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Abstract— This paper proposes a distributed predictive con-
trol strategy for building temperature regulation. The origi-
nality of the approach consists of using a dynamic prediction
horizon MPC, allowing a more effective disturbances rejection.
Then this idea is extended, for multizone temperature control
in buildings, in a distributed manner, where each controller
solves a local optimization problem using information about
the expected behavior of the other local regulators. The effec-
tiveness of the proposed approach is showed through different
simulations.

I. INTRODUCTION

Nowadays the decrease of the energy consumption is a

world objective and it is no longer feasible to design a system

without concerning the energy optimization. The building

heating system is an important energy consumer, being re-

sponsible of more than 20% of the total energy consumption

in Europe. Even if the new trends are to construct buildings

to meet new environmental standards, the problem remains

unsolved for older buildings where thermal insulation works

are difficult. For these later, only an optimized use of existing

heating systems can reduce the energy bill. This is the context

in which the present work takes place.

In all kind of building, time scheduled controllers are

more and more used, because they can adjust the indoor

temperature according to occupation profile which plays a

crucial role in this energy optimization. In order to obtain a

desired temperature at a given time, it seems obvious to turn

on the heating system with anticipation which addresses the

following question: what is the optimal moment to trigger

the system and what is the required power to reach the

temperature reference? In practice, it is often the experience

which enables this setting, but the optimal moment to turn

on the heating system can vary between some minutes and

several hours before the beginning of an occupation period,

depending on the outdoor temperature and other varying

disturbances. The aim of this work is to propose a control

structure that overcomes this problem.

To allow the anticipative effect, the use of a predictive

control law seems relevant. Such a choice is motivated by

the fact that in practice, the future occupation profile can

be known or well estimated. In a few words, this technique

consists in computing the control input sequence as the result
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of an optimization of a given criterion which includes some

future information (occupation profile and desired tempera-

ture reference). In the heating system case, the minimization

criterion optimizes a compromise between the occupants

comfort and energy consumption. This technique has been

used in many works [1], [2], [3].

In this paper, we propose an original approach based

on the basic principles of the predictive control. But we

include here an additional parameter, the occupation profile

of the rooms, which leads to define a dynamic criterion,

as in [4]. The larger the prediction horizon is, the better

the anticipation is optimized, but as it is well-known in

the predictive control community, a large prediction horizon

implies less efficient disturbance rejections. The developed

idea is then to solve an optimization problem with a variable

horizon size. To adapt this control structure to large scale

systems (buildings with many rooms for instance), different

solutions can be proposed. Using a decentralized strategy,

each room is controlled independently. This approach does

not take into account the thermal influences between rooms,

so the global performance will be decreased. A centralized

control scheme, in which these influences are considered in

the control model, reaches the optimality, but the number

of variables in this optimization introduces a combinatorial

explosion of the computation load. In this paper we present

a distributed predictive control structure (dMPC). The air

temperature of the rooms is regulated by a local controllers,

which communicate with the others. This structure combines

the advantages of the previous ones: a result close to the

optimal solution with less computational demand.

The paper is constructed as follows. In Section II, the

dynamic prediction horizon is formalized. The efficiency of

the method is then illustrated by simulation. In Section III,

the approach developed for one zone is extended to large

scale buildings, highlighting the advantages of a distributed

control strategy. The convergence of the control algorithm is

analyzed. The performances of the method are illustrated by

simulations. Conclusions and perspectives are presented in

Section IV.

II. DYNAMIC PREDICTION HORIZON. SINGLE ROOM CASE

Heating systems are characterized by strong inertia and

very slow dynamics. Thus, in order to ensure a certain

comfort temperature at the beginning of an occupation period

it is necessary to have a large prediction horizon. This

also provides better stability margins of the closed loop

system, but the control input becomes less aggressive and

then less robust to disturbances [5]. In the heating case,
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the indoor temperature fluctuations are frequent and have

relatively faster dynamics (solar radiation, door or window

openings, . . . ). To have a better rejection of these distur-

bances (assuming that their behavior is unknown), it becomes

necessary to have a reduced prediction window. To avoid

sudden variations of prediction horizon from one sample time

to another we use the following idea: as soon as we enter

into a transition Inoccupation-Occupation (the occupation

vector becomes δδδk =
[

0 · · · 0 1
]T

) the window size

is gradually reduced (up to a minimum value Nmin
2 ). We

return to the maximum prediction horizon Nmax
2 as soon as

we re-enter in the inoccupation period. The dynamic behavior

of the prediction window size is illustrated by the Fig. 1 and

can be formalized by the following equation:

