpreted and executed. Previous trained knowledge

guided the controller into the ‘‘right zone’’ to govern both

storage media. The controller’s activity was controlled by

setting the appropriate learning parameters. The greedy

policy will be taken most of the time in order to save

operating costs. At the same time, by properly denning the

action space, the controller will be kept from violating any

constraints in thermal comfort and plant operation when it

explores in search of a better control policy.
4.2. Advantages

The performance of the hybrid control approach was

compared with a variety of control strategies. The hybrid

control approach achieved 8.3% cost savings over the base

case using the measured data. It outperformed both control

strategies that use passive thermal storage only, but was

inferior to storage-priority control and other control strategies

utilizing both storage medias. However, the simulated data

hint at better savings, and it is reasonable to believe that the

hybrid controller is better than any control strategy that only

uses one thermal storage media. Since the thermal storage

inventories were only partially used, the hybrid controller

cannot competewith either optimal control of passive thermal

storage and storage-priority control of active thermal storage.

However, the model-based predictive optimal control is

assumed to be the true optimum because of no mismatch in

modeling andprediction,which is hardly achievable in reality.

The hybrid control approach was designed based on

simulated reinforcement learning, and substantial improve-

ments were made to overcome the shortcomings of slowness

that are associated with standard reinforcement learning.

The controller was trained by a simulator first in the

simulated learning phase, which greatly reduced the amount

of time required in the standard reinforcement learning

scenarios to acquire the same knowledge. During the

implemented learning phase, the controller will first adopt

the near-optimal policy learned in the simulation training,

but due to the learning feature of reinforcement learning, it

will improve the performance of the controller continuously.

In summary, the hybrid control approach enjoys the

advantages of the model-based approach in the simulated

learning phase, and the advantages of the model-free

approach in the implemented learning phase because there is

no modeling and prediction required and because it is

adaptive. Furthermore, the experiment shows that the

procedure of implementing the controller is easier compared

with model-based predictive optimal control. The core of the

learning controller is a lookup table, the Q-table, and the

remaining supervisory control program is less complex

compared with a model that imitates the whole building. It

would be possible for control systems manufacturers to

implement the learning controller without much effort.

4.3. Disadvantages

As previously discussed, the quality of the simulator, or

training model, is a key factor that determines the fidelity of

the pre-trained knowledge of the learning controller.

Deviations in the model may lead the controller to only

find suboptimal policies. The controller will have difficulty

in finding the optimal policy due to the fact that the learning

rate is set to comparatively low values in the implemented

learning phase in order to make the controller act greedily

most of the time. Because the implemented learning phase

takes on the form of standard reinforcement learning, it
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suffers from the same disadvantages of pure reinforcement

learning. The learning parameters and the curse of

dimensionality of the state and action space also impact

the controller’s ability to find the optimal policy.
References

[1] S. Liu, G.P. Henze, Experimental analysis of simulated reinforcement

learning control for active and passive building thermal storage inven-

tory, Part 1: theoretical foundation, Energy and Buildings, 38 (2006)

142–147.
[2] J. Braun, Load control using building thermal mass, Journal of Solar

Energy Engineering 125 (3) (2003) 292–301.

[3] S. Liu, G.P. Henze, Reinforcement learning control for building active

and passive thermal storage inventory, in: Proceedings of SimBuild:

2004, Boulder, CO, 2004.

[4] S. Liu, G.P. Henze, Reinforcement learning control for building active

and passive thermal storage inventory, in: Proceedings of the 2005

International Solar Energy Conference, Orlando, FL, 2005.

[5] G.R. Henze, D. Kalz, S. Liu, C. Felsmann, Experimental analysis of

model-based predictive optimal control for active and passive building

thermal storage inventory, International Journal of HVAC&R Research

11 (2) (2005) 189–214.

[6] L. Ljung, System Identification: Theory for the User, Prentice-Hall,

Englewood Cliffs, NJ, 1987.


	Experimental analysis of simulated reinforcement learning control �for active and passive building thermal storage inventory
	Introduction
	Description of experimental study
	Introduction to the experimental facility
	Hybrid control phase I: simulated learning
	Hybrid control phase II: implemented learning

	Analysis of experimental results
	Experimental data analysis
	Calibration of the training model
	Performance evaluation
	Refined simulation analysis

	Conclusions
	Feasibility
	Advantages
	Disadvantages

	References


