
Open Web Services-based Indoor Climate Control System

Marek Podgorny1, Luke Beca1, Suresh Santanam2, Gregg Lewandowski1,
Roman Markowski1, Greg Michalak3, Paul Roman3, Paul Gelling4, Edward Lipson5

and Edward Bogucz2

1Electrical Engineering and Computer Science, Syracuse University, and CollabWorx, Inc
2Syracuse Center of Excellence in Environmental and Energy Systems, and Syracuse University
3CollabWorx, Inc; 4SenSyr, LLC; 5Dept. of Physics, Syracuse University and SenSyr, LLC

Corresponding email: marek.podgorny@collabworx.com

SUMMARY

The paper describes an open, extensible software and hardware framework supporting all
aspects of control and monitoring of a Smart Building. We designed an ‘intelligent’, real-time
control system capable of both autonomous process control and interaction with human
operators. The system can easily accommodate both functional extensions and a broad array
of sensors and control devices.

The system described below represents a clear bias towards pervasive, open-source, Internet
and Web technologies and away from the proprietary or vertically specialized networks,
protocols, and application frameworks typical for the current industrial automation systems.
The basic goal of this research was to find out if and at what level of effort one can build a
functional prototype of a Building Automation System (BAS) assembled exclusively from
open-source elements. The answer we found is affirmative and the results of the experiment
have the potential to affect the building-automation industry in a way similar to the impact of
Linux in the domain of operating systems and of the Asterix server on the VoIP industry.

INTRODUCTION

When first analyzed by a technologist raised in the Internet cocoon, the current BAS’s seem
to have originated in a different technological civilization. The only commonality of the two
technology stacks is the notion of a packet network; from this point on, there does not seem to
be one concept or idea that is shared. This technological abyss only gets wider as we move up
the protocol stack. This seems to translate into very different business models for software
companies involved in both fields. We present a more detailed discussion of this “digital
divergence” phenomenon in another paper submitted to this conference [1].

This paper focuses on a practical aspect of subverting the current technological status quo in
building automation by creating a nucleus of a disruptive-technology framework, a time-
honored mechanism of change and progress in the Internet-centric universe. The goal of this
paper is to stimulate the change or, at least, to contribute to the metamorphosis that seems to
be germinating in more than one research location. We have no doubt that the current BAS
architectures will disappear within a decade, and that building control will completely
converge with IP networks. The really interesting question is, “How do we get there?” To
gain such an insight we have designed, implemented, integrated, and deployed a complete
control system using only open-source or free standard software technologies and protocols,
and off-the-shelf electronic components, assembly of which requires only basic technical

Proceedings of Clima 2007 WellBeing Indoors

skills. We hope that the findings described here will enable faster, cheaper, and more efficient
implementation of automation systems. The application we particularly cherish is to provide
research facilities with a complete, open software testbed for building automation, so that the
researchers can focus on solving real problems in fields such as indoor-climate control, rather
than having to struggle with cobbling together instrumentation necessary to perform
experiments and measurements. We also hope to contribute to the discussion related to
emerging standards, security issues, and “open vs. proprietary” software and business models.

METHODS

The overall system design is Internet-centric, following the critical requirement of providing
an efficient mechanism to ensure an easier and faster process of bringing building automation
systems into the fold of the global digitally converged communications infrastructure. The
system uses only pervasive Internet network and open-source subsystems, applications, and
application-development tools. These tools rely in turn on a number of standard protocols
and/or software development methodologies.

All system functions are implemented as Web Services and all real-time signaling uses
pervasive messaging technologies proven effective in mainstream communication systems,
such as JMS. Sensors and control devices used with the system are required to be Internet
Protocol-based, but the XML-coded device data structures are based on the BACnet
networking standard [2].

