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Abstract 

“Intelligence” in buildings usually implies facilities management via building automation systems (BAS). However, 

present-day commercial BAS adopt a rudimentary approach to data handling, control and fault detection, and there is much 
scope for improvement. This paper describes a model-based technique for raising the level of sophistication at which BAS 
currently operate. Using stochastic multivariable identification, models are derived which describe the behaviour of air 
temperature and relative humidity in a full-scale office zone equipped with a dedicated heating, ventilating and air-condition- 
ing (HVAC) plant. The models are of good quality, giving prediction accuracies of + 0.25 “C in 19.2 “C and of f 0.6% rh in 
53% rh when forecasting up to 15 minutes ahead. For forecasts up to 3 days ahead, accuracies are f 0.65 “C and f I .25% rh, 
respectively. 

The utility of the models for facilities management is investigated. The “temperature model” was employed within a 
predictive on/off control strategy for the office zone, and was shown to substantially improve temperature regulation and to 
reduce energy consumption in comparison with conventional on/off control. Comparison of prediction accuracies for two 
different situations, that is, the office with and without furniture plus carpet, showed that some level of furnishing is essential 
during the commissioning phase if model-based control of relative humidity is contemplated. 

The prospects are assessed for wide-scale replication of the model-based technique, and it is shown that deterministic 
simulation has potential to be used as a means of initialising a model structure and hence of selecting the sensors for a BAS 
for any building at the design stage. It is concluded that advanced model-based methods offer significant promise for 
improving BAS performance, and that proving trials in full-scale everyday situations are now needed prior to commercial 
development and installation. 0 1997 Elsevier Science B.V. 
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1. Introduction 

What are intelligent buildings? Atkin [l] stated 
that an intelligent building is one which “knows” 
what is happening inside and immediately outside, 
one which “decides” the most efficient way to 
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provide an appropriate environment for its occu- 
pants, and one which responds quickly to occupants’ 
requests. In terms of technology, intelligence in 
buildings is usually associated with some form of 
automated management system which is responsible 
for data gathering, decision-making and implementa- 
tion. Such systems have come to be known as 
“building energy management systems” (BEMS) or 
“building automation systems” (BAS), employing 
digital technology to carry out the required functions. 
Their use proliferated throughout the 1980s going 
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hand-in-hand with the decreasing costs of micropro- 
cessors, to the extent that today they are a standard 
feature of many non-domestic premises. They offer 
the facility to monitor and to control a range of 
building functions, which include temperature, hu- 
midity, lighting, fire detection and security, whilst at 
the same time providing fault detection and alarm 
signalling facilities. 

Just how “intelligent” are today’s BAS? The 
answer is “not very”. Intelligence in a BAS could 
be regarded as residing within the software used for 
making decisions about the actions that would be 
appropriate in particular situations. At present the 
data received from sensors and used for making 
these decisions are processed in a fairly rudimentary 
manner, frequently taking the form of simple trend 
plots, for example, or detecting faults merely by 
sending an alarm if a sensor value falls outside some 
expected range. The control functions that are cur- 
rently employed usually consist of either on/off, or 
proportional, integral and derivative (PID) control 
methods; these are classical techniques which have 
been in use for many years-the only difference is 
that today they are implemented digitally as opposed 
to their former implementation in analogue format. 
Optimum start/stop control does represent an inno- 
vation, but there remains some considerable way to 
go in terms of sophistication. Thus, while perfor- 
mances of existing sytems might be considered by 
many to be adequate, there is definitely scope for 

improvement. 

I. I. Model-based methods 

In what way can improvements be made? It is 
certainly possible to enhance the present level of 
intelligence by adopting more advanced methods for 
treating the data which are collected by all BAS. One 
way would be to use model-based methods. Here, a 
mathematical model which describes some aspect of 
the building behaviour is used to forecast expected 
performance; this differs from the current practice of 
simply recording, or acting upon, instantaneously 
sensed information. Such models can be used in a 
variety of ways, such as within a fault detection 
strategy [2]: if the model-predicted performance and 
the actual performance of a building system begin to 

diverge beyond some statistically significant differ- 
ence, then it is probable that a fault exists. 

Model-based methods can also be used to control 
buildings and heating, ventilating and air-condition- 
ing (HVAC) systems and there have been a number 
of studies in this area [3-81. These studies have 
shown. mainly through simulation, that this form of 
advanced control is feasible. Predictive control is an 
example of a model-based method in which correc- 
tive action is based upon values forecasted by a 
model as opposed to using instantaneously measured 
values from the system. In this way, it is possible to 
reduce overshoots and undershoots about a set point, 
giving improved performance and the potential for 
energy savings. Laboratory-scale experiments have 
shown [9] that energy savings of 11% are possible as 
a result of using one form of model-based predictive 
control compared with the use of conventional 
control. 

