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Abstract— This paper presents a predictive control structure
for thermal regulation in buildings. The proposed method
considers a dynamic cost function trying to exploit the inter-
mittently operating mode of almost all types of buildings. One
of the key idea is to use the knowledge about the occupation
profile. For that purpose, the predictive control strategy is
first presented for a single zone building then extended to a
multizone building example. Two opposite control strategies
commonly exists. The decentralized control structure, which
does not offer good performances especially when the thermal
coupling among adjacent rooms is not negligible, and on the
other hand, the centralized control for which the computational
demand grows exponentially with the size of the system, being
very expensive for large scale buildings. Our solution is based on
a distributed approach which takes the advantages of the both
methods mentioned above. A distributed MPC algorithm with
one information exchange per time step is proposed with good
control performances and low computational requirements.

I. INTRODUCTION

The scientific and the political communities have been

aware for several years of the global warming problem.

By consequence, an European target is the reduction of

greenhouse gases by 20% until 2020 while allowing eco-

nomic and demographic growths. This can be reached only

if the energy consumption is optimized. In 2007 the services

and households sectors use 40% of the total final European

(EU-27) energy. Within the buildings, the heating systems

consume more than 50% which means about 23% of total

energy consumption. Even if the trends are to construct new

energy-efficient buildings, an overall energy consumption

reduction cannot be achieved without an optimization in the

existent buildings. As renovations and isolations have high

costs and are time demanding, in this context, an advanced

control law is the optimal solution. The challenges of indoor

heating system control are to find a compromise between the

user thermal comfort and the energy consumption.

Even if many studies were performed in order to optimize

the energy efficiency of heating systems, the controllers that

are used today remain basic on/off type or PID. To ensure

proper regulation auto-tuning methods of PID parameters

have been proposed [1]. The major problem of thermal

systems is their slow dynamic, usually with time delays

[2]. Therefore, other approaches have been proposed in the

literature like fuzzy logic [3], neural networks [4] or genetic

algorithms [5].
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During the last two decades a growing interest has been

granted to model predictive control (MPC). In MPC, the

control input is calculated by solving an optimal control

problem (minimization of a cost function) over a given

horizon. Only the first element of the open-loop command

sequence is applied to the system. At the next instant, a new

optimization is performed based on current measurements.

The predictive control has been successfully used in many

and varied applications [6], [7]. In particular, for heating

and cooling systems, different formulations of cost functions

and constraints have been analyzed in [8] to minimize the

consumption or to guarantee a desired comfort level.

In this paper, a predictive control law is proposed in order

to regulate the indoor temperature. The idea is to use the

future occupation profile of the rooms and to obtain a certain

degree of thermal comfort while the room is occupied.

In order to reduce the energy consumption, no particular

temperature setpoint is imposed when the rooms are empty

(without occupants). In the second part of this work, we

intend to generalize our approach to a multi-zone building

considering the thermal coupling between the zones.

The paper is organized as follows. Section II introduces

the control problem in a single zone example defining the

minimization criterion which includes the future occupation

as an error weighting factor. In Section III, we generalize

the proposed predictive approach to a multi-zone building

(comparing the decentralized, centralized and distributed

approaches). A tractable distributed MPC (dMPC) algorithm

is proposed, which offers high performances with low com-

putation cost. The efficiency of the proposed control strategy

is illustrated by a comparison between different control

structures performances. Conclusions and future directions

are proposed in Section IV.

II. SINGLE ZONE APPROACH

A. Presentation

The control problem of a room heating system is to min-

imize the energy consumption maintaining a certain thermal

comfort for the occupants. Assuming that the comfort in

this case is defined by a reference temperature, then why

do we need a complicated method as predictive control

while a simple PI could be sufficient? The reason comes

from the fact that the comfort is defined only while the

room is occupied and most of buildings are intermitently

occupied. The current room temperature controllers have an

inoccupation setpoint which is usually motivated only by

transient time constraints and to facilitate the building ther-

mal load calculation. This means that the controller maintains

a certain indoor temperature only to avoid long transient
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periods between inoccupation and occupation setpoints. The