N c
2 (k) =







































Nmax
2 , δk(j) = 0, ∀j = 1...N2

j , j is the maximum which satisfies

δk(j) > δk(j − 1) and j ≥ Nmin
2

Nmin
2 , j is the maximum which satisfies

δk(j) > δk(j − 1) and j < Nmin
2

or j ∈ ∅ and δk(1) = 1.
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Fig. 1. Evolution of the prediction horizon size (Nmin
2 = 2, Nmax

2 = 4,
Ts = 10min)

A. Control law design

The first step in a predictive control approach is to define

the prediction model. The heating process can be described

by a linear model, represented in a discrete state space (with

the sampling time Ts) as:
{

xxx(k + 1) = AxAxAx(k) +BBBu(k)

y(k) = CxCxCx(k)
(1)

where the vector xxx ∈ IRn×1 is the state, u, y ∈ IR are

the input (heating power) and the output (measured room

temperature), respectively.

From the model (1), we can write the output predicted at

time step k + i, from the current state xxx(k) as:

ŷ(k + i|k) = CACACAixxx(k) +

i−1
∑

j=0

CACACAi−j−1BBBu(k + j). (2)

Considering (2) for i = 1...N c
2 (k), the output predicted

sequence becomes:

ŷyy(k) = ΨΨΨkxxx(k) + ΦΦΦkuuu(k),

with the matrices

ΨΨΨk =
[

(CACACA1)T · · · (CACACANc
2 (k))T

]T
,

ΦΦΦk =







φ0 0 ··· 0

φ1 φ0 0 ···

··· ···

. . . ···

φNc
2(k)−1

··· φNc
2(k)−Nu+1 ∑ Nc

2(k)−Nu

k=0 φk






,

φk = CCCAAAkBBB,

and the vectors

ŷyy(k) =
[

ŷ(k + 1|k) · · · ŷ(k +N c
2 (k)|k)

]T
,

uuu(k) =
[

u(k) · · · u(k +Nu − 1)
]T
.

We define now a dynamic criterion which takes in account

the future occupation profile: during the occupation period,

both comfort and energy consumption have to be optimized,

whereas during the inoccupation period only the energy

consumption is minimized. Based on these remarks, the cost

function can be expressed as:

Jk = (www(k) − ŷyy(k))T∆∆∆k(www(k) − ŷyy(k)) + uuu(k)TΛΛΛkuuu(k)

= uuu(k)T (ΦΦΦkT∆∆∆kΦΦΦk + ΛΛΛk)uuu(k)

− 2(www(k) −ΨΨΨkxxx(k))∆∆∆kΦΦΦkuuu(k)

+ (www(k) −ΨΨΨkxxx(k))T∆∆∆k(www(k) −ΨΨΨkxxx(k)),

where

www(k) =
[

w(k + 1) · · · w(k +N c
2 (k))

]T
,

∆k∆k∆k = diag{δk(1), δk(2), · · · , δk(N c
2 (k))},

ΛΛΛk = diag{λ, · · · , λ, (N c
2 (k) −Nu + 1)λ}.

The dynamical behavior of this criterion is repre-

sented by the occupation vector δδδk defined by δδδk =
[

δk(1) · · · δk(N2)
]T

, where δk(j) = 1 if k + j ∈
Occupation and δk(j) = 0 otherwise. The optimal control

input sequence at time step k can be analytically expressed

in the unconstrained case as:

uuuopt(k) = (ΦΦΦkT∆∆∆kΦΦΦk + ΛΛΛk)−1ΦΦΦkT∆∆∆k(www(k) −ΨΨΨkxxx(k)).

For practical reasons and to reduce the complexity of the

algorithm, we choose Nmin
2 = Nu. In this particular case,

ΨΨΨk and ΦΦΦk do not need to be computed on line. During

the initialization phase of the control algorithm, these two

matrices are calculated for Nmax
2 and the required values at

each sample time are obtained by selecting the first N c
2 (k)

lines of these matrices.

B. Simulation results

The results presented in this section have been obtained

using the MATLAB toolbox called SIMBAD [6]. The sim-

ulated room has a 42m3 volume. It is equipped with an

electric convector of 1200W maximum power. Two perfor-

mance indices have been defined to compare the proposed

strategy with a fixed horizon MPC. They represent the energy

consumption and the comfort:
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• The energy, in kWh, consumed for indoor heating:

IW =

kf
∑

k=k0

u(k)Ts.

