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A generalised stochastic model for the simulation of occupant presence
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Abstract

This paper describes an algorithm for the simulation of occupant presence, to be later used as an input for future occupant behaviour models

within building simulation tools. By considering occupant presence as an inhomogeneous Markov chain interrupted by occasional periods of long

absence, the model generates a time series of the state of presence (absent or present) of each occupant of a zone, for each zone of any number of

buildings. Tested on occupancy data from private offices, the model has proven its capacity to realistically reproduce key properties of occupant

presence such as times of arrival and departure, periods of intermediate absence and presence as well as periods of long absence from the zone. This

model (due to related metabolic heat gains), and associated behavioural models which use occupants’ presence as an input, have direct

consequences for building energy consumption.
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1. Introduction

A large number of simulation tools are available for the

estimation of a building’s energy consumption (such as ESP-r

or ENERGY+) and very recently new tools (proposed by [1,2])

have shown their capacity to simulate urban districts

comprising buildings of various sizes and uses. The latter

tools emphasize the importance of implementing energy saving

measures at the equipment and building levels and reveal the

potentiality of district-level energy generation and distribution.

These tools may produce yearly profiles of the energy needed

by a building, for heating, cooling, lighting and ventilation as

well as for hot water and electrical appliances. Such tools may

also be used to size the associated heating, ventilation and air-

conditioning plants (such as separate boilers, combined heat

and power plants, district heating systems, photo-voltaic or

solar thermal panels, etc.). An important issue in sizing these

production systems is to estimate peaks in demand that will

have to be met. It is therefore necessary to reliably estimate the

fluctuations in energy consumption. Stochastic variables linked

to the climate and to the behaviour of the buildings’ occupants

have important influences on those fluctuations. While high
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quality measured climate data is available at reasonably fine

temporal resolution, corresponding data linked to the occupant

in all its stochastic variety is scarce. However the modeling of

occupant behaviour is starting to bloom.

The influence of occupants on the building they occupy can

be broken down into several means of interaction (as discussed

by [3]), each of which can be represented by a stochastic model

as shown in Fig. 1. Being present within the building is clearly a

necessary condition for being able to interact with it. Occupant

presence is therefore an input to all other models and the model

for occupant presence will be central to the family of other

stochastic models [4]. As each human being emits heat and

‘‘pollutants’’ (such as water vapor, carbon dioxide, odours,

etc.), its presence directly modifies the indoor environment.

Occupants also interact with a building to enhance their

personal comfort. For example they will heat, cool or ventilate

their environment to improve their thermal comfort, they will

adjust lighting systems or blinds to optimize their visual

comfort. Finally occupants’ interactions also relate to the tasks

that they are accommodated to perform: in an office building

occupants may use diverse electrical appliances tending to

internal heat gains and the consumption of electricity. In

residential buildings, household appliances can consume water

(hot and cold) as well as electricity; occupants may also

produce waste. A model capable of reproducing patterns of

presence of occupants in a building is therefore of paramount
model for the simulation of occupant presence, Energy & Buildings
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Fig. 1. Outputs of the occupancy model and their later use by stochastic models of occupants’ behaviour.
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importance in simulating the behaviour of occupants within a

building and their effects on the buildings’ demands for

resources such as energy (in the form of heat, cold and

electricity) or water as well as the production of waste (which

may be later used to derive energy). Models for the simulation

of occupant’s interactions with windows ([5] and more recently

[6]), lighting [7] and air-conditioning [8] have been developed

and these can directly benefit from a realistic input of occupant

presence. Interfaces to link models of occupant behaviour to

various dynamic building simulation tools have also been

developed (such as SHOCC explained in [9]). When applied to

a single building simulation tool these stochastic models will

help to provide information on the distribution of the demand in

energy and therefore on how the production plants should be

sized. When applied to a whole neighbourhood (this is possible

with the software tool SUNtool [2]), several energy supply

scenarios can be tested in order to choose the right mix, size and

lay-out of different technologies (combined heat and power,

district heating and cooling, solar or wind power, etc.).

Currently the most common way of considering occupant

presence within simulation tools is by using so-called

‘‘diversity profiles’’ [10]. These are used in order to accurately

estimate the impact of internal heat gains (from people, office

equipment and lighting) on energy and cooling load calcula-

tions of one building. The profiles may depend on the type of

building (typical categories being ‘‘residential’’ and ‘‘com-

mercial’’) and sometimes on the type of occupants (size and

composition of a family for example). Weekdays and week-

ends1 are usually handled differently, especially in the case of

commercial buildings. A daily profile (either for a weekday or a

weekend) is composed of 24 hourly values; each of these

corresponds to a fraction of a given peak load. The weekday and

weekend profiles and the peak load are related to a particular

category of building and type of heat gain (metabolic heat gain,
1 Holidays are usually considered as weekends.
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receptacle load, lighting load); they may be based on data

collected on a large amount of monitored buildings.

Alternatively the user of the simulation tool can also enter

profiles that (s)he deems best fit for the building in question. An

annual load profile for each type of heat gain is constructed by

repeating the weekday and weekend daily profiles and

multiplying them by the peak load. The weakness of this

method lies in the repetition of one or possibly two profiles and

the fact that the resulting profile represents the behaviour of all

the occupants of a building. The latter simplification reduces

the variety of patterns of occupancy particular to each person by

replacing it with an averaged behaviour. The former

simplification neglects the temporal variations, such as seasonal

habits, differences in behaviour between weekdays (that appear

in monitored data) and atypical behaviours (early departures

from the zone, weeks of intense presence and of total absence,

unpredicted presence on weekends in the case of office

buildings—events that all appear in monitored data).