existence of an inoccupation minimal temperature setpoint

is not efficient (from the energy consumption point of view)

especially if the building is equipped with an electric heating

system. In this case, using a simple reactive control law as

PI and due to the slow dynamics of the thermal system, the

steady state can be reached after few minutes or several hours

depending on heater characteristics, isolation, internal and

external perturbations. The anticipative effect of the MPC can

be used to overcome this issue. Modifying the minimization

criterion of the MPC according to future occupation profile

allows us to handle the absence of the setpoint during

inoccupation periods without reducing the comfort of the

occupation phases. The only assumption made is that the

future occupation profile is known in advance at least over

a finite prediction horizon window.

B. Defining a dynamic cost function

The anticipative effect of MPC consists in using a model

of the process in order to predict its behavior during a finite

horizon. A linear discrete time representation of the system

for a single room building can be the following ARX form:

A(q−1)y(k) = B(q−1)u(k − 1) + ξ(k), (1)

where u(k) and y(k) are the input, indicating the heating

power, respectively the output (the indoor air temperature)

of the system, ξ(k) is the perturbation acting as a zero mean

white noise, A(q−1) and B(q−1) are polynomials in q−1 (the

one step delay operator).

The controller computes the command sequence minimiz-

ing a cost function. This optimization criterion has usually

two terms, one that includes the error and the other that

contains the control effort. One of the common cost function

in predictive control is:

J =

N2
∑

j=N1

δ(j)[ŷ(k + j|k) − w(k + j)]2

+ λ

Nu−1
∑

j=0

∆u2(k + j),

(2)

where N1 and N2 are the minimum and the maximum

bounds of the prediction horizon, ŷ(k + j|k) is the predicted

output, w(k + j) the future reference, δ and λ are the

weighting coefficients for the error and for the command

respectively, Nu is the control horizon and ∆u the com-

mand increment. The sequence of predicted outputs (3) are

computed as follows:

ŷ(k + j|k) = Fj(q
−1)y(k) + Hj(q

−1)u(k − 1)

+ Gj(q
−1)u(k + j − 1)

+ Jj(q
−1)ξ(k + j),

(3)

where the polynomials Fj , Hj , Gj and Jj are obtained by

solving (recursively) two Diophantine equations, where the

model polynomials, A(q−1) and B(q−1), are included (see

[7] for details). The optimal prediction equation is obtained

considering the mean (zero here) as the best prediction for

the white noise ξ.

To understand our approach it is better to analyze the

output behavior of the MPC related to (2) in Fig. 1.

a

Time

Temperature
b c

d

Fig. 1. MPC with the classic cost function

It can be seen that the anticipative effect is present (a) and

(c), but the necessity of a temperature setpoint (d) during

inoccupation causes a decreasing in the comfort level at the

beginning (b) and at the end (c) of the occupation period.

In order to remove this drawback another cost function

is proposed, as the first main contribution of the paper,

that incorporates the future occupation profile as the error

weighting term:

J(k) =

N2
∑

j=N1

δk(j) |ŷ(k + j|k) − w(k + j)|

+ λ

N2−N1
∑

j=0

u(k + j),

(4)

subject to

0 ≤ u(k + j) ≤ Pmax, ∀j = 0..N2 − N1, (5)

u(k + j) = u(k + Nu − 1), ∀j = Nu..N2 − N1, (6)

where δk(j) is defined as:

δk(j) =

{

1, if k + j ∈ Occupation

0, if k + j ∈ Inoccupation
. (7)

The vector δk represents the future occupation profile

and enables to manage the absence of a setpoint during

the inoccupation periods when the criterion is minimizing

only the consumption. If a person enters the zone and this

occupation has not been foreseen then δk will be forced to

have all the elements equal to 1.

Note that the second term of the cost function (2) was

changed in (4) because the objective is to minimize the en-

ergy consumption u and not the increment ∆u. The quadratic

form in (2) was definitely abandoned considering classical

control performance indices evaluating energy consumption

(8) and thermal comfort (9), which are not in a quadratic

form.