• The comfort index penalizes the difference between the

measured room air temperature and the reference, but

only during the occupation periods. In oCh:

IC =

kf
∑

k=k0

|w(k) − y(k)|Tsδ
k−1(1).

From a qualitative point of view, Fig. 2 highlights the bet-

ter disturbance rejection of the MPC controller with dynamic

prediction horizon. Quantitatively, table I shows the results

obtained simulating a period of one month. The external

meteorological conditions simulated were those measured in

Rennes, in January 1998. If the predictive controllers are

more efficient than the on/off regulator, the dynamic horizon

one is even better.

TABLE I

PERFORMANCE COMPARISON

Control law IC [oCh] IW [kWh]

On/Off 369 206

MPC with N2 fixed 134 196

MPC with N2 dynamic 100 191
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Fig. 2. MPC with fixed and dynamic prediction horizon

III. MULTI-ZONE EXTENSION

A question arises naturally: how to extend this approach

to a multi-zone building? The most natural way would be to

apply this method in a room by room approach, so-called

decentralized method. Each controller acts independently.

The problem with this approach is that it does not take into

account the thermal coupling between rooms, through walls

and air circulation due to an open door, which leads in a loss

in control performance.

Another solution would be to take into account these cou-

pling effects in the prediction model and to define a global

regulator that controls all the rooms. This approach, so-called

centralized approach, improves the system performances,

but the computational complexity due to the number of

optimization variables, grows exponentially with the number

of zones. On the other hand, if the central controller fails,

the entire building is penalized.

Therefore, we propose a distributed approach where the

building heating system is controlled by local regulators

which communicate. Using the communication network,

the controllers exchange information regarding their future

behavior. This information sharing allows the distributed

scheme to converge towards the global optimal solution [7],

[8] or towards a Nash equilibrium [9], [10] with a reduced

computational load. A performance comparison of the three

control strategies for temperature regulation in multi-zone

buildings (decentralized, centralized and distributed) in a

MPC framework can be found in [11].

The main contribution of this paper is presented in the next

section, in which the dynamical horizon distributed approach

is formalized. In this case, the quantity of information

exchanged depends on the size of the prediction horizon.

A. Formalization of the dynamical horizon distributed MPC

As we have to consider the thermal coupling between

the rooms, the previous model (1) has to be adapted. For

one room i the thermal influences of the neighbor rooms

are represented by an output coupling. This leads to the

following equation:






xxxi(k + 1) = AAAixxxi(k) +BBBiiui(k) +
∑

j∈~i

BBBijyj(k)

yi(k) = CCCixxxi(k)

(3)

where ~i is the set of adjacent rooms of the zone i and

xxxi ∈ R
ni , ui, yi ∈ R are respectively the local state, the

control input and the output.

Note that this model structure can be derived by consid-

ering only the convective heat transfer between two adjacent

zones [12] and ignoring the external perturbations. From (3),

the output prediction equation for the subsystem i can be

expressed as:

ŷyyi(k) = ΨΨΨk
ixxxi(k) + ΦΦΦk

iiuuui(k) +
∑

j∈~i

ΦΦΦk
ijỹyyj(k), (4)

with the following notations

ŷyyi(k) =
[

ŷi(k + 1|k) · · · ŷi(k +N c
2i(k)|k)

]T
,

uuui(k) =
[

ui(k|k) · · · ui(k +Nui − 1|k)
]T
,

ỹyyj(k) =
[

ỹj(k) ỹj(k + 1) · · · ỹj(k +N cmax
2j (k) − 1)

]T

N cmax
2i (k) = max

j∈~i

N c
2j(k),

ΨΨΨk
i =

[

ψ1T
i · · · ψ

Nc
2i(k)T

i

]T

,

ΦΦΦk
ii =









φ0
ii 0 ··· 0

φ1
ii φ1

ii 0 ···

··· ···

. . . ···

φ
Nc

2i
(k)−1

ii
··· φ

Nc
2i

(k)−Nui+1

ii

∑ Nc
2i

(k)−Nui
k=0 φk

ii









,
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ΦΦΦk
ij =











φ0
ij 0 ··· ··· 01×Ncmax

2j
(k)−Nc

2i
(k)

φ1
ij φ0

ij 0 ··· 01×Ncmax
2j

(k)−Nc
2i

(k)

··· ···

. . . ··· ···

φ
Nc

2i
(k)−1

ij
··· φ1

ij φ0
ij 01×Ncmax

2j
(k)−Nc

2i
(k)











,

ψk
i = CCCiAAA

k
i , φ

k
ij = ψk

iBBBij .