When considering model-based techniques, an 
important consideration is the type of model that 
should be employed. Often, deterministic models are 
used in which it is assumed that the output can be 
predicted exactly from a set of inputs; such models 
take no account of any random influences that might 
affect a given system. These models can be based on 
thermophysical properties of the building and/or 
HVAC plant, employing steady-state or dynamic 
analyses [ IO,1 11. In practice, buildings are subject to 
a variety of random influences such as climatic 
disturbances, infiltration fluctuations, variations in 
occupancy pattern and appliance usage. It would 
seem plausible that for a BAS to operate more 
effectively, a probabil’ tsttc framework should be 
adopted for formulating the models. Stochastic mod- 
els [ 12,131 lie within this framework, being able to 
handle such random influences in a convenient and 
compact format, and thus offer a particularly appro- 
priate means for describing the behaviour of build- 

ings [14]. 
What are the views of the BAS manufacturers 

towards advanced techniques of the type described‘? 
While the general consensus amongst researchers 
appears to be favourable, in that the advanced meth- 
ods are feasible and offer potential benefits for con- 
trol and other applications, there remains some scep- 
ticism amongst commercial manufacturers. This is 
because studies to date have been largely academic, 
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having either a basis in simulation or appearing to be 
some distance removed from practical application 
and commercial exploitation. The argument for the 
advanced methods clearly needs the support that 
practical larger-scale demonstration can offer. Fur- 
ther to this, the industry needs to know whether the 
solutions can be easily “mapped” on to existing 
B AS hardware, or whether significant modifications 
would be necessary (the latter posing an economic 
hurdle to be negotiated) before widespread commer- 
cial use is possible. Finally, the question of the 
generality of the solutions needs to be addressed. By 
this we mean that the methodology must be repeat- 
able in its application to a wide range of buildings, 
and must be capable of becoming a standard feature 
of the design process. 

1.2. Objectiues 

The overall aim of our paper is to present the case 
for these advanced techniques by demonstrating their 
potential through practical application. In this way, it 
is hoped that BAS manufacturers will be convinced 
of this potential and will give serious consideration 
towards enhancing collaboration with researchers in 
developing this technology. In addressing the above 
issues, and for the purpose of this paper, we will 
concentrate upon the modelling and control aspects, 
and in particular will extend the existing work of the 
authors by discussing a method upon which 
widespread replication might be based. 

Our studies are based upon practical measure- 
ments from a full-scale office zone and dedicated 
HVAC plant, and the specific objectives of the work 
are as follows. 
1. To demonstrate that good-quality stochastic mod- 

els which describe full-scale building zone be- 
haviour are obtainable. 

2. To show that such models can be used to improve 
control performance, can lead to energy savings, 
and can provide a deeper insight into the be- 
haviour of building systems (specifically the ef- 
fects of furnishings). 

3. To show that thermophysical simulation may of- 
fer a means for selecting the sensors needed to 
obtain the data for modelling, and hence could 
lead to a general methodology which can be 
applied to all buildings. 

We commence our discussion with a description 

of the test system. 

2. Test system 

The system employed in the study is based at 

Loughborough University, and consists of a test 
room 5.40 m in length, 3.25 m in width and 3.00 m in 
height. Three of its four walls are of lightweight 
material, partitioning it from a surrounding labora- 
tory, whilst the fourth wall is of twin-leaf brickwork 
exposed to the external environment. This external 
wall faces south-west, and contains a double-glazed 
window 1.90 m wide and 1.45 m high. The floor of 
the room is of concrete and comprises part of the 
standard floor structure of the laboratory; beneath the 
floor is another laboratory. The ceiling is of 
lightweight construction, above which is the general 
laboratory environment. The room is representative 
of an “office zone’ ’ within a commercial premises 

in that three of its walls, its floor and its ceiling 
adjoin internal environments at a similar temperature 
to the test room, with the “heavyweight” wall being 
subjected to climatic influences. Initially the office 
zone was devoid of carpet and furniture; at a later 
stage the zone was carpeted and furnished to deter- 
mine the effect on system behaviour. The office zone 
is served by a dedicated direct-expansion HVAC 
plant which provides heating, cooling and humidifi- 
cation to maintain the room conditions at the re- 
quired levels. Sensors and actuators sited within the 
plant and office are interfaced to a digital computer 
via 12-bit analogue-to-digital and digital-to-analogue 
converters, permitting data logging together with 
direct digital control of the office environment, ex- 
actly as in a BAS. By utilising appropriate software, 
it is possible to operate the system such that data are 
generated about plant and zone performance, the data 
being used for developing a mathematical model 
which describes the system behaviour; the model can 
then be used as part of an advanced model-based 
control strategy. Both conventional and model-based 
control methods can be implemented via the digital 
computer to regulate the office zone conditions. Fig. 
1 illustrates the office zone and HVAC plant and 
shows the arrangement of the sensors. Full details 
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Fig. I. Office zone test system and position of sensors. 

regarding the test system and instrumentation may be 
found in [9]. 

3. Modelling and validation 

3. I. Model&g technique 

The test system is subject to stochastic distur- 
bances brought about by the external climate, con- 
sisting chiefly of variations in outdoor temperature, 
solar irradiance and infiltration; occupancy-induced 
disturbances were absent in this system. The office 
and plant were thus modelled as a 3-input/2-output 
system in the presence of climatic disturbances (Fig. 
2). The inputs are the heating, cooling and humidifi- 
cation powers, and the outputs are the office air 

temperature and relative humidity. System identifica- 
tion [ 13,151 was used to obtain a mathematical model 
from the input/output data. The technique is com- 
plex, and its application to the test system has been 
fully described elsewhere [ 161. However, for conve- 
nience, a brief summary of the procedure is pre- 

sented here. 
Various system trials are needed in order that the 

collected data contain sufficient information to pro- 
duce an accurate model; to do this, it is necessary to 
“excite’ ’ the system across its full operating range. 
The trials include the following operations. 
1. Single input step response tests; these provide 