Indeed, the consumption index (IW ), in kWh, is the

integral of heating power required over the simulation period:

IW =

∫ tf

t0

u(t)dt. (8)
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The comfort index (IC), in oCh, acts as a penalty when

the room temperature does not meet the comfort objective.

As the comfort is defined only within the occupation periods,

it can be written as:

IC =

∫

Occupation

|w(t) − y(t)| dt. (9)

The input inequality constraint is necessary to guarantee

the positivity of the criterion and to define the maximum heat

power of the actuators. The role of the equality constraint

is to reduce the optimization argument dimensions from

N2−N1+1 to Nu. This decreases the computational demand

of the optimization but with a loss of performance. If it

is strongly necessary, a minimal temperature constraint can

be added to avoid low temperatures during the inoccupation

periods as ŷ(k + j|k) ≥ Tmin, ∀j = N1..N2.

C. First results and discussions

Fig. 2 shows a simulation (using SIMBAD Toolbox) of

the proposed control law for a 12m2 room heated by a

1200W electric convector, under meteorological conditions

of 01/01/1998 in Rennes, France. The occupation period is

a priori known being between 8:00 and 17:00, during which

temperature setpoint equals 20oC.
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Fig. 2. Temperature and command signals using the proposed MPC

The prediction horizon is chosen to offer enough time for

the control system to increase the indoor temperature up

to the desired setpoint in the worse situation (low indoor

and low external temperatures). In the simulations we used

N1 = 1, Nu = 3 for single zone and Nu = 10 for the

multizone case, N2 = 30 and Ts = 10min, obtaining a

prediction window of 5 hours. As it can be seen in Fig.

2, even if the controller ’sees’ the first occupation setpoint

at 3:00 the heating starts later, at the optimal time. A similar

effect appears at the end of the occupation period when the

heater is turned off before the end of the occupation, using

in an optimal way the thermal inertia of the building. The

command oscillations at the end of the occupation period

appears from the moment when an important part of the input

blocking horizon [Nu, N2−N1] is in the inoccupation period

(and a zero command is favored) and u(k + j) = 0, ∀j =
Nu..N2−N1. Then then unblocked part of the control input

sequence tries to compensate this behavior, resulting a more

aggressive control input.
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Fig. 3. Comfort and consumption indices achieved for different values of
λ

The command weighting factor λ influences the steady

state error. A big value of λ means that the energy is very

expensive and by consequence the comfort quality will be

decreased. Analyzing Fig. 3 we obtain a mean of 2oCh for

1kWh. However, we can see that the average slope of the

two curves are modified for values of λ below 1/Pmax and

a small gain in comfort will be reached with a relatively

big amount of energy. Even if values between 1/Pmax and

2/Pmax are a good choice, in the simulations presented

in this paper, we are using λ = 1/Pmax. Note that for

λ > 2/Pmax, the thermal comfort will be decreased at the

beginning and at the end of the occupation periods which will

diminish the advantage of using a dynamic cost function.

III. MULTIZONE APPROACH

This section will analyze the generalization of the pre-

dictive control law proposed above for multi-zone (large

scale) buildings. Even if the controllers working in almost all

buildings are zone-independent, the thermal coupling factor

can be important (the internal walls isolation is weak). For

simplicity purposes, a three-zone building (Fig. 4) equipped

with independent convector heaters was used in the simula-

tions and for theory description. However, generalization for

several zones can be easily achieved.

As we already mentioned, the experimental results were

obtained using SIMBAD Toolbox. The simulated building

is a three zones (3x42m3) with three independent electrical

convectors of 1200W maximal power. It has a double glazed

window of 2m2 surface on the larger external wall of each

zone. The external wall sandwich consists of 1cm of gypsum,

8cm of extruded polystyrene and 20cm of concrete. The

internal wall is 7.2cm thick of gypsum board. The simulator

supposes a well mixed indoor air. Concerning the building

orientation, the common external wall for zones 1 and 2 faces

to the NW.

A. Decentralized MPC

As mentioned above, the most used building thermal con-

trol structure is a decentralized one. In this case each room

air temperature is regulated by an independent controller.