The use of a lighting appliance, and the corresponding

implications for electrical energy use, is obviously linked to the

presence of its user. It is therefore of little surprise that

researchers developing lighting models have been the most

eager to account for the randomness of occupant presence in the

most efficient way. Hunt was the first to emphasize the

importance of occupant interaction with lighting appliances

[11]. His work has been incorporated into simulation tools such

as ESP-r or SER-Res [12]. Later on Newsham [13] and Reinhart

[7] introduced a simple stochastic model of occupant presence

in their work on the Lightswitch model. They were interested in

reproducing more realistic times of arrival and departure of

occupants to and from their offices and modified the standard

profiles mentioned above to this end. Their simulated

occupancy profile corresponds to working hours from 8:00

to 18:00 with a 1 h lunch break at noon and two 15 min coffee

breaks in the morning at 10:00 h and in the afternoon at 15:00 h

(that the occupant takes with a 50% probability). To this they

added the following:
model for the simulation of occupant presence, Energy & Buildings

http://dx.doi.org/10.1016/j.enbuild.2007.01.018


2 It should be noted that the loads resulting from the use of lighting and

appliances used by groups of occupants are calculated based on fixed schedules.
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‘‘All arrivals in the morning, departures in the evening and

breaks are randomly scheduled in a time interval of�15 min

around their official starting time to add realism to the

model’’. [7]

This enables them to replace the unrealistic peaks mentioned

above by a more natural spread around a fixed average.

Although this represents a certain progress towards a realistic

simulation of occupant presence the fact that the major portion

of the profile is fixed (presence of 100% during most of the

working hours, presence of 0% from 18:15 to 7:45 h, repetition

of the same profile for all weekdays and the assumption that the

zone is unoccupied during weekends) prevents the model from

reproducing the variety both in behaviours and over time of

occupant presence. One important aspect of this restriction is

the lack of periods of long absence (corresponding to business

trips, leaves due to sickness, holidays, etc.) leading to an

overestimation of the total yearly presence and associated

energy consumption, as recognized by the authors. The

appearance of occupants on weekends, their arrival before

7:45 h and departure after 18:15 h are phenomena that are

common to the real world but are omitted by the model. Finally

the absence of occupants outside of breaks is also an event that

it fails to simulate.

This last deficiency was studied by Wang [14]. She

examined the statistical properties of occupancy in single

person offices. Based on her observations she made the

hypothesis that the duration of periods of intermediate presence

and absence (i.e. taking place between the first arrival of the

occupant to the office and her/his last departure from the office)

are exponentially distributed and that the coefficient of the

exponential distribution for a single office could be treated as a

constant over the day. She was able to validate these hypotheses

in the case of absence but not in that of presence. To generate a

simulated pattern of presence in an office she estimated the two

coefficients, supposed to be constant, of the exponential

distributions and generated a sequence of alternating periods of

presence and absence. In addition she generated the first arrival

to the office, the last departure from the office and a lunchtime

break based on the assumption that these are distributed

normally as Reinhart had before her. The combination of the

created profiles gave her a simulated time series of presence

that would vary from day to day. The model proposed is a

simple and elegant one, yet it still fails to reproduce the

complexity of real occupant presence. As the authors

acknowledge themselves, periods of presence cannot be

reproduced by an exponential distribution with a homogeneous

coefficient, and times of arrival, of departure as well as

absences during lunch breaks are not normally distributed. Like

all its predecessors the model supposes that all weekdays are

alike and that offices are always unoccupied during weekends.

Periods of long absence are also neglected so that total presence

is once again overestimated.

The latest model of occupant presence was proposed by

Yamaguchi [15] in the development of a district energy system

simulation model. Their aim was to simulate the ‘‘working

states’’ (that they defined as using 1 PC, using 2 PC’s, not using
Please cite this article in press as: J. Page et al., A generalised stochastic
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a PC and being out) of each occupant of a group of commercial

buildings in order to derive the heat and electrical load

generated from the use of energy consuming appliances. These

stochastic loads combined with those resulting from non-

occupant related appliances of the buildings2 determine the

electricity, heating and cooling loads to be met by a suitable

energy supply system. Their model is similar to that of Wang in

that it supposes that the time an occupant will spend in a

working state is independent of time (in Wang’s model this

corresponds to the coefficients of the two exponential

distributions). However it replaces the sequence of Poissonian

periods of absence and presence by a mathematically

equivalent (but computationally more elegant) Markov chain

of working states. The transition probabilities of the Markov

matrix are determined by inputs to the model and the working

state of the occupant is drawn every 5 min using the ‘‘inverse

function method’’. Moreover the times of arrival, lunch break

and departure are now drawn given by empirical distributions

rather than a normal distribution centered around fixed values.

It is not clear in their explanation of the model in [15] whether it

is being used to simulate only one repeated day of occupant

activity or each and every day of the year. In the latter case it is

also unclear whether weekends are treated differently or

whether periods of long absence are considered; we suppose

that this is not the case. The calculation of an occupant schedule

for only one day, if this is the case, would be restrictive as we

have argued above and the lack of long periods of absence when

simulating a whole year would likewise be erroneous as we

shall explain below. The hypothesis that the duration of time an

occupant spends in a given working state does not depend on

time (i.e. the time of day) is one that Wang proved to be wrong

in at least the case of presence; dividing the state of presence

into different states of working activity during presence will

most probably not change that. Although their model could

prove useful when only considering the use of PC’s, the

hypothesis of time-independence shall cause difficulties when

wanting to simulate less invariable activities such as the use of

lighting appliances or activities performed in residential

buildings for example. We believe the coupling of an

independent occupant presence model to related behavioural

models to be a more general solution.