fundamental information about the system, such 
as the dominant relationships between inputs and 
outputs, dominant time constants and system de- 
lay times. 
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Single input pseudo-random binary sequence 
(PRBS) response tests; these excite individual 
inputs through their full range of frequencies so 
that all resulting system modes contribute to the 
data collected. The data obtained can then be used 
to yield a model structure; hence, the number of 

parameters in each term needed to categorise a 
particular system can be established. 
Multivariable PRBS trials; here, all inputs are 
driven simultaneously in order that the cross-cou- 
pling and interaction effects between different 
loops can be obtained and hence a multivariable 
model deduced. 
Modelling; using the model structure from 2, the 
full multivariable model can be derived by per- 
forming a least-squares minimisation. 
Model validation; using further data from trials, 
the model is validated by comparing actual mea- 
surements with model predictions. 
For the office zone and associated HVAC plant, 

the application of the above procedure gives the 
following normalised model for describing the tem- 

perature behaviour inside the office zone: 

q,(t) =(1.61z-’ - 0.64z-* + 0.02Y3)T,.( t) 

+ (0.004z-’ - 0.006~-~) H,.( t) 

+(0.22z-’ + O.O~Z-~ - 0.26~-~)W(r) 

+(-0.62~~’ +0.36zp2 +0.19~-~) C(t) 

+ O.O4z-‘H(t) + O.O06z-‘T,(t) 

+ 0.001 z-‘T,( t) + o.o15z-‘S( t) 

+(l - 1.36~~’ +0.48~~~)V,(r) (1) 

Similarly, the normalised moisture behaviour of 
the office zone was found to be modelled by: 

H,(t) = (154z-’ -0.58zP2 +0.022-3)&(t) 

+( -o.o4z-’ +0.003z~2)T,.(t) 

+( -0.71 z-’ + 0.37~~~ + 0.29~-~) W(r) 

+( -4.02z-’ + 3.73zp2)C(t) 

+(3.29z? - 2.42 Z-’ - 0.49~~‘) H(r) 

+ 0.01 z-‘T,( r) + 0.01 z-‘T,( r) 

+ O.O02z-‘H,( r) - 0.09zp’S( r) 

+(l - 1.24~~’ +0.32~-~)V~(r) (2) 

for r = T,2T,3T,. . . , where T is the sampling inter- 
val (equal to 5 minutes); Tl is the laboratory air 
temperature and T, is the office zone air temperature 
in “C; Hc is the office zone relative humidity in 
%rh; W is the heat input rate and C is the cooling 
rate, in kW; H is the rate of energy input in kW to 
produce moisture for the office zone; To and Ho are 
the external air temperature in “C and relative humid- 
ity in %rh, respectively; S is the solar irradiance in 
Wrn-*; VI and V, are white noise processes of 
variances 0.02 (‘C>2 and 0.18 (% rh)*, respectively; 

; is the difference operator, where z- ‘f(r) = f(r - 
T). The normalised variables in the models can be 
converted to their true values by re-introducing the 
means which were removed in the identification 
procedure, giving constant terms in Eq. (1) and Eq. 
(2). In this way, the models can be used at different 
operating conditions, although there will be a reduc- 
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tion in prediction accuracy. Note that Eq. (1) and Eq. 
(2) were derived for the office in an unfurnished 
condition, as would often be the case when a BAS is 
commissioned in an actual building. 

3.2. Validation 

Having obtained the stochastic models, it is nec- 
essary to validate them by comparing the predictions 
from the models against a set of measured data. Such 
data can be the same as that used in modelling but is 
usually different from that used in the modelling 
process. In our case, the data used in the modelling 
process corresponded to an average office zone tem- 
perature of 19.2 “C and to an average relative humid- 
ity of 53.0%rh. For predictions up to 15 minutes 
ahead, the forecasting accuracies of the models were 
found to be within * 0.25 “C in 19.2”C for air 
temperature and to within + 0.6% rh in 53.0% rh for 
relative humidity, respectively. These prediction ac- 
curacies are remarkably good, and show that the 
models are suitable for immediate control purposes. 
Corresponding prediction accuracies when forecast- 
ing up to 100 minutes ahead were + 0.55 “C and 
+ 0.75% rh. respectively. Since 100 minutes is of the 
same order as the dominant time constant in the 
office zone, the results further show that the models 
can also be used in steady-state system analysis. Fig. 
3 and Fig. 4 illustrate these prediction accuracies and 
compare the cases where the same data and different 
data are used to validate the models. In addition. 
comparisons were made with a simple piecewise 
constant approximation, that is, the next value of 
office zone air temperature or relative humidity is 

Fig. 3. 20.step-ahead temperature prediction errors. 

Fig. 4. 20-step-ahead relative humidity prediction errws. 

assumed to be equal to the current value; the latter 
effectively corresponds to having no predictive model 
at all. The superiority of the model-based approach is 
clearly evident from these findings. Additional test- 
ing of the models was carried out by investigating 
their prediction accuracies for a period up to 3 days 
ahead; these were found to be kO.65 “C and 
-+ I .2S% rh, respectively, thus showing that the mod- 
els can also be useful for providing strategic infor- 
mation about the system which in turn could be used 
in future scheduling. The full validation process is 
described in Virk et al. [17] and Loveday et al. [ 181. 