The thermal influences among the subsystems are considered
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Fig. 4. Three-zone building configuration

as external unknown perturbations. For the indoor heating

control system, the positive perturbations have a significant

action because the control input is bounded (between 0 and

Pmax) and positive, which means that the controller can only

heat up the zone. The decrease of the indoor temperature is

caused mainly by losses through walls and infiltrations.

The decentralized MPC approach for the three-zone build-

ing is the simplest generalization of the MPC presented

in Section II for a multi-zone strategy. This implies that

each room temperature is regulated by its own controller

independently of all others. Intuitively, as the thermal cou-

pling between the rooms is ignored by the prediction models

when these influences are important (and positive) they

will not be quickly rejected and certain output overshoots

will appear (Fig. 5). The slowness of the MPC controller

in the perturbation rejection is due to the relatively large

prediction window. We can expect that considering in the

control law the entire coupled system will diminish or even

eliminate these overshoots and as a result the overall energy

consumption will decrease (IW ց) and the thermal comfort

will be improved (IC ց).
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Fig. 5. Decentralized MPC behavior

B. Centralized MPC

In the centralized control structure case, the entire multi-

zone system is controlled by one MPC law. The model used

for prediction includes the coupling elements.

Knowing that in particular for multi-zone heating systems

the coupling element is the output of each subsystem (the

measured temperatures [9]) then a model of one zone includ-

ing this influence with the adjacent rooms can be expressed

in a state space formulation as:






xi(k + 1) = Aixi(k) + Bi

[

ui(k)
y~i

(k)

]

yi(k) = Cixi(k)

, i = 1..3 (10)

where y~i
includes the outputs of all adjacent rooms (~i) of

i. Using the local models and the building structure, we can

derive the global model (14) matrices as:

Ag =





A1 B12C2 B13C3

B22C1 A2 B23C3

B32C1 B33C2 A3



 , (11)

Bg = block-diag(B11,B21,B31), (12)

Cg = block-diag(C1,C2,C3), (13)

where Bij represents the column j of Bi.

The global state space representation of the entire (cen-

tralized) system can be written as:
{

x(k + 1) = Agx(k) + Bgu(k)

y(k) = Cgx(k)
(14)

where

x(k) =
[

xT
1 (k) xT

2 (k) xT
3 (k)

]T
,

u(k) =
[

uT
1 (k) uT

2 (k) uT
3 (k)

]T
,

y(k) =
[

yT
1 (k) yT

2 (k) yT
3 (k)

]T
,

(15)

are respectively the state, the control signal and the output

of the centralized model.

Considering the positivity and the additivity properties of

the cost function used, the global criterion for the 3x3 system

can be written as J(k) =
∑3

i=1 Ji(k) where

Ji(k) =

N2
∑

j=N1

δk
i (j) |ŷi(k + j|k) − wi(k + j)|

+ λi

N2−N1
∑

j=0

ui(k + j),

(16)

subject to

0 ≤ ui(k + j) ≤ Pmaxi
, ∀j = 0..N2 − N1, (17)

ui(k + j) = ui(k + Nu − 1), ∀j = Nu..N2 − N1. (18)

Each output prediction ŷi will be computed including the

modeled coupling factors. In the simulation results (Fig. 6)

using the same occupation profiles and external conditions as

in the decentralized example (Fig. 5), the zone temperatures

presents no overshoots.
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Fig. 6. Centralized MPC behavior

Even if the control performances are good, the compu-

tational demand of a centralized MPC grows exponentially

with the system size. The implementation of this control

law for large scale buildings is time-consuming because of

the high necessary computational power of the controller.

Moreover, a damage of the central controller will cause the

failure of the entire building heating system.