Although our goal was to build a system with a broad functionality, potentially covering all
important aspects of building automation, we have deliberately approached the project as a
focused exercise in system design for rather specific functionality. The issue we address is
climate control in a space where users can express their preferences for several factors and
realize them using personal environmental modules, while the system is responsible for global
optimization and resolution of potential conflicts.

Further, the research reported here differs from the work of several industrial consortia on
unification of BAS protocols using XML [3-5] and standardize BAS related web services.
Our focus is on the system architecture. We believe that the system described in this paper
could be readily adapted to provide a reference implementation of protocols being designed in
the arduous industrial standard setting process practiced by the ASHRAE BACnet/XML
Working Group [3], oBIX [4], and CABA [5].

RESULTS

The requirements for the system can logically be grouped into three categories:

1. Broad system goals: a) The system should support interaction of the building automation
elements with the human occupants of the space, and b) it should have the ability to make
‘smart’1 decisions in response to ever changing conditions in the building.

2. Specific system functionality, including: a) Adjusting environment variables to increase
occupants' productivity; b) Tracking space occupants; c) Maintaining knowledge of the
physical space including information about zones; d) Monitoring environmental factors in
zones; e) Allowing individuals to communicate personal environmental preferences

1 The notion of ‘smart’ or ‘intelligent’ system should be interpreted conservatively. The vocabulary merely
implies that the system integrates an inference engine.

Proceedings of Clima 2007 WellBeing Indoors

(temperature, noise, humidity, etc); f) Providing a visual interface (similar to a weather
map) to monitor the space/zones and their parameters; and g) Possessing the ability to
self-adjust based on user preferences and output from the inference engine.

3. Additional considerations: We aimed at building a solution that is vendor-independent,
and uses only open-source tools and components, unless none were available, in which
case we resorted to public standards.

BASIC CONCEPTS

We have used the following basic concepts in designing the system:
• Controlled space – a physical space where the system controls environmental factors such

as temperature and humidity.
• User presence − Identity of the user (or users) present in the environmental zone.
• Environmental zone − a unit of space controlled by the system, which assumes that all

environmental factors have uniform values within the environmental zone.
• Environmental profile − a set of key/value pairs that describe environmental parameters of

the environmental zone. The system strives to maintain environmental parameters of the
zone within a given range from the values specified by the environmental pro-
file.Environmental preference − a set of key/value pairs that describe environmental
parameters selected by the space occupant as the most desirable. Environmental prefer-
ence of the user present in the environmental zone affects the environmental profile
associated with this zone.Device − any hardware or software entity that can generate or
accept data. The system receives information about environmental parameters of the
environmental zone, and influences these parameters through devices installed in the
zone.

TECHNOLOGIES AND STANDARDS

The following technologies have been used to assemble and integrate the system:
• Web Services [6] – communication among system components
• BACNet [2] – base for internal device description
• CLIPS [7] – open-source inference-engine platform
• Java 2 Enterprise Edition [8] – set of APIs for building enterprise applications
• Open Source technology stack:

o JBoss [9] – J2EE Application Server
o Struts [10] – Web Application framework
o Axis [11] – Web Services framework
o Hibernate [12] – Persistence framework
o Hypersonic [13] – Database Management System
o JMS [14] – Java Messaging System
o AJAX [15] – Web GUI implementation methodology

SYSTEM ARCHITECTURE AND COMPONENTS

 Figure 1 below shows all major components of the system. For each component, the
communication interfaces and dependencies are depicted. The description of each interface
contains information about the technology used for its implementation.

Proceedings of Clima 2007 WellBeing Indoors

The communication pattern between system modules is based entirely on the Web Services
model. This applies to both “read” and “write” operations, as described below. In addition,
since devices and other modules can generate events that require handling, we implement two
mechanisms to propagate event information: for time-critical events, we use JMS2 [14]; for
event supporting services, such as archiving, we use a pooling mechanism under Web
Services.