The above results are considered to be exception- 
ally good, showing that good quality models are 
obtainable for building systems using the stochastic 
identification technique. The models presented can 
describe building zone/HVAC plant behaviour to a 
high precision when used under conditions similar to 
those encountered during the identification trials. 
Note that in the above cases the terms V, and V, 
have been assumed to be zero, so that the stochastic 
nature is deemed to be absent (no “noise”) and that 
a deterministic model is sufficient for prediction 
purposes. The models can also be used under differ- 
ent conditions but the prediction accuracies can of 
course deteriorate. In these circumstances it is advis- 
able to utilise an on-line identification scheme so 
that the models remain in tune with any changes and 
thus maintain good forecasting accuracy. Note also 
that the exceptional prediction accuracies described 
above have been achieved under conditions of lim- 
ited disturbances (climate-driven only), and with no 
occupants in the office zone. When these (stochastic) 
effects are present to a greater extent, prediction 
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accuracies will be poorer; however, this can be 
improved by using additional terms in the models. 
The data for these terms can be obtained by deploy- 
ing extra instrumentation (to monitor occupancy lev- 
els, for example), and/or by using mathematical 
models of the occupancy patterns; in this way the 
occupancy effects can be predicted more closely. 

However, we have clearly demonstrated that 

good-quality models are obtainable, and the next 
stage is to investigate their potential in a variety of 
applications. This we describe next. 

4. Utility of models 

Stochastic models of the type derived can be put 

to a variety of uses. We now investigate in detail 
their potential from three points of view: control 
performance, energy consumption, and as a metric 
for gauging building system behaviour in general. 

4. I. Control petformance and energy consumption 

The model-based approach can be implemented 

via a range of control methods, in all of which the 
model is used to design the control signal to be 
applied to the system. The control methods range 
from minimum variance, pole placement and optimal 
control to adaptive and robust designs. To demon- 
strate the potential of the model-based concept, we 
test and assess the simplest strategy-conventional 
on/off control-in comparison with a corresponding 
model-based version, namely predictive on/off con- 
trol. Both control algorithms have been given else- 
where [19], but essentially the predictive method 
tests both the “on” and the “off” states to deter- 
mine which gives the smaller prediction error at the 
next sampling instant, the predictions being based on 
the use of Eq. (1). The conventional on/off strategy 
employs a hysteresis of L- 1 “C for the zone tempera- 
ture control. For zone temperatures above the upper 
threshold, the control signal is set to the “off” state, 
whereas for zone temperatures below the lower 
threshold the control signal is set to the “on” state. 
For zone temperatures within the hysteresis band the 
control signal is kept at its previous state. 

Both control methods were digitally implemented 
on the test system, and were compared in terms of 
the air temperature regulation in the office zone and 
the corresponding energy usage, for a set point of 

Fig. 5. Temperature regulation comparison for the office zone. 

25 “C. Fig. 5 shows the comparison of office zone air 
temperature regulation, and Table 1 compares the 
errors and normalised energy consumptions over the 

test period of 18 hours. It should be emphasised that 
the energy figures presented here have been nor- 
malised with respect to the internal/external air 
temperature difference for the test room; in this case 
the energy figures in Table 1 correspond to a temper- 
ature difference of 5 “C. 

From inspection of Table 1, it is evident that the 
model-based approach achieves superior temperature 
regulation (30% improvement) as compared with the 
conventional method, together with a reduction in 
energy consumption of about 17%. Other features 
worth noting are the d.c. offset for the model-based 
on/off controller results, and the larger temperature 
output swing of the standard on/off controller (of 
about f 1.5 “C). Clearly, both these effects are unde- 
sirable and need addressing before a realistic imple- 
mentation, in order that the achievable results will be 
acceptable. The d.c. offset problem is due to the 
imbalance in the on/off states of the input, that is, 
the temperature gain when the input is “on” is 
different from the temperature loss when the input is 
“off”. At steady state, such a controller will contin- 
ually switch from “on” to “off” at successive 
sampling instants leading to control system “dither”. 
It is the averaging effect of the dither which is 
causing the dc. offset observed in Fig. 5. If such an 
offset was a problem in an on/off controlled appli- 
cation, then it is possible to deal with the on/off 
imbalance in a number of ways. Essentially, these 
methods redress the balance, such that the average 
becomes centred. The balancing can be achieved by 
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Comparison of on/off controllera for the office zone 

Type of on/off controller E (errors)’ (“CY Normalised energy usage (kWh) 

Conventional 189.0 41.0 

Model-based predictive 130.7 34.0 

appropriate re-sizing of the heater, time-proportion- 
ing of the heater output, or extending the on/off 
control strategy to include proportional control. The 
sizeable temperature oscillation is a function of the 

hysteresis adopted in the conventional on/off strat- 
egy. A 1 “C hysteresis, as used, is the conventional 
value adopted in commercial BAS. If the hysteresis 
is reduced, then the output regulation would be 
improved, but at the expense of increased controller 
switching activity. Such activity can be a problem in 
practical systems as it gives rise to increased wear 
and decreased reliability. Therefore, a compromise 
must be reached between hysteresis, temperature out- 
put swing and controller activity. We believe that the 
solutions presented here, because they are based on 
commercial norms, achieve this balance; however, if 
one aspect is more important than the others, then 
the design can be biased accordingly. 

The results presented in this part of our study 
demonstrate the significant potential offered by the 
model-based approach if it were to be implemented 
in a BAS. However, while these results might appear 
to be exceptionally good, it should be remembered 
that in this particular test zone stochastic distur- 
bances were limited to those of the external climate. 
During the trials, these disturbances were not particu- 
larly large, and hence very precise performance is 
possible, as seen. This is because the situation is 
essentially deterministic, permitting accurate predic- 
tions and tight control regulation. 