C. Distributed MPC

Because of the computational complexity of the central-

ized MPC, the application area of this type of control is

restricted to only relatively small-scale MIMO systems. A

distributed approach (dMPC) seems to be the only solution

for large-scale dynamically coupled systems. The dMPC is

structured as a decentralized law, with a local controller

for each subsystem (Fig. 7). In order to converge to the

global optimal solution [10], [11] or to a Nash equilibrium

point [12], [13], the local MPCs exchange informations

related to their future behavior. A communication network

and an algorithm, that allow the collaboration among the

local control laws, permit the improvement of global system

performance compared to decentralized structure. On the

other hand, the computational demand should be significantly

reduced compared to the centralized case.
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Fig. 7. Distributed MPC configuration

The multi-zone heating system dMPC idea is to use

for each local controller the future output prediction of

the neighbor rooms. Based on the model developed in the

previous section, the output prediction equation of subsystem

i can be written as:

ŷi(k) = Ψixi(k) + Φi1ui(k) +
∑

s∈~i

Φisys(k), (19)

with the following notations:

ŷi(k) =
[

ŷi(k + N1|k) · · · ŷi(k + N2|k)
]T

,

ui(k) =
[

ui(k|k) · · · ui(k + Nu − 1|k)
]T

,

Ψi =
[

CiA
N1

i · · · CiA
N2

i

]T
,

Φi1 =







φN1−1
i1 · · · φ0

i1 0 · · ·
... · · ·

...
. . .

...

φN2−1
i1 · · · · · · φN2−Nu+1

i1

∑N2−Nu

k=0 φk
i1






,

Φis =







φN1−1
is · · · φ0

is 0 · · · 0
... · · ·

...
...

. . .
...

φN2−1
is · · · φN2−N1

is φN2−N1−1
is · · · φ0

is






,

φk
ij = CiA

k
i Bij ,

ys(k) =











ys(k)
ŷs(k + N1|k − 1)

...

ŷs(k + N2 − 1|k − 1)











.

Replacing (19) in (16) and writing the local cost function

in a matrix form we have:

Ji(k) = δk
i

∣

∣

∣

∣

∣

Ψixi(k) + Φi1ui(k) +
∑

s∈~i

Φisys(k) − wi(k)

∣

∣

∣

∣

∣

+ λieui(k),

where

δk
i =

[

δk
i (1) · · · δk

i (N2 − N1 + 1)
]

,

e =
[

1 · · · 1 N2 − N1 + 2 − Nu

]

∈ R
Nu .

Algorithm 1 dMPC with one communication step and output

coupled model

1: Send ŷi(k − 1) and yi(k) to all j ∈ ~i

2: Receive ŷj(k − 1) and yj(k) from all j ∈ ~i

3: Replace ŷj(k + N1 − 1|k − 1) in ŷj(k − 1) with yj(k)
for all j ∈ ~i

4: Solve the local optimization problem min
ui(k)Ji(k) and

compute ŷi(k)
5: Apply the first element of ui(k) to the local subsystem

6: k = k + 1 and go to step 1

Algorithm 1 is close to the idea of [13] with few modifica-

tions. Using the output coupled model (10) the information

exchanged by the controllers is the predicted output sequence

and not the future control input. An innovative aspect is

that we included the current measures of neighbors outputs

in the first element of the prediction sequence, adding a

robustness degree of the command. The convergence and the
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stability conditions for an unconstrained distributed MPC can

be easily formulated using the explicit solution as in [13]. In

the constrained case these conditions are an open problem.

This paper focuses only on the control performances.

A multiple iteration version of the algorithm 1 has been

tested, using a stop condition of the following form:

∣

∣

∣
u

(l+1)
i (k) − u

(l)
i (k)

∣

∣

∣
≤ ǫi, i = 1..3

and for ǫi = 10−3, i = 1..3, the maximum number of

iterations was 3. The fast convergence of the algorithm

is due to the output coupling of the model. Knowing the

slowness of the thermal systems, the coupling element has

small variations between two consecutive iterations. Then,

the iterative algorithm will converge to a Nash equilibrium.

Even if the distributed algorithm does not converge to the

global centralized solution, the simulation results show that

the control performances of the two methods are close.
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Fig. 8. dMPC behavior using Algorithm 1

From a computational point of view, the proposed dis-

tributed MPC (Algorithm 1) has the same complexity as

the decentralized approach, considering that the calculation

of ŷi(k) requires less time than the optimization routine.