In line with this last statement, we propose in the following

pages an alternative model for the simulation of occupant

presence. By using a profile of probability of presence, rather

than an adjusted fixed profile, as an input to a Markov chain we

are able to produce intermediate periods of presence and

absence distributed exponentially with a time-dependent

coefficient as well as the fluctuations of arrivals, departures

and typical breaks. A failed attempt to validate an earlier

version of the model highlighted the importance of periods of

long absence; these were included in the updated and latest

version presented here. Twenty zones of an office building were

monitored providing us with 2 years of data that was used for
model for the simulation of occupant presence, Energy & Buildings
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series as ‘‘present’’ for residential buildings and ‘‘absent’’ for office buildings.
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ing to types of occupants will have to be made available.
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the calibration and validation of the model. The latter was based

on the analysis of indicators of importance for the stochastic

models of occupant behaviour that will use the results of the

model of presence as their input. Although tested with data

from an office building, this model, when given the

corresponding inputs, is applicable to any type of building

and any pattern of occupant presence.

2. Methods

2.1. Model development

2.1.1. Aims

It is important to know what properties need to be

reproduced by the model as they shall serve as a guideline

for its development and as indicators to be checked during its

validation. The model of occupancy is destined to deliver the

metabolic heat gains and pollutants released by the occupants

within the zone and to serve as an input for the use of windows,

lighting appliances and other electrical and water appliances

(see Fig. 1). To serve this purpose it needs to reproduce in the

most reliable way properties of patterns of occupancy such as

the first arrival and last departure of the occupant, the duration

of the periods of intermediate presence and absence as well as

of long absence and the time of intermediate arrival for each

and every occupant.

Patterns of occupancy are so diverse and complex that we

decided that the simplest way to develop a model capable of

doing this was to build it from a priori hypotheses and check

later whether the above properties are reproduced within

reason.

2.1.2. Hypotheses

We are interested in simulating the presence of occupants

within a specific ‘‘zone’’ of a building. This corresponds to

the area occupied by a household in the case of residential

buildings (typically a flat) and to a (single or multiple person)

office in that of office buildings. We are not interested in

simulating the movement of occupants from one zone to the

other (a model for this has been proposed by [16]), but simply

whether each occupant is present within the zone or not.

The hypothesis of independence allows us to model in a

simple way the patterns of presence of each occupant

individually. The presence of occupants sharing the same zone

can then be simulated by:

(1) multiplying the obtained pattern by the total number of

occupants (this case of collective behaviour would

correspond to the occupancy of a meeting-room),

(2) or by simulating each occupant separately and then adding

the produced patterns of presence.

We make the hypothesis that the probability of presence at a

time step only depends on the state of presence at the previous

time step. In other words the probability that an occupant is

present now only depends on whether (s)he was present one

time step ago and not on whether (s)he has been present over
Please cite this article in press as: J. Page et al., A generalised stochastic
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the past N time steps. Mathematically this statement

corresponds to asserting the following property on the

conditional probability:

PðXtþ1 ¼ ijXt ¼ j;Xt�1 ¼ k; . . . ;Xt�N ¼ lÞ

¼ PðXtþ1 ¼ ijXt ¼ jÞ ¼: Ti jðtÞ (1)

with Xt being the random variable ‘‘state of presence at time

step t’’ and i, j, k and l taking on values 0 or 1. This corres-

ponds to considering the state of occupancy as a Markov

chain with probabilities of transition Ti jðtÞ (for more details

on Markov Chains we direct the reader to [17]). The prob-

ability that an occupant should arrive at the office at 8:00 h

or at 22:00 h are clearly not the same, therefore the values

of Ti jðtÞ need to be time dependent and we have the general

case of an inhomogeneous Markov chain (with discrete states

and discrete time steps).3 In order to determine the time

dependence of these probabilities of transition we will need

the following inputs to the model: the profile of probability

of presence over a typical week and a parameter of mobility

that gives an idea of how much people move in and out of the

zone.

2.1.3. Development

Based on our hypotheses we are looking for a model capable

of generating a time series of zeros (absence) and ones

(presence) that renders arrivals into and departures from the

zone (typically going to work and coming from work for

residential zones, arriving at work and leaving from work for

office zones) as well as alternating short periods of presence

and absence in between. It should not simply reproduce the

pattern given as an input (the profile of probability of presence

and the parameter of mobility) but create a pattern that never

repeats itself while reproducing the statistics of the real world it

is simulating.

To do this we have based the model on the ‘‘inverse function

method’’ (IFM) that can generate a sample (in our case a time

series) of events from a given probability distribution function

(PDF) as shown in Fig. 2. Earlier we made the hypothesis that

the value of occupancy at the next time step should only depend

on the state we are in now and the probability of transition from

this present state to either the same state (0 to 0; 1 to 1) or its

opposite state (0 to 1; 1 to 0). These probabilities of transition

T00, T01, T10, T11 are therefore the PDF’s we need (in this case

the values that the random variable can take are discrete). Only

two of the four variables need to be known, let us say T01 and

T11, as T00 and T10 can be deduced from T00 þ T01 ¼ 1 and

T10 þ T11 ¼ 1. As we have seen in previous models, the profile

of probability of presence is a rather standard input for a

simulation tool including occupancy and should be available to

the user.4 Having this as an input provides us with a relationship
model for the simulation of occupant presence, Energy & Buildings
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Fig. 2. Generation by the inverse function method of the series of values 5, 1, 3 based on a Poisson distribution with l ¼ 3.
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for the probability Pðt þ 1Þ that the occupant is present at the

time step t þ 1:

Pðt þ 1Þ ¼ PðtÞT11ðtÞ þ ð1� PðtÞÞT01ðtÞ (2)

From this we can deduce that:

T11ðtÞ ¼
PðtÞ � 1

PðtÞ T01ðtÞ þ
Pðt þ 1Þ

PðtÞ (3)

However, we still lack one piece of information to be able to

determine uniquely the value of T01 and T11 at all times. This

further input to the model should make sense to the user who

will be entering it. Keeping this in mind we defined the

‘‘parameter of mobility’’ as the ratio between the probability of

change of the state of presence over that of no change:

mðtÞ :¼ T01ðtÞ þ T10ðtÞ
T00ðtÞ þ T11ðtÞ

(4)

To simplify the inputs to the model we consider mðtÞ to be

constant and to assist the user of the model we have defined

numerical values to levels of ‘‘low’’, ‘‘medium’’ and ‘‘high’’

mobility. Given relationships (3) and (4) and the inputs PðtÞ and
Please cite this article in press as: J. Page et al., A generalised stochastic
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m we should now have a complete profile of T01ðtÞ and T11ðtÞ:

T01ðtÞ ¼
m� 1

mþ 1
PðtÞ þ Pðt þ 1Þ (5)

T11ðtÞ ¼
PðtÞ � 1

PðtÞ

�
m� 1

mþ 1
PðtÞ þ Pðt þ 1Þ

�
þ Pðt þ 1Þ

PðtÞ (6)

Unfortunately not quite. For certain values of PðtÞ, Pðt þ 1Þ and

constant m, the condition 0 � Ti jðtÞ � 1 can be violated. This

typically happens when PðtÞ is far greater or smaller than

Pðt þ 1Þ. This situation corresponds to an almost deterministic

change in behaviour, such as a regular time of first arrival into

the zone, a regular lunch break or a regular time of last

departure from the zone, rather than the random movement

into and out of the zone rendered by a constant value of m. In

these cases the model would fail to reproduce such clear

changes in occupancy when using the initial value of m; to

counter this the model temporarily forces m to take on the value

that fulfills the above condition and is closest to the initial

constant. For an initial fixed value of the state of presence at t0

we are now able to generate a time series of the presence of an

occupant within a given zone.
model for the simulation of occupant presence, Energy & Buildings

http://dx.doi.org/10.1016/j.enbuild.2007.01.018


Fig. 3. Preprocessing stage: extraction from the inputs of the probability distributions needed for the inverse function method to be used in the processing stage.
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This first version of the model was calibrated with data of

occupancy recorded in the offices of the LESO building (for

more details on the building see [18]) and a preliminary

validation was made by comparing the cumulated presence

over a week resulting from the original data and the simulations

done with the model. The data contained a great variety of

results ranging from weeks of total absence, corresponding to

periods of leave due to sickness, work outside of the office or

vacations, to weeks of high cumulated presence, corresponding

to periods of overtime work and unusual presence over

weekends. The model was only capable of producing a

Gaussian distribution around the average of the empirical

data. This showed that, although the Markov chain model

works well at reproducing periods of short absence and

presence during one day, it needs to be complemented in order

for the model to generate long periods of absence. These have

been included by adding to the algorithm the possibility to start,

at random, a period of long absence at each time step.5 To

generate them we need to know the probability of them

happening and the parameters that determine the distribution of

their duration; these shall be new inputs to the model. For the

validation of this improved version of the model of occupant

presence the periods of long absence (lasting more than one day

but not corresponding to a weekend) were extracted from the

empirical data and treated to give the necessary inputs to the

model. The remaining data was used to calibrate the Markov

chain.

2.1.4. Algorithm

The model was implemented as a MATLAB script. The

presence of each occupant in each zone was simulated

independently based on the inputs related to that occupant.

The profile of probability of presence and the parameter of
5 This means that periods of vacation will be distributed randomly over the

year rather than attributed to fixed days of the year.
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mobility are used to determine the profile of T01 and T10 (see

Fig. 3). The occupant is considered to be absent in the case of

office buildings and present in that of residential buildings at t0,

i.e. 00:00 h of the 1 January. From then on the time series of

presence is generated by using the IFM at each time step.

This method generally works by inverting the cumulated

density function of the random variable of interest, drawing

uniformly a number between 0 and 1 and using the inverted

cumulated density function (CDF) to relate the drawn number

to a value adopted by the random variable (see Fig. 2). In our

case the CDF is a histogram of two bins (0 and 1) or more (in the

case of the duration of periods of long absences). To each bin

corresponds the probability that a value within that bin be

chosen at random. The number drawn between 0 and 1 will

determine which of the bins has been chosen, in other words

what event will take place.