In practice, the disturbances that would be intro- 

duced by the presence of occupants together with 
their actions in the form of appliance usage, 
window-opening and door-opening, are likely to be 
much more significant and can have a potentially 
large effect on the dynamic behaviour of the building 
system. Under such occupancy conditions, the results 
can be expected to be much poorer than those sug- 
gested by the tests described here. It is possible that 
energy savings of the order of 10% will be more 
likely, as observed in other laboratory studies [20], 

where large-magnitude stochastic disturbances were 
applied to a test cell in the form of randomly induced 
mechanical ventilation. 

Further investigation of the model-based approach 
for control in full-scale buildings is therefore re- 
quired over a range of realistic situations where 
occupancy and other stochastic disturbances of ap- 
propriate magnitude and frequency are present. Nev- 
ertheless, the results presented demonstrate the sig- 
nificant potential offered by the model-based ap- 
proach to the control of building environments. These 
aspects are discussed further in Section 6. We next 
investigate the potential of models as a means for 
monitoring building system behaviour in general. 

The models in Section 3.1 were identified for the 
situation where the office zone was completely de- 
void of carpeting, furniture and fittings (a situation 
which is frequently encountered during the commis- 
sioning phase of a BAS); it has been shown that the 
predictions from the models are accurate when deal- 
ing with the zone in this unfurnished state. However, 
what if zone conditions were to change’! How accu- 
rate would then be the predictions from the models? 
In order to investigate this situation. the zone was 
carpeted by covering its entire floor area with a 
hessianbacked. polyester/woollen pile carpet; no 
underlay was used. The zone was then furnished by 
adding the following items: a standard solid wooden 
office desk and steel-framed upholstered chair, a 
matching three-seater settee and armchair of PVC- 
covered lightweight upholstery, and two standard 
metal filing cabinets (both empty). These alterations 
may be regarded as “passive”, that is, no heat-gen- 
erating items were installed. Step tests were then 
carried out on the furnished zone which revealed that 
no significant change had occurred in the dominant 
time constants as compared with the unfurnished 
situation. This is thought to be because the fumish- 
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ings added were “lightweight” and passive in na- Here, predictions from the unfurnished model of 

ture, and thus no major changes had effectively been moisture behaviour in the furnished zone are poor. 

made to the zone thermal response. An alternative To fully confirm this finding, further models were 

explanation is that carpeting the floor causes it to identified for the furnished zone, and predictions of 

behave in a more thermally “lightweight” manner temperature and relative humidity using the “fur- 

and that this might have been balanced by the added nished” models were compared as above. This is 

thermal mass of the furnishings. The models given more fully described in Virk et al. [ 171 where the 

by Eq. (1) and Eq. (2) and obtained for unfurnished results showed that the furnished model is able to 

conditions-the “unfurnished” models-were then predict temperature and moisture behaviour with 

used to predict air temperature and moisture be- good accuracy whether the zone is furnished or 

haviour in the furnished zone. unfurnished. 
The results are shown in Fig. 6(a) and (b). It can 

be seen that while air temperature in the furnished 
zone remains well-predicted by the unfurnished 
model, the same cannot be said for relative humidity. 

The explanation proposed for these findings is 
that carpeting and furniture possess moisture absorp- 
tion properties, and that their addition to the test 
zone significantly alters the dynamic moisture be- 
haviour of the zone. Since identification of the fur- 
nished model included such moisture-dynamic ef- 
fects, the model is able to predict for both furnished 
and unfurnished situations. However, the unfur- 
nished model is unable to accurately predict relative 
humidity behaviour because such moisture dynamics 
would have been largely absent during its identifica- 
tion. 

0.6 , 
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Prediction horizon 

X5 min 

(a) Temperature 
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Fig. 6. (a) k-step-ahead temperature prediction errors for the 

unfurnished model (no noise). (b) k-step-ahead relative humidity 
prediction errors for the unfurnished model (no noise). 

There are several conclusions which can be drawn 
from these findings. First, for accurate modelling, all 
dynamic effects must be present during the identifi- 
cation phase. Second, if a new effect subsequently 
“enters” the system, then prediction accuracies can 
suffer. This can be used as a “detector” of a change 
in the system, and can form the basis for a system 
fault detection technique, for example. Third, as far 
as a BAS is concerned, it is necessary to have some 
level of carpeting and furniture present at the com- 
missioning stage if model-based control of relative 
humidity is contemplated. 

The work described here has served to illustrate a 
further use of stochastic models for buildings, 

namely, that they can be used to monitor and detect 
changes in building system behaviour. Further work 
is needed before this can form an on-line basis for 
building/HVAC fault detection or for detecting the 
presence of an intruder, to give two examples, but 
the authors are currently pursuing this aspect. Having 
established the potential offered by model-based 
techniques for buildings, we now turn to the question 
of their widespread adoption, and in particular how 
the model-based approach might be replicated for 
any building. 
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5. Wide-scale replication Table 2 

The identification of the stochastic models de- 

scribed earlier required the use of input/output data 
from the office zone/HVAC system, which in turn 
meant selecting those variables that needed to be 
measured and then installing the appropriate sensors. 
If the technique for obtaining and using a model is to 
become commonplace for buildings, then it will 
clearly be necessary to adopt some standard ap- 
proach for selecting the variables and hence the 
sensors with which to equip the BAS. While in some 
cases this can be decided intuitively, it is not a 
reliable approach, and so a more methodical basis 
must be devised. Even with on-line self-adapting 
stochastic models, it will still be necessary to “ini- 
tialise” a model structure with the relevant variables. 
With this in mind, we now investigate the potential 
of thermophysical simulation as a selection tool. 