In the distributed approach, we should also consider the

communication efficiency, which can be very important in

the overall efficiency of the algorithm.

D. Results analysis

The centralized and the distributed MPC give close per-

formances (Table I), with the mention that dMPC is less

computational demanding. For example, using a Dual CPU

at 3.00GHz and Matlab routines, we obtained a mean of

0.618s for the centralized optimization time versus 0.19s,

the time spent by each distributed controller to minimize its

local criterion. In the dMPC case we should add the commu-

nication time for one time step which depends on network

protocol performances. The performance gap between the

dynamic MPC algorithm and a classic control law (on/off,

P, PI) with anticipation can be even greater if the occupation

periods have a higher frequency.

TABLE I

COMPARISON BETWEEN DIFFERENT CONTROL STRUCTURES

Control law IC [oCh] IW [kWh]

On/off (±0.1, Ts = 60s) 306 312

P (k=0.5) 328 295

PI 306 308

Decentralized MPC 319 288

Centralized MPC 191 279

Distributed MPC 195 273

IV. CONCLUSION

A model predictive control strategy has been proposed for

building temperature regulation using electrical convectors.

In order to obtain better control performances, the control

design is based on the optimization of a dynamic cost

function that includes the future occupation profile, which

is the first main contribution of the paper. For large-scale

buildings, especially when the internal walls have a low ther-

mal isolation, a one-step distributed algorithm was proposed,

which gives good results with low computational demand.

Future work will focus on the impact of a more detailed

vision of the thermal coupling between zones through open

doors. Another research topic is the control problem with

multiple heat sources, with different energy costs. A more

theoretical theme is a stability study of the dynamic cost

function MPC.

REFERENCES

[1] C. G. Nesler, “Adaptive control of thermal processes in buildings,”
IEEE Control Systems Magazine, pp. 9–13, 1986.

[2] J. Bai, S. Wangb, and X. Zhang, “Development of an adaptive Smith
predictor-based self-tuning PI controller for an HVAC system in a test
room,” Energy and Buildings, no. 40, pp. 2244–2252, 2008.

[3] M. Hamdi and G. Lachiver, “A fuzzy control system based on the
human sensation of thermal comfort,” IEEE International Conference

on Fuzzy Systems, pp. 487–492, 1998.
[4] J. Liang and R. Du, “Design of intelligent comfort control system

with human learning and minimum power control strategies,” Energy

Conversion and Management, no. 48, pp. 517–528, 2008.
[5] N. Nassif, S. Kajl, and R. Sabourin, “Optimization of HVAC control

system strategy using two-objective genetic algorithm,” HVAC&R

Research, no. 3, pp. 459–486, 2005.
[6] M. Morari and J. Lee, “Model predictive control: past, present and

future,” Computers and Chemical Engineering, vol. 23, pp. 667–682,
1999.

[7] E. F. Camacho and C. Bordons, Model Predictive Control. Springer,
2004.

[8] R. Z. Freire, G. H. Oliveira, and N. Mendes, “Predictive controllers
for thermal comfort optimization and energy savings,” Energy and

Buildings, no. 40, pp. 1353–1365, 2008.
[9] T. Hong and Y. Jiang, “A new multizone model for the simulation

of building thermal performance,” Building and environment, vol. 32,
no. 2, pp. 123–128, 1997.

[10] M. D. Doan, T. Keviczky, I. Necoara, M. Diehl, and B. D. Schutter, “A
distributed version of Han’s method for dmpc using local communica-
tions only,” Journal of Control Engineering and Applied Informatics,
no. 11, pp. 6–15, 3 2009.

[11] Y. Zhang and S. Li, “Networked model predictive control based on
neighbourhood optimization for serially connected large-scale sys-
tems,” Journal of Process Control, no. 17, pp. 37–50, 2007.

[12] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar, “Distributed
model predictive control,” IEEE Control Systems Magazine, pp. 44–52,
2002.

[13] S. Li, Y. Zhang, and Q. Zhu, “Nash-optimization enhaced distributed
model predictive control applied to the Shell benchmark problem,”
Information Sciences, vol. 170, pp. 329–349, 2005.

3179