The sequence of the optimal control inputs uuuopt
i (k) is

obtained by the analytic solution of the following local

unconstrained minimization problem:

Jk
i = ‖ŷyyi(k) −wwwi(k)‖

2
∆∆∆k

i
+ ‖uuui(k)‖

2
ΛΛΛk

i
(5)

and is

uuuopt
i (k) = ΞΞΞk

i



wwwi(k) −ΨΨΨk
ixxxi(k) −

∑

j∈~i

ΦΦΦk
ijỹyyj(k)



 ,

with ΞΞΞk
i = (ΦΦΦkT

ii ∆∆∆k
i ΦΦΦ

k
ii + ΛΛΛk

i )−1ΦΦΦkT
ii ∆∆∆k

i .

The key point of our distributed approach consists in the

way of constructing the output prediction at a time step k. To

do this, we use the predicted future behavior of the neighbors

computed at the previous sample time k−1 as initialization.

This is the information exchanged by the controllers. As a

dynamic prediction horizon is used, the prediction window

size at time k can be greater than the previous prediction

window (N c
2j(k − 1) < N c

2i(k)). In this case the vector

ỹyyj(k) has not the required dimension. This problem can be

solved using the fact the occupancy profiles are known for

the maximum prediction horizon, so the window sizes can

also be known in advance. This calculation can be done as

follows:

N̂ c
2i(k + 1|k) =































Nmax
2i , δk

i (Nmax
2i ) = 0

N c
2i(k) − 1 , N c

2i(k) > Nmin
2i and

δk
i (Nmax

2i ) = 1

Nmin
2i , N c

2i(k) = Nmin
2i and

δk
i (Nmax

2i ) = 1.

(6)

Determining N̂ c
2i(k + 1|k) for all subsystems is required

in order to know the size of the vectors ỹyyj(k+1) which are

needed by the neighbors controllers, at the next time step, to

build their predictions. Each controller sends its parameter

N̂ c
2i(k + 1|k) to all the neighbor regulators. Then, the

sequence of future outputs is completed by a decentralized

scheme, to reach the necessary dimension at the next instant.

This is given by:

N cmax
2i (k + 1) = max

j∈~i

N̂ c
2j(k + 1|k). (7)

The corrected vector will have the following structure:

ỹyyi(k) =
[

yi(k) ŷyyT
i (k) wwwT

i (k) yyyT
i (k)

]T
, (8)

containing four parts, where:

1) yi(k) is the current measured output value,

2) ŷyyi(k) corresponds to the local future output sequence

obtained by minimizing the local cost function Jk
i ,

3) wwwi(k) =
[

wi(k + Nc
2j(k) + 1) · · · wi(k + Noi(k))

]T

is the future reference sequence, with k +Noi(k) the

last occupation time instant,

4) yyyi(k) =
[

yi(k + Noi(k) + 1) · · · yi(k + Ncmax
2i (k))

]T

which is the local free response.

The existence of the third and fourth parts is due to the fact

that the neighbors of i may have a longer prediction horizon.

Our choice was to suppose that the local controller i acts

perfectly and the output of the subsystem perfectly matches

the reference during the occupation period. If N cmax
2i (k) −

Noi(k) > 0, another part is required, corresponding to an

inoccupation period. In this latter case, we complete the

output sequence with the free response of the subsystem from

the predicted state xxxi(k +N c
2i(k)), which gives:

yyyi = ΨΨΨ
k

i x̂xxi(k +N c
2i(k)|k),

with

ΨΨΨ
k

i =
[

(ψ1
i )T · · · (ψ

Ncmax
2i (k+1)−Nc

2i(k)
i )T

]T

,

x̂xxi(k +N c
2i(k)|k) = AAA

k

ixxxi(k) + ΦΦΦ
k

iiuuui(k) +
∑

j∈~i

ΦΦΦ
k

ijỹyyj(k),

ΦΦΦ
k

ii =
[

φ
Nc

2i
(k)−1

ii
··· φ

Nc
2i

(k)−Nui+1

ii

∑ Nc
2i

(k)−Nui
j=0 φ

j

ii

]

,

ΦΦΦ
k

ij =
[

φ
Nc

2i
(k)−1

ij
··· φ

1
ij φ

0
ij 0ni×(Ncmax

2j
(k)−Nc

2i
(k))pi

]

,

AAA
k

i = AAA
Nc

2i(k)
i , φ

k

ij = AAAk
iBBBij .