Figure 1. UML Diagram of System Components

Most of the modules on the diagram are self-explanatory. Software modules provide services
roughly corresponding to the system requirements listed earlier in this section. Three modules
of special interest are a) the Smart Building framework, b) the Inference Engine and its
integration with the system, and c) the Smart Device. These three elements will be described
below in more detail. The system is extensible, as it can accommodate External Applications
of any kind. A good example might be an energy optimization engine, a computational fluid
dynamics application, or a set of web services reaching out to external data sources, such as a
weather forecast.

Smart Building Framework

The Smart Building Framework is the core of the Smart Building system to which all other
system components connect. It implements the following services:
• Device status monitoring and data collection
• Device data archiving and retrieval
• Access to and manipulation of an object-oriented representation of the system state
• Event-based communication among system entities
• System configuration

2 JMS engine is an integral part of the JBoss Application Server [9]

Proceedings of Clima 2007 WellBeing Indoors

Web Service APIs

Most of the services described above are exposed through a set of web service APIs:
1. Device Web Service: allows external devices to connect to the system. External devices

use this service to register their presence and to report changes in their state.
2. Object Access Web Service: provides access to object-oriented representation of the

system state maintained by the framework. The Object Access interface can be used to
both read and write properties of the objects maintained by the system. Write operations
on the system state may translate into commands issued to the components of the system
controlled by the Smart Building Framework. The service is also used by system compo-
nents that need to access the information about the system entities (for example, Inference
Engine or Administration Interface).

3. Event Access Web Service: implements a messaging system for sending prioritized, point-
to-point or system-wide alerts related to the state of the system. For example, the Infer-
ence Engine might send an alert to the Administration Interface component, if the read-
ings from the external devices exceed a certain threshold. Both sending and retrieving
operations are supported. The service is used by all system components that need to send
and/or retrieve alerts.

4. Archive Web Service: allows starting and stopping archiving of the data submitted by the
external devices connected to the system. It also allows retrieval of the archived informa-
tion. The Archive Web Service is used by the system entities that rely on the archived
information about devices.

The web services implemented by the Smart Building Framework can be accessed not only by
the components of the Smart Building system but also by other external (remote) entities that
need to access the information about the status of the building infrastructure.

Communication between modules

All components of the Smart Building system can learn about the system-state changes
through polling functionality embedded in all implemented web services. This approach is
simple and works well with standard web infrastructure. However, it also has significant
drawbacks such as embedded latency in the system responses due to a set polling interval. To
handle propagation of time-critical events we designed a server-side component implementing
JMS-based notifications. Each component interested in receiving notifications from the Smart
Building framework can embed JMS client functionality. This also applies to our wrapper for
devices and to the Inference Engine, as well as to the Administration and Personalization
Interfaces. The JMS messages may carry either actual module commands, or a request for a
module to poll the message sender for information.

Smart Building Inference Engine

The inference engine provides the ‘intelligence’ driving the Smart Building Framework.
While the devices connected to the framework might be autonomous enough to make their
own limited decisions, there exists a range of decisions that are beyond the capabilities of any
single device. The inference engine fills that gap by gathering information from the entire
framework, making decisions based on the gathered data and then controlling the framework
to execute the decisions.
Communication: The inference engine communicates with the rest of the Smart Building
Framework via a set of web-service interfaces. These allow it to extract information necessary

Proceedings of Clima 2007 WellBeing Indoors

for making a decision, and then to control the framework to execute a decision taken. In
particular, the framework interfaces allow:
• reading device input
• controlling (writing to) devices)
• reading and modifying current environmental data
• sending system alerts

Since the communication mechanism is documented, it is possible to replace the engine with
another agent that would drive the framework.

Engine: The inference engine is implemented as a stand-alone Java application. Its main
functionality, the decision making, is split into decision beans. The application schedules a
bean to execute at a specified time after the application start. From then on, a bean is in
charge of its own scheduling. In addition to making decisions, the beans can also be used for
simpler tasks, for example to translate the information retrieved from the devices into current
condition data.