Fig. 4 shows how the algorithm works: given the probability

of starting a period of long absence (derived from the number

of long absences happening in a year, entered as an input)

we first check whether the occupant starts a period of long

absence or not by using the IFM, if so we determine the length

of that absence given the distribution of the duration of periods

of long absences (entered as an input) with the same method,

during which period the occupant is considered to be absent. At

her/his return, or if (s)he did not start a long period of absence,

we find ourselves in the case of the Markov chain of ‘‘usual

daily’’ changes in state of occupancy. The present state of

occupancy will tell us which profile of probability of transition

to choose between T01 and T10; the next state of presence is

determined by the use of the IFM. By doing so we are capable

of generating a time series of the state of presence of a

particular occupant in a particular zone. The state of presence

of each occupant of one zone and the states of occupancy of

different zones being considered independent it is enough to

repeat this algorithm as many times as the number of total

occupants, respecting, of course, the inputs particular to each

occupant simulated.
model for the simulation of occupant presence, Energy & Buildings

http://dx.doi.org/10.1016/j.enbuild.2007.01.018


Fig. 4. Algorithm of the model (processing stage).
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3. Results

3.1. Data collection

The data needed for the calibration and validation of the

model was collected from mid December 2001 to the

beginning of January 2006 in 20 ‘‘zones’’ of the LESO-PB

building at the EPFL each equipped with a movement sensor.

Of these, 10 zones were offices having seen their number of

occupants vary over the period of monitoring and five zones

had not been constantly used as offices (printer room,

conference room, classroom and workshop). The remaining

five zones which had been singly occupied offices over the

whole period of data acquisition, were used for model

calibration and validation. The people at the LESO work
Please cite this article in press as: J. Page et al., A generalised stochastic
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mainly on research, sometimes taking or giving courses.

Occupants are very mobile often leaving their office to visit

other zones of the same building, such as the workshop, the

library or computer-room or offices of colleagues, or to leave

the building. This may make the patterns of presence not

particularly representative of an office building (and even less

so of a residential building!). Nevertheless, this shall not

weaken the validation of the model as it has been conceived to

be independent of the characteristics of the occupants to be

simulated. Indeed only the inputs to the model (profile of

probability of presence, parameter of mobility, distribution of

periods of long absence) are related to the simulated

occupants; the model itself, given the right inputs, should

be applicable to any type of building and any pattern of

occupant presence.
model for the simulation of occupant presence, Energy & Buildings
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3.2. Treating data for calibration

The acquired data needed to be processed before informa-

tion for the calibration and validation of the model could be

extracted. Problems either with the sensor, the bus used for the

transfer of monitored data or with the server used to store the

data caused gaps within the acquired data, reducing the amount

of usable data to approximately 2 years and the longest period

of uninterrupted data acquisition to approximately 6 months.

Also the acquisition system only records changes of the

variable to be acquired; in the case of occupancy this means that

the time and date are recorded:

(1) the first time the sensor notices motion in the office when it

previously considered it to be empty—this corresponds to a

switch to the state ‘‘occupied’’,

(2) when the sensor has not noticed any movement for 30 s in

an office considered to be occupied—this corresponds to a

switch to ‘‘vacant’’.

The sensor only recognizes two states of presence: occupied

or vacant, and can therefore not distinguish whether the zone is

multiply occupied or not. This however is not a problem, since

the presence of guests in an office is dependent upon whether

the owner of that office is present so that the owner-occupant

presence is continuously accounted for. The first step in

processing the raw data was to check which days of acquisition

had suffered from the ‘‘technical problems’’ stated above and

only conserving those that are completely intact. This data was

then cleaned of all periods of absence lasting less than 2 min

(this usually corresponds to a sensor that stops recording the

presence of an occupant because (s)he is too still for her/his

movement to be noticed). We then constructed a time series of

the data with a 15 min time step by summing over each 15 min

interval the duration of periods of presence and of absence and

allocating to that interval the state with the longest total

duration.

The treated data could then be used for the extraction of

information first of all to deduce the inputs necessary to

calibrate the model, then to have reference data for its

validation. The first step was to check the length of both periods

of presence and of absence. The periods of absence were then

divided into periods of ‘‘short’’ absence (less than 24 h), of

absence that could be related to weekends and periods of

‘‘long’’ absence (greater than 24 h but not taking place over a

weekend).6 Periods of long absence were studied to deduce the

distribution of their duration and the average number of their

occurrences in 1 year, which will both serve as inputs to the

model. The long absences were removed from the time series

and the remaining data was used to provide information on the

day-to-day occupancy such as the profile of probability of
6 Most intervals of acquired data are relatively short due to interruptions

during data acquisition (intervals range from 2 days to 6 months with the

average duration being 2–3 weeks). This of course limits the sample of periods

of long absence available. It may also shorten periods of absence that could

have lasted longer.
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presence and the profiles of probability of transition T01 and

T10. A profile of the parameter of mobility was deduced from

the profile of T01 and T10 by using Eq. (4) and was then

averaged to be used as input.

3.3. Validation

The occupancy model has been developed to simulate the

time an occupant spends in a particular zone but above all

to produce a time series of presence that will serve as an

input for models capable of simulating the occupant’s

behaviour. Each of these models may have different expecta-

tions of the occupancy model’s output; while a model for the

opening of windows needs reliable information on the time of

arrival of the occupant, a model for the use of household

appliances will need to know how long the occupant’s periods

of presence will last. In order to estimate the success of the

model we listed the statistics that should cover each of these

expectations:

� effective total amount of presence will be given by the

‘‘cumulated presence per day’’ and ‘‘cumulated presence per

week’’,

� ‘‘first arrival’’ into the zone and ‘‘last departure’’ from the

zone of each day of presence, the difference between these

two corresponds to the duration of ‘‘daily presence’’ (in

contrast to the duration of effective presence mentioned

above),

� the duration of ‘‘periods of intermediate presence’’ and of

‘‘periods of intermediate absence’’,

� the ‘‘number of changes’’ of the state of presence during the

same day.