Loss functions and ranking from identification 

Eliminated variable Loss function Influence ranking 

Heating power 0.540 I 
Cooling power 0.309 2 

Laboratory air temperature 0.095 3 

Solar irradiance 0.089 4 

Humidification power 0.085 5 

External relative humidity 0.078 6 

External air temperature 0.07 I 7 

For any system, the system output variables will 
respond to variations in the input variables, but there 
will be certain input variables to which the output 
responses will be most sensitive; it is these inputs 
which will be the key variables to monitor, and 
which will be the ones to be incorporated in a model. 
By using a thermophysical simulation model it is 
possible to simulate the thermal behaviour of the 
office zone system, and using sensitivity analysis, to 
rank input variables in terms of their influence on the 
outputs (office zone air temperature and relative 
humidity). The rankings may then be compared with 
those found from the stochastic model identification 
process. We concentrate this part of our study on one 
output only-office zone air temperature-as a first 
step towards assessing the potential of this technique. 

terms of their influence on the output (office zone air 
temperature) was determined by removing one input 
variable at a time from the model (Eq. (1)) and then 
computing the corresponding loss function. Compari- 
son of the loss functions reveals the strength of 
influence of any particular variable against the re- 
maining variables. Table 2 shows the loss functions 
as each input variable listed is eliminated, together 
with its corresponding ranking. 

It can be seen that elimination of the heating 
power term results in the highest value of loss 
function. indicating that heating power has the 
strongest influence on the office zone air tempera- 
ture, and so on. 

5.2. Ranking from simulation 

5.1. Ranking from. identification 

As part of the process for identifying the stochas- 

tic model given by Eq. (I), it was necessary to test a 
number of models before selecting the one which 
gives the best “fit” to the data. The “goodness of 
fit” is measured in terms of the “loss function” 
which is the sum of the squares of the errors between 
the model-predicted value of air temperature and the 
actual measured value; the lower the value of the 
loss function, then the better is the fit of the model to 
its data set. The ranking of the input variables in 

The office zone was modelled using the computer 
program BRE-ADMIT [21]. The program is based on 
the admittance procedure [22] in which the internal 
temperature of a zone is determined from an as- 
sumed single-cycle sinusoidal external temperature 
variation of period 24 hours. The procedure defines 
the parameters of admittance Y (W rn-’ K- ‘). time 
lag (hours) and decrement factor, which arise as a 
result of heat storage effects within the building 
fabric. Though less rigorous than the fully dynamic 
building simulation programs [23], it offers a quasi- 
dynamic analysis for comparing building designs 
which has the advantage of being relatively straight- 
forward to understand and inexpensive to use by 
architects and building services consultants. Table 3 
lists the thermophysical properties of the office zone 
which were used in the BRE-ADMIT program, where 
the U-value is the thermal transmittance of a build- 
ing element. 
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Office zone thermophysical properties 

Element U-value (W II-* K- ‘) Y-value (Wm-’ Km’) Time lag (hours) Decrement factor 

External wall 1.53 4.45 7 0.48 

Internal walls (three) 0.44 0.45 0 1.00 

Ceiling 0.41 0.41 0 1.00 

Floor 2.31 4.52 6 0.46 

The following input variables were selected for 
sensitivity analysis: external air temperature, solar 
absorptivity (applicable to the external wall only), 
heating plant power, and cooling plant power. 
Though it was possible to change further input vari- 
ables in the BRE-ADMIT program, those selected 
corresponded to the variables monitored in the actual 
system. To use the program, it was necessary to 
define a “hybrid” external temperature t,, com- 

prised of the surrounding laboratory air temperature 
t, and the actual external air temperature t,, weighted 
in terms of U-values and areas, as: 

(3) 

This is because the program is designed to model 
cuboidal zones as stand-alone single enclosures sur- 
rounded on all sides (except the floor) by an external 
environment. Here, U,,, and Aint are the average 
U-value and total area, respectively, of the three 
internal walls, the floor and the ceiling which en- 
close the office zone, while U,,, and A,,, are the 
average U-value and total area, respectively, of the 
external wall/window for the zone. This led to the 
following expression for t,: 

t, = 0.698t, + 0.303t, (4) 
A sinusoidal variation of cycle 24 hours (as re- 

quired by the admittance procedure) was impressed 
upon th with a mean value of 13.18 “C and a swing 
(peak to mean> of 1.38 “C. Climate data relating to a 
day in November were employed for subsequent 
comparison of simulation output with measured data. 
A ventilation rate of 0.25 air changes per hour was 
used, together with “no plant” operation, the zone 
being simulated as free-running in the first instance. 
Comparison of simulated and measured office zone 
air temperatures showed good agreement, but a simu- 
lated heating plant power of 0.25 kW was necessary 

in order to fully match the measured and simulated 
behaviour. The set of simulation input data thus 
derived was adopted as the “standard” condition 
upon which the sensitivity analysis was carried out, 

for the free motion. 
Two further standard conditions were defined. 