It remains unspecified whether the entire decision logic should be implemented as one
complex bean, or as a several (possibly many) simpler beans. The inference engine supports
any approach. Typically, when a bean is executed, it will gather required data, analyze them
and send the results (a decision) back to the framework. The bean can then ask the inference
engine to be scheduled again at some later time.

Simple decision beans can be implemented as Java objects. In the case of large systems and
complex decision beans, the capabilities of the Java language might prove to be insufficient.
For these scenarios, we have integrated a rule engine to allow us to use a more sophisticated
decision making mechanism. The rule engine we used, CLIPS [7], can improve over Java in
the areas of a) processing more advanced condition statements, b) resolving the conflicts
among multiple conditions and c) general performance of complex-condition processing.
Both Java and CLIPS decision beans can be used simultaneously.

Example: Below we provide a very simple example of a CLIPS script. The reader should not
infer that this nearly trivial example represents the norm. There is no limit to the complexity
of the rules that can be incorporated into the entire framework, and some of the rules we have
implemented are rather complex.

The data retrieved from the framework are supplied to the script as CLIPS facts. The output
of the script is also facts that are asserted or retracted based on the input.
;;;==
;;; This script establishes user presence in a zone based on a reading from a presence sensor
;;; Input facts - presence-sensor; Output facts - zone-user
;;;==
;;; DEFTEMPLATES
(deftemplate presence-sensor
 (slot status)
 (slot user-id)
 (slot activity))
(deftemplate zone-user
 (slot user-id))
;;; RULES
(defrule current-user ""
 (presence-sensor (status active) (user-id ?u) (activity ?a))
 =>
 (assert (zone-user (user-id ?u)))
 (printout t "user present is: " ?u crlf))

Proceedings of Clima 2007 WellBeing Indoors

Smart Device

The Smart Device component of the system is a Java wrapper implementing a generalized
API used to communicate with real devices. This module provides a two-way translation
between device proprietary protocols (if any) and Web Services used by the Smart Building
Framework and it may implement a JMS client (see Communication between Modules section
above). A driver for each real device in the system is a specialization of the Smart Device. As
mentioned in Methods, we decided to use an XML-coded BACnet [2,3] data model to
describe device data structures. This decision is a compromise we accepted for several
reasons, some of them discussed in [1]. We recognized the facts that a) BACnet is a public
standard under a committee control, b) its device data structures represent decades of domain-
specific engineering experience and, as such, it is unlikely we will be able to come up with a
better data model, and c) the particular choice of the device data model is not really relevant
to the goals of this research3.

We have implemented several devices to interact with the system, including a Universal
Device (as a template for future development of device drivers), a Presence Agent identifying
personnel entering a controlled space, and a simulated A/C heater-thermometer device
simulating temperature changes according to a simple physical model driven by input from
the Inference Engine. The most interesting device though is the so-called PEM controller.
PEM (Personal Environment System) is a commercial product designed to provide an
individually controlled work environment. The module, installed on the user’s desk (Fig. 2)
regulates air temperature and air supply to the desktop; controls the radiant heat panel output;
and provides background noise masking and task lighting level. In its basic configuration, the
module is locally controlled and not networked. It can be connected to a data bus, but the cost
of the controller and proprietary software is
substantial. For the purpose of the project we
implemented an IP-based system controller for
the PEM device. The controller is inserted
between the manual slider board and the PEM
proper. When active, the IP controller overrides
manual user preferences, and instead adjusts the
environmental parameters to the user
preferences stored by the system, subject to
optimizations necessary to take into account
preferences of users in other cubicles and
energy usage constraints in the controlled
space. The system’s Inference Engine
implements the optimization procedures.
Manual controls are replaced by a small
application running on the user’s workstation,
which however can be deactivated by a system operator.