We then compared the distributions of those statistics

deduced from the measured data and from simulated data

produced by the model.

For each of the offices of the LESO building we produced a

5-year time series based on its calibrated inputs. From these

time series we calculated the profile of probability of presence,

the profiles of probabilities of transition T01 and T10 and the

profile of the corresponding parameter of mobility as well as

the distribution of the duration of long absences, in order to

make sure that the model’s output is still consistent with its

inputs. While the profiles of probability of presence compare

very well, the simulated values of the parameter of mobility

are clearly below those entered (see Fig. 5). This implies

that it is being recalculated relatively frequently so limiting

its impact. The time series used to calibrate the model and

those resulting from the simulations were then processed to

produce the distributions of the statistics of interest for

comparison.

3.4. Discussion of results

In order to restrict the number of figures produced in this

article we have decided to show the results of four of our

five singly occupied offices; by showing the different
model for the simulation of occupant presence, Energy & Buildings

http://dx.doi.org/10.1016/j.enbuild.2007.01.018


Fig. 5. Comparison, between the monitored data (solid line) and the simulated time series (dotted line), of the profiles of probability of presence (above) and of the

parameter of mobility (below) for office no. 3.
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behaviours of these four occupants we wish to show the reader

the generality of the model. The simulation of multiply

occupied offices shall nevertheless not be a problem for the

future use of the model as the user will enter inputs for each

occupant and each occupant will be simulated independently

(unless a dependent behaviour is required, for example in the

case of a meeting room).
Fig. 6. Comparison, between the monitored data (solid line) and the simulated time

zone for four private offices. The blue histograms correspond to the repeated use

Please cite this article in press as: J. Page et al., A generalised stochastic
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The green solid lines correspond to data from the monitored

offices, the red dotted lines are the results from the simulations.

We have shown both the PDF and the CDF of the statistics. For

comparison we have added to the CDF’s the histogram(s)

equivalent to a standard deterministic representation of

occupant presence used in dynamic thermal simulation

programs of buildings: 100% presence on weekdays from
series (dotted line), of the PDFs and CDFs of the time of ‘‘first arrival’’ into the

of a standard fixed profile.

model for the simulation of occupant presence, Energy & Buildings
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Fig. 7. Comparison, between the monitored data (solid line) and the simulated time series (dotted line), of the PDFs and CDFs of the time of ‘‘last departure’’ from the

zone for four private offices. The blue histograms correspond to the repeated use of a standard fixed profile.
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8:00 to 12:00 h and from 14:00 to 18:00 h. The results from the

monitored data provide us with a valuable insight into what the

statistics really look like and in understanding the influence of

occupants on the building. We will now discuss the different

categories of statistics and observe how well the model

reproduces what happens in reality.

3.4.1. Arrivals into and departures from the zone

The first category of interest is that of the first arrival of the

occupant into the zone and her/his last departure from the

zone (shown in Figs. 6 and 7). The difference between the

two, the ‘‘daily presence’’ (shown in Fig. 8), gives us an idea

of how long the occupant could have interacted with the zone,

although (s)he might not have always been present during that

interval. The behaviour of occupants is usually very different

at their first arrival and last departure than during any

intermediate arrivals and departures. The first arrival of the

occupant usually corresponds to the setting by the occupant of

her/his environment to her/his favourite configuration, for

example the setting of the state of the blinds, the state of the

lights and appliances, the set-point of the heating system or

the opening status of windows. These might often stay

unchanged until the last departure, during which the occupant

returns the zone to its unoccupied state (with, for example,

lights and appliances being switched off, windows closed,

etc.), knowing (s)he will not be back until the next day or

beyond.
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Although most values of arrival and departure correspond

approximately to values one would expect (arrival around

8 : 00� 1 h —corresponding to 32� 4 quarters of an hour,

departure around 18 : 00� 1 h—corresponding to 72� 4

quarters of an hour) and that are adopted by other models

of occupancy, the figures show that the times of arrival and of

departure are particular to the occupant and that these times

can depend on the day of the week simulated, explaining the

lesser peaks. Although the results from the model do

sometimes differ from the original data it has clearly picked

up these trends. Values might be off by a time step or two (15–

30 min) and the peaks from the original data might be spread

out a little but the model captures quite well the different

characteristics, recognising the main peak while also reprodu-

cing the later arrivals, earlier and later departures as well as

the days of longer or shorter daily presence. It should be

pointed out that the occasional very early arrivals that appear

in the simulations are the result of the model reproducing the

non-zero probability of the occupant being present overnight

that can be seen in the profile of probability of presence

entered as input (Fig. 5). One can also notice in Fig. 8 the

stochastic nature of the model: while some occupants will

depart exactly 10 h after a first arrival that might fluctuate

around an average (offices 1, 2 and 4), the simulated occupant

might arrive and leave a bit earlier or later without the two

being strongly correlated (just like the behaviour of the

occupant of office no. 3).
model for the simulation of occupant presence, Energy & Buildings
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Fig. 8. Comparison, between the monitored data (solid line) and the simulated time series (dotted line), of the PDFs and CDFs of the ‘‘daily presence’’ within the zone

for four private offices. The blue histograms correspond to the repeated use of a standard fixed profile.