Fig. 3 illustrates the main principle of the construction

of the output prediction vector at a time step k, with a

distributed and a decentralized part.

N
c
m

a
x

2
i

(k
+

1)
=
N

m
a
x

2
i

Nmin
21 N c

21(k)

N c
22(k) = Nmin

22

Nmin
23 N c

23(k)

Room 1

Room 2

Room 3

Distributed Decentralized

Fig. 3. Construction of the output prediction vector

The algorithm 1 synthesizes the approach presented in this

section. This procedure is executed by each local controller

i at each sampling time k, and can communicate several

times (negotiation phase) to converge to a consensus. The

stop condition is linked to the variation of the control input

sequence from a negotiation step to the next one. We propose

in the next section a convergence condition of the negotiation

phases.
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Algorithm 1 Dynamic prediction horizon dMPC

1: Construct ỹyyi(k) using the output predictions at previous

time step and the current output local measure yi(k)
2: Send ỹyyi(k) and N c

2i(k) to all neighbors j ∈ ~i

3: Receive ỹyyj(k) and N c
2j(k) from all neighbors j ∈ ~i

4: Calculate N cmax
2i (k), l = 0

5: while l < lmax and ‖uuu
(l+1)
i (k) − uuul

i(k)‖∞ > ǫ do

6: Solve the local optimization uuul
i(k) = argminJk

i

7: Compute ŷyyl
i(k), yyy

l
i(k) and construct ỹyyl

i(k) (9)

8: Send ỹyyl
i(k) to all neighbors j ∈ ~i

9: Receive ỹyyl
j(k) from all neighbors j ∈ ~i

10: Update l = l + 1
11: end while

12: Apply the first element of uuu
(l−1)
i (k) to local subsystem

13: Calculate N̂ c
2i(k + 1|k) (6)

14: Send N̂ c
2i(k + 1|k) to neighbors j ∈ ~i

15: Receive N̂ c
2j(k + 1|k) from all j ∈ ~i

16: Compute N cmax
2i (k+ 1) (7), yyyi(k+ 1) and ŷyyi(k+ 1) =

ŷyy
(l−1)
i (k), update k = k + 1 and goto step 1

B. Convergence analysis of the proposed distributed strategy

This section will analyze the convergence of the nego-

tiation phase of Algorithm 1 for a given time step k. For

the sake of simplicity, in the following, we will drop the k-

dependencies. We can write the output sequence ỹyy
(l+1)
j sent

by the local controller j at a negotiation step l + 1 to all of

its neighbors, in the most general case as:

ỹyy
(l+1)
j =

[

yT
j ŷyy

(l+1)T
j wwwT

j yyy
(l+1)T
j

]T

= ΓΓΓ1jyj + ΓΓΓ2jŷyy
(l+1)
j + ΓΓΓ3jwwwj + ΓΓΓ4jyyy

(l+1)
j ,

(9)

where all the notations are the same as the ones explained

before, but specified for a given negotiation step l+ 1. Note

that the dimensions of these vectors may change at each time

step k, as shown in previous section. The prediction equation

(4) at iteration l + 1 is:

ŷyy
(l+1)
i = ΨΨΨixxxi + ΦΦΦiiuuu

(l+1)
i +

∑

j∈~i

ΦΦΦijỹyy
l
j , (10)

and the free local response part:

yyy
(l+1)
j = ΨΨΨj



AAAjxxxj + ΦΦΦjjuuu
(l+1)
j +

∑

s∈~j

ΦΦΦjsỹyy
l
s



 . (11)

The main objective of the next lines is to find a recurrence

equation, expressing the dependence of the output predictions

at a negotiation step l+1 on the output predictions at a nego-

tiation step l. In order to obtain a convergence condition, we

use the analytical solution of the unconstrained minimization

problem (5). The local optimal solution at iteration l+ 1 is:

uuu
(l+1)
i = −ΞΞΞi

∑

j∈~i

ΦΦΦijỹyy
l
j + ξξξi, (12)

with ξξξi = ΞΞΞi (wwwi −ΨΨΨixxxi). Replacing (10), (11) and (12) in

(9) we obtain ỹyy
(l+1)
i =

∑

j∈~i
ΘΘΘijỹyy

l
j +αααi, with the following

notations:

ΘΘΘij = ΓΓΓ2iΦΦΦij + ΓΓΓ4iΨΨΨiΦΦΦij −
(

ΓΓΓ2iΦΦΦii + ΓΓΓ4iΨΨΨiΦΦΦii

)

ΞΞΞiΦΦΦij ,

αααi = βββi +
(

ΓΓΓ2iΦΦΦii + ΓΓΓ4iΨΨΨiΦΦΦii

)

ξξξi,

βββi = ΓΓΓ1iyyyi + ΓΓΓ3iWWW i +
(

ΓΓΓ2iΨΨΨi + ΓΓΓ2iΨΨΨiAAAi

)

xxxi.