These corresponded to a heating plant power of 
2.5 kW and to a cooling plant power of (-)0.91 kW; 
these corresponded approximately to the averages of 
the ranges for heating and cooling powers employed 
in the stochastic identification work. Note that to 
observe the effects of these plant inputs it was 
necessary to modify the original BRE-ADMIT pro- 
gram by extending the limits of the permitted zone 
air temperature range. This resulted in the modified 
versions of the program, which we called 

BREAMOD 3 and BREAMOD 4, used for compara- 
tively assessing the effects, on zone air temperature, 
of changes to input variables. For the ranges of 
operation applicable to the original program BRE- 
ADMIT, no difference was observed between the 
outputs from BRE-ADMIT, BREAMOD 3 or 
BREAMOD 4. 

The technique of differential sensitivity analysis 
[24] was adopted. This technique offers the advan- 
tages of being simple to perform, quick to use when 
the number of inputs is small, and is capable of 
producing the individual input sensitivities directly. 
It was therefore used to find the effects of variations 
in each input to the simulation model. Changes of 
- 10% and + 10% were made to the standard values 
of the input variables. By decreasing, as well as 
increasing, the value, it was possible to determine 
whether the model was behaving properly, that is, 
whether the zone air temperature increased with 
increasing external air temperature and with increas- 
ing solar absorptivity, and vice versa. Corresponding 
changes in the zone air temperature were then deter- 
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Table 4 

Rankings from simulation 

Controllable inputs Ranking Uncontrollable disturbances Ranking 

Heating power 

Cooling power 

I 
2 

“external” (laboratory) air temperature 

wlar absorptivity (irradiance) 

I 
2 

mined, and the magnitudes of the changes were used 
to rank the input variables in terms of their influence. 

For the free-running condition, changes of - 10% 
and + 10% were made to the external air tempera- 
ture (taken as the hybrid temperature, standard value 
13.18 “C) and to the solar absorptivity of the external 
wall (standard value 0.8). For the conditions of zone 
heating and zone cooling, changes of - 10% and 
+ 10% were made to the plant standard input powers 
of + 2.5 kW (heating) and (- jO.91 kW (cooling). 
The full set of results is presented in [9]. 

5.3. Results 

For the free-running condition, external air tem- 
perature was found to have a greater influence on 
zone air temperature than does the solar absorptivity. 
For the condition of cooling plant input, the order of 
influence (from most to least) is: external air temper- 
ature; cooling power; solar absorptivity. This result 
is based on the standard values stated earlier. It 
should be noted that if the standard value for cooling 
power is raised only a little to (- )1.3 kW then the 
cooling power ranking becomes higher than that of 
the external air temperature. 

Table 4 presents the rankings obtained by the 
simulation approach, where the inputs to the system 
have been categorised as “controllable” and “un- 
controllable”. Here, the controllable effects repre- 
sent the heating and cooling inputs to the system, 
while the uncontrollable effects are caused by distur- 
bances which are beyond direct control. 

For direct comparison with the results from the 
identification procedure (Table 2) it is necessary to 
note that in the thermophysical simulation: 
1. the external air temperature is made up of approx- 

imately 70% laboratory air temperature and 30% 
actual external air temperature-this corresponds 
mainly to “laboratory air temperature” in the 
identified model; 

2. the level of solar irradiance to which the office 
zone was subjected is directly proportional to the 
value of solar absorptivity-thus solar absorptiv- 
ity corresponds directly to “solar irradiance” in 
the identified model. 
Although the rankings were dependent to some 

extent on the values selected for the larger magni- 
tude standard figures, by categorising the variables 
as “controllable inputs” and “uncontrollable distur- 
bances”, the rankings obtained by simulation are 
seen to be in agreement with those found from the 
identification process. 

These findings are encouraging since they demon- 
strate that thermophysical simulation may potentially 
be used as a means for determining which variables 
are likely to have the biggest influence on the out- 
puts for any particular building system, and thus as a 
method for initialising the model to be employed in a 
model-based building management strategy; conse- 
quently, simulation would offer a means for selecting 
the sensors for the BAS. More work is needed to 
fully explore this approach before it can be proven 
and then adopted as a standard practice. For exam- 
ple, repeatability of results for a range of situations, 
the extent to which the choice of simulation model 
affects the findings, and the way in which standard 
values are assigned to the inputs all need to be 
thoroughly investigated. The authors are actively 
pursuing this research theme. 

6. Extension to multi-zone occupied buildings 

In Section 5, an assessment has been made of the 
potential offered by thermophysical simulation as a 
method for setting up the advanced model-based 
approach for any building while at the design stage. 
In addition to the latter developments, the wider 
adoption of the advanced model-based technique will 
also require that multivariable stochastic identifica- 
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tion is extendable to multi-zone occupied buildings. predictions can be maintained, but that to do so will 
In this section we describe the prospects for, and require extra sensors or software models to provide a 

important aspects encountered in, extending the ad- measure of the additional disturbances (see, for ex- 
vanced modelling technique to such buildings. ample, Virk et al. [25,26]). 

The results described in Section 2, Section 3 and 
Section 4 have concentrated upon an unoccupied 
single-zone facility subject to tight experimental con- 
straints. It is these restrictions which, in the main, 
have been responsible for the remarkably good model 
predictions that we have reported in this paper. 
Clearly, the methodology needs to be extended to 
more realistic situations, where multiple zones are 
present, together with a relaxation of the “no-oc- 
cupancy” constraint. The latter, in turn, implies not 

only the presence of people, but also the effects of 
their activities, such as appliance usage, 
door/window opening and lighting operations. It is 
important that the preceding results should be ex- 
tended to these everyday conditions, and that the 
results remain of good quality. Once this has been 
achieved then BAS manufacturers will be more likely 
to invest in this technology, thereby giving rise to 
true pro-active management of facilities. 