Fig. 9. Comparison, between the monitored data (solid line) and the simulated time series (dotted line), of the PDFs and CDFs of ‘‘periods of short absence’’ for four

private offices. The blue histograms correspond to the repeated use of a standard fixed profile.
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Fig. 10. Comparison, between the monitored data (solid line) and the simulated time series (dotted line), of the PDFs and CDFs of ‘‘periods of presence’’ for four

private offices. The blue histograms correspond to the repeated use of a standard fixed profile.
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3.4.2. Periods of intermediate presence and absence

Figs. 9 and 10 show the distribution of periods of presence

and of short absence (less than 24 h). So far the models that

have tried to reproduce periods of intermediate presence and

absence7 have done so by assuming their duration is distributed

exponentially and is independent of time. Standard profiles

of occupancy propose the histograms shown with the CDFs;

they correspond to two periods of 4 h of presence separated

by a 2 h lunch break and the 14 h of absence between the last

departure (at 18:00 h) of one day and the first arrival (at 8:00 h)

of the next. The periods of short absence simulated by the

model can be split into periods of such absence between

workdays (the lower peak at the right of the figure) and

periods of intermediate absence (to the left and smaller than, let

us say, 48 quarters of an hour). Periods of very short presence

and absence (15–30 min) are clearly underestimated in the

case of absence and only slightly in that of presence.

Nevertheless the model confirms that presence does not follow

an exponential curve and that each occupant has her/his own

behaviour, which the model picks up rather well. The lack of

very short periods favours the occurrence of longer periods; a

confirmation of this can be seen in the distributions of the

number of changes per day of Fig. 11. These appear in pairs as
7 Wang had some success in the case of periods of absence, while Yamaguchi

has, to our knowledge, not published any validation of their model.
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none of the occupants ever stayed present overnight; each

arrival is therefore followed by a departure. The model suffers

from two flaws:

(1) it underestimates the number of days of total absence,

(2) it underestimates the number of changes by approximately

one pair, suggesting less intermediate periods of absence

and presence than seem to take place.

This last discrepancy is linked to the drop in value of the

parameter of mobility mentioned earlier; and, as occupants

move less than in reality but their daily presence is realistically

reproduced, longer periods of intermediate presence and

absence will be slightly favoured as we have observed.

3.4.3. Effective time spent in the zone

So far we have discussed:

(1) the times of arrival and departure of the occupant, stressing

that these are the instants of a day when the occupant is most

likely to interact with her/his environment (as observed for

example by [11]), as well as the daily presence that gives an

idea of how long the occupant will actively (when present)

or passively (when temporarily absent) interact with the

zone,

(2) the number of changes of the state of occupancy and the

durations of periods of presence and short absence that take
model for the simulation of occupant presence, Energy & Buildings
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Fig. 11. Comparison, between the monitored data (solid line) and the simulated time series (dotted line), of the PDFs and CDFs of the number of changes for four

private offices. The blue histograms correspond to the repeated use of a standard fixed profile.
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place during one day, that give an idea of how often the

occupant might interact with her/his surroundings at

intermediate arrivals and departures.

What we need to know now is how much time the occupant

effectively spends in the zone during a day, a week or the whole

year. This will govern what heat gains and pollutants each

occupant will emit as well as how much total time the occupant

has to affect her/his zone of occupancy. This can be deduced

from the presence cumulated (i.e. total number of 15 min time

steps) over one day or over a whole week.

Fig. 12 shows the total number of quarter hours of presence

during a whole week. As we can see from the monitored

data, although the occupants’ duration of daily presence is

typically greater than 12 h (48 quarters of an hour per week), her/

his effective cumulated presence over 1 week averages to around

24 h. This is explained by the great movement of occupants and

the work time they spend outside of their office. It can also be

explained by days of total absence from the zone that called for

the revision of the model we mentioned earlier. By adding

periods of prolonged absence we have been able to adapt our

model to weeks of total absence and weeks of overtime giving us

a similar spread distribution as with the collected data. A x2-test

with a ¼ 0:95 confirms that both histograms could be the result

of the same distribution for these four offices.

Even though the addition of periods of long absence to the

model has drastically improved its performance we still seem to
Please cite this article in press as: J. Page et al., A generalised stochastic
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underestimate the number of days of complete absence. This

can be seen from the value of the CDF at 0 quarters of an hour in

Fig. 13, that teaches us that approximately 35–40% of days

include no period of presence (2 days of absence per week, such

as a weekend, would correspond to 28.5%) while the model

only predicts an absence of 23–28%. The top part of Fig. 13

shows the whole PDF of this distribution. By subtracting the bin

of zero presence we get an idea of what the distribution of

cumulated presence looks like for days when the occupant

appears for at least 15 min (see bottom line of plots in Fig. 13).

This shows us how well the model reproduces the statistic and

how it covers very closely the whole span of the distribution.

4. Discussion

To fully grasp the contribution of the model of presence it is

important to compare it with models already available. Those

recently developed by Wang [14] and Yamaguchi [15] are the

first capable of simulating realistic periods of presence and

absence between an occupant’s arrival and departure from an

office. However they are based on the fact that the duration of

periods of presence is time-independent and omit the inclusion

of periods of long absence. Both Wang’s analysis and the

validation of our model (see Fig. 10) have shown that the former

hypothesis is wrong whereas the validation of a previous version

of the model presented in this article highlighted how important

it is to consider periods of long absence when generating a time
model for the simulation of occupant presence, Energy & Buildings
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Fig. 12. Comparison, between the monitored data (solid line) and the simulated time series (dotted line), of the PDFs and CDFs of the ‘‘cumulated presence’’ over one

full week for four private offices. The blue histograms correspond to the repeated use of a standard fixed profile.
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series of occupant presence. All other methods used to model

occupant presence can be summarised by the repetition of a

standard or averaged fixed profile, with, in the best of cases, the

spreading of times of arrival and departure using a Gaussian

distribution in order to avoid strong peaks [7]. The results above

have shown that our model, while having simple inputs, is

capable of producing a non-repeating time series of any length,

including essential periods of long absence and otherwise

reasonable movements to and from the zone resulting in an

excellent estimate of the total time an occupant really spends

within the zone simulated. It is true that the model under-

estimates the amount of days of total absence as well as the

amplitude of real movement into and out of the offices. The

former must be due to an underestimation of the number or

duration of periods of long absence.8 The latter is probably due to

the recalculation of the parameter of mobility. These two aspects

need to be better understood and improved. Nevertheless the

model has still proven itself capable of simultaneously:

� reproducing periods of absence,

� picking up the trends of periods of presence that cannot be

simply modeled by an exponential distribution,

� smoothing the peaks of times of arrival and departure,
8 The probability that the Markov chain alone might produce a work day of

complete absence is extremely small as it will try at each time step to direct the

simulated profile of occupant presence towards the profile of probability of

presence it is given as an input.
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� while also considering days of atypical presence or of total

absence.

Although the benefits of the model will become apparent in

terms of numbers only once it is coupled to models of occupant

behaviour, one can already assert from the distributions shown

in Figs. 5–13 that:

� Fig. 5: people working during weekends will need power and

maybe heating or cooling that will be predicted neither by the

standard model nor by Wang’s model, but will be by our

model.

� Fig. 6: likewise, arrival earlier than that predicted by other

models will correspond to 1 h of extra-lighting during the

darkest days of the year, just as later arrival can correspond to

saved lighting.

� Fig. 7: early departure could correspond to saved hours of

lighting.

� Figs. 9 and 10: there is potential for saving electricity by

implementing a smart switch-off option for appliances and

lights left on when occupants are not present during periods

of intermediate absence.

� The clear difference between Figs. 8 and 13 shows that,

although occupants might be ‘‘at work’’ approximately 10 h a

day, they only spend about half that time in their office. This

corresponds to a decrease of 50% of the predicted metabolic

heat gains (within that zone) as well as a potential decrease in

electricity consumption linked to the non-use of lights and

appliances.
model for the simulation of occupant presence, Energy & Buildings
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Fig. 13. Comparison, between the monitored data (solid line) and the simulated time series (dotted line), of the PDFs and CDFs of the ‘‘cumulated presence’’ over one

day for four private offices. The blue histograms correspond to the repeated use of a standard fixed profile. The bottom figure corresponds to the same PDF as above

without a value of cumulated presence equal to zero.
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While there is still room for its improvement the model

already produces a realistic picture of occupant presence within

zones of a building, the basis for related models of occupant

interactions with their environment.

The model has been conceived in such a way that it can

simulate any pattern of occupancy of any type of building when

given the corresponding inputs. This general nature of the model

has allowed us to validate it with data from an office building and

still claim that it will be useful for the simulation of any other

type of building, in particular residential buildings. The data

used for the calibration of the model being more detailed than

normally available, the authors are now working on the

simplification of the profiles of probability of presence and

their temporal resolution and observing the effect of this

simplification on the model’s accuracy, as well as a preparation

of guidance for the best use of the model (estimation of m,

entering of profiles of probability of presence and their temporal

resolution, entering of inputs related to periods of long absence).

5. Conclusion

The better we build our buildings, the more impact the

people living in them will have on their consumption of

resources. While simulation tools reproduce the deterministic
Please cite this article in press as: J. Page et al., A generalised stochastic
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physical behaviour of buildings with ever greater detail, the

behaviour of their inhabitants has so far been represented by

repeating standard patterns of occupant presence and occu-

pants’ use of elements such as lights and appliances. These

assumptions lead to considerable errors in predictions of the

peak demand in resources of a building, which in turn will

strongly influence the choice and sizing of the means (HVAC

systems, supplies for power and water - hot and cold) used to

cover that demand. Yet considering occupant behaviour is not

only important for the prediction of peak demand. In [9]

Bourgeois has shown that ‘‘building occupants that actively

seek daylighting rather than systematically relying on artificial

lighting can reduce overall primary energy expenditure by more

than 40%, when compared to occupants who rely on constant

artificial lighting’’. Thus by integrating into building simulation

tools the variety of ways people occupy a building and interact

with it one can conceive and assess new ways to save energy

and enhance occupants’ comfort within buildings.

In this article we have proposed an important step towards

integrating the effect of occupant behaviour into modern

building simulation tools, namely the modeling of occupant

presence. Although relatively simple it has proven itself capable

of reproducing important characteristics such as the times of first

arrival and of last departure, typical long absences and the
model for the simulation of occupant presence, Energy & Buildings
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effective time of presence of the occupant within the zone of

simulation using only a small set of simple inputs. The model

produces a time series of the state of presence that includes the

typical randomness of human behaviour: each person arrives

into and departs from the zone they occupy at different times;

people tend to enter and leave the zone several times during a

typical period of occupancy, reducing the amount of total time

spent in the zone and increasing the number of departures from

and arrivals into the zone; people may be absent from the zone

during long periods of time. This gives a more realistic picture of

the time the occupant spends in the zone and how often (s)he

might interact with her/his indoor environment; it also avoids the

unnatural peaks that arise from repeating the same pattern for

each occupant. The model does not simulate the displacement of

occupants from one zone to another.

Our future efforts will be dedicated to making the model

easy for the potential user to handle. For this purpose we will

work on simplifying the profile of probability of presence and

helping the user in her/his choice of parameters of mobility and

periods of long absence.
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