Figure 2: System controlled Personal
Environment Module

The PEM controller is activated by user login to the workstation, although it can also be
started by a signal when the building security system reports that the user is entering the
building security gate. This per se is not particularly innovative, but the system offers certain
niceties, such as biometrics identifying the person and transferring its environmental

3 Use of such data structures does not imply that the system is compatible with BACnet network protocol layers,
although, since the device data structures are rigorously derived from the BACnet paradigm [2], the system
could be relatively easily adapted to access and control most of the existing BACnet BAS infrastructures.

Proceedings of Clima 2007 WellBeing Indoors

preferences to the proper cubicle, together with the person’s VoIP phone number. Further, the
global optimization functionality mentioned provides a relatively new and interesting
element. The PEM controller implements a complete HTTP server on top of the IP stack, and
is simply connected to the office LAN. The application running on the server communicates
with controller’s A/D and D/A converters, providing full control of PEM control elements, as
well as providing additional temperature and humidity sensors plus several auxiliary
industrial standard 0–10V inputs and outputs.

DISCUSSION

While the existing implementation and deployment focus on environmental controls and
human efficiency issues, we believe that the system described here offers a nontrivial
technological advantage over current proprietary industrial solutions, and provides a
sustainable foundation for future collaborative development of Smart Building software by
academic and industrial consortia and alliances. To facilitate such a process, the system has
also been carefully designed to avoid intellectual property infringement of existing patented
or otherwise protected frameworks while replacing many aspects of their functionality [1].

The modular design of the system permits replacement of any of is components by a
proprietary or simply different implementation. Our focus on open-source software provides
an affordable starting configuration. Device drivers, which are a very significant obstacle to
interoperability, can be implemented in a matter of days or even hours by extending or
replacing software modules provided in templates. The selection of Web Services imple-
mented in the framework covers all typical uses we have identified in BAS systems, and
implementation of an operational system of medium complexity provides a strong proof of
the concept.

The research presented here is complementary to the work of ASHRAE and OASIS/oBIX;
those groups focus on protocols and we have focused on systems research. We believe that
our system can provide an almost instant reference implementation of the results of the work
of these industrial consortia. This represents an important step in validation of ideas leading to
future Building Automation Systems.

ACKNOWLEDGEMENT

This project was supported by funding from Empire State Development Corporation (ESDC)
of New York State under Award No: ESDC- R 580, granted to Syracuse University and
Syracuse Center of Excellence in Environmental and Energy Systems (SCoEEES).
CollabWorx acknowledges financial help and intellectual leadership of the SCoEEES,
without which this study would not have been possible.

REFERENCES

1. Podgorny, M, Markowski, R, Santanam, S, et.al., Digital Convergence and Building
Automation Systems, this proceedings, p. TBD

2. BACNet http://www.bacnet.org/
3. ASHRAE BACnet/XML working group http://groups.yahoo.com/group/BACnet-XML-WG/files/
4 OASIS/oBIX http://www.obix.org/
5 Continental Automated Buildings Association (CABA) http://www.caba.org/index.html
6. Web Services http://www.webservices.org/
7. CLIPS: A Tool for Building Expert Systems http://www.ghg.net/clips/CLIPS.html

Proceedings of Clima 2007 WellBeing Indoors

8. J2EE: Java 2 Enterprise Edition http://java.sun.com/javaee/
9. JBoss Application Server http://www.jboss.org/products/jbossas
10. Struts: Apache Web Application framework for Java http://struts.apache.org/2.x/
11. AXIS: Apache Web Services SOAP framework http://ws.apache.org/axis/
12. Hibernate: Persistence framework for Java http://www.hibernate.org/
13. Hypersonic: Open source Java RDBMS http://hsqldb.org/
14. JMS: Java Messaging System http://java.sun.com/products/jms
15. AJAX: Asynchronous JavaScript and XML, a framework for building Web GUIs

https://bpcatalog.dev.java.net/nonav/ajax/index.html

Proceedings of Clima 2007 WellBeing Indoors