The global vector of the exchanged output sequences

defined as ỸYY
(l+1)

=
[

ỹyy
(l+1)T
1 ỹyy

(l+1)T
2 · · ·

]T

has the

following expression:

ỸYY
(l+1)

= ΘΘΘỸYY
l
+ααα, (13)

where ΘΘΘ =
[

ΘΘΘij

]

, with ΘΘΘij = 000Ncmax
2i

×Ncmax
2j

, ∀j /∈ ~i

and ααα = block − diag{ααα1,ααα2, ...}. The equation (13) is

the desired recurrence one and due to the fact that from

(12) in a similar way as in (13) the global input control

sequence can be expressed as ŨUU
(l+1)

= ΞΞΞỸYY
l
+ ξξξ, where

ΞΞΞ =
[

ΞΞΞij

]

, with ΞΞΞij = 000Nui×Ncmax
2j

, ∀j /∈ ~i and ξξξ =
block − diag{ξξξ1, ξξξ2, ...}, then a necessary and sufficient

condition can be formulated:

Proposition 1: (Convergence of Algorithm 1). For a given

time step k, the negotiation process (described by the while

loop in Algorithm 1) converges to a consensus, if and only

if |ρ {ΘΘΘ}| < 1. That is the spectrum radius must be less than

1 to guarantee a convergent computation.

The next section presents the simulation results, illustrat-

ing not only the efficiency of the proposed approach but also

the convergence mechanism.

C. Simulation results

This algorithm has been tested in simulation using the

SIMBAD toolbox, for a building with three rooms of 42m3

volume, equipped with 1200W maximum power electric

convectors, according to the scheme in Fig. 4. The prediction

model (which attains 10 state variables) has been obtained

by experimental identification of the simulation model.

Zone1 Zone2

Zone3

6m

2m

4m

MPC2

MPC3

MPC1 Thermal transfer
y1
u1

y2
u2

y3
u3

Fig. 4. Simulated building configuration

TABLE II

PERFORMANCE COMPARISON

Control law IC [oCh] IW [kWh]

On/Off 306 312

dMPC with N2 fixed 285 284

dMPC with N2 dynamic 283 276
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Fig. 6 presents the results obtained simulating a one day

period. The first part of the figure shows the reference

tracking and the control inputs. The second part illustrates

the prediction window sizes and the time evolution of the

distributed and the decentralized parts of the exchanged

output sequences ỹyyi(k). Because of the slow dynamics

of the thermal systems, the performance gain is not very

significant minimizing local criterion over the iterations. The

coupling variables, ỹyyj(k), evolve very slowly between two

consecutive optimizations which gives a fast convergence

over negotiation steps, as shown in Fig. 5. Therefore, only

one iteration (lmax = 1) is sufficient in practice to calculate

the control input, which gives a computational load similar

to the decentralized approach. Note that the convergence test

of the proposed algorithm can be made offline by computing

the matrix ΘΘΘ for all the possible combinations of the set

{N c
2i(k)}, i = 1, 2, ... In table II, the distributed MPC

performance with fixed and dynamic prediction horizon is

compared to a decentralized On/Off control law with an

anticipation of Nmax
2i Ts [s] of the occupation periods.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an original control law to

address the temperature regulation in large scale buildings.

It is based on a distributed predictive control structure in

which the idea is the use of a dynamic prediction hori-

zon, depending on the occupation profile, allowing a better

disturbance rejection. Firstly, this control strategy has been

presented and tested for the temperature regulation of one

room, then extended for a multi-zone building, resulting in a

distributed control architecture, with a convergence analysis.

The effectiveness of the proposed approach was illustrated

by various simulations.

Regarding our future work, we plan to adapt this method to

multiple heating sources case as well as taking into account

the weather forecasts in the control algorithm. On a more

theoretical way, we will try to formally guarantee the stability

of the system controlled by the dynamic horizon dMPC.
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Fig. 6. Distributed predictive strategy behavior and the horizon evolution
(λi = 1, Nui = Nmin

2i = 5, Nmax
2i = 30, i = 1...3, Ts = 600s)
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