Important aspects already observed in the multi- 
zone case are as follows: 
1. significant interactions exist between rooms (both 

for temperature and for relative humidity); 
2. occupancy has a major effect; 
3. the large glazing areas have a major effect, not 

only on solar gain but also on heat loss, which, 
although obvious, is directly observable in the 
identified stochastic model, raising its importance 
ranking within the model. 
Full results of this work will be published during 

and after the conclusion of the current EPSRC-funded 
contract (reference GR/J/46326), due to end in 
Autumn 1997. 

7. Conclusions and future developments 

We are currently investigating the potential of the 
stochastic predictive modelling technique for occu- 
pied multi-roomed office buildings. To do this, two 
additional research facilities have been established, 
one at Bradford University, and the other at 
Portsmouth University. Each facility consists of a 
three-zone office with its own dedicated variable air 
volume (VAV) HVAC system. Both plants consist of 
a main air-handling unit (with pre-heat, cooling and 
humidifying facilities), and one VAV box (with ter- 
minal re-heat) for each of the three rooms. All the 
rooms are occupied and are subject to appreciable 
solar gains due to significant areas of glazing. The 
total floor areas of the Bradford and Portsmouth 
research facilities are approximately 50m2 and 
loom’, respectively. Both are of heavyweight con- 
struction, and are subject to the external climate (on 
one facade (south-west) for the Bradford facility and 
on two facades (west and south) plus the roof, for the 
Portsmouth facility). Full details of the extendability 
of the previous controlled single-zone work to the 
more realistic multi-zone environments will be avail- 
able in due course. However, early results from trials 
and analyses of recorded data suggest that there is 
every possibility that the quality of the earlier model 

This paper has shown that, for buildings, it is 
possible to obtain stochastic models which are capa- 
ble of predicting accurately the air temperature and 
relative humidity within a zone. When used in a 
model-based predictive on/off control strategy, they 
have been shown to save energy (possibly 10%) in 
comparison with the conventional on/off control 
regime, and to give improved temperature regulation. 
In work published elsewhere, the predictive control 
technique has also been shown to offer improved 
performance in comparison with PID control 
[20,27,28]. Such models have also been shown to 
give the building operator a deeper insight into the 
way in which the building behaves; this has been 
demonstrated with respect to the role played by the 
models in highlighting the effect of furnishings on 
the moisture behaviour within a zone. A major con- 
clusion from this is that it is necessary to have some 
level of furnishing within a zone when commission- 
ing a model-based method for the control of relative 
humidity. In addition, an initial investigation has 
been reported into the development of an approach 
for replicating the model-based method in any build- 
ing. The results are sufficiently encouraging as to 
warrant further investigation. 

There is little doubt that model-based methods 
hold out the promise of significant improvements to 
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the way in which buildings are managed and oper- 
ated. Such models, if operated in an on-line way, can 
offer further versatility of application, which in- 
cludes self-commissioning and fault detection. Once 
the BAS for a particular building has been instru- 
mented (the sensors perhaps having been pre-selected 
at the design stage via simulation), input/output data 
can be used to identify the model in an on-line way 
using the recursive generalised least-squares method 
[15]. Such a model is able to self-adapt as conditions 
change, and thus to provide a self-commissioning 
and self-tuning capability which ensures optimal per- 
formance over a wide range of operating conditions. 
A solution of this kind would go a long way towards 
alleviating the problem of long commissioning times 
currently associated with BAS. 

A model of the type described can also be used 
for fault diagnosis. A fault detection and isolation 
facility can be obtained by the use of state-space 
techniques to construct a state observer. The ob- 
server can be used with the on-line model to produce 
a failure-sensitive filter [29], and the filter can be 
designed so as to detect faults which are common to 
HVAC plant installations (typically wiring faults, 
wrongly-piped sensors and valves, and non-actuation 
of valves and dampers). Statistically significant dif- 
ferences between predicted and actual behaviour can 
then be used to signify the presence of particular 
fault types. 

This paper, in placing in context the level of 
“intelligence” of today’s buildings, has dealt princi- 
pally with stochastic models obtained from statistical 
identification techniques. However, there are other 
model types and modelling methods available- 
models based on neural network and fuzzy logic 
methods, for example. The potential offered by these 
techniques is still under investigation (see for exam- 
ple, Hepworth et al. [30] and Dexter and Trewhella 
[31]). . 

While BAS offer the means to implement ad- 
vanced solutions, there remains much more that can 
be done in this application area before full advantage 
is taken of the information technology revolution. In 
the 198Os, the trend was towards “high-tech” build- 
ings, where the application of technology and signifi- 
cant levels of servicing were used to provide a 
building internal environment which was effectively 
“divorced” from the exterior climate. The 1990s. 

however, has seen a change in building design to- 
wards a more harmonious co-existence with the nat- 
ural environment. Here, for example, the aim is to 
minimise the building energy needs by the use of 
natural processes, such as stack-driven ventilation 
and/or “coolth” storage within the structural mass. 

These types of buildings offer significant challenges 
in the design of control systems, since essentially the 
servicing is being driven by random climatic effects. 
It is here where the advanced techniques such as 
stochastic model-based control will come into their 
own. Successful proving trials of the new techniques 
in realistic situations is now the next step along the 
road towards the truly intelligent environmentally 
benign buildings of tomorrow. 
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