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Abstract— Most of the industrial applications are multiple
input multiple output (MIMO) systems, that can be be identified
using knowledge of the system’s physics or from measured
data employing statistical methods. Currently, there is the only
class of statistical identification methods capable of handling
the issue of vast MIMO systems – subspace identification
methods. These methods, however, as all statistical methods,
need data of certain quality, i.e. excitation of corresponding
order, data corruption, etc. Nevertheless, the combination of
statistical methods and physical knowledge of the system
could significantly improve system identification. This paper
presents a new algorithm which provides remedy to insufficient
data quality of certain kind through incorporating of prior
information, e.g. known static gain or input-output feedthrough.
The presented algorithm naturally extends classical subspace
identification algorithms, that is, it adds extra equations into
the computation of system matrices. The performance of the
algorithm is shown on a case study, where the model is used
for an MPC control of a large building heating system.

Index Terms— Subspace methods; Identification for control

I. MOTIVATION

With 39 %, buildings contribute significantly to total
energy usage in 2005, as stated by the U. S. Energy In-
formation Administration [1]. This poses strong motivation
for creation of advanced and energy saving HVAC (Heating,
Ventilating, and Air Conditioning) systems [2]. Significant
amount of energy can be saved using predictive control
strategies (Project OptiControl1) compared to the conven-
tional strategies. Widely used control strategy, weather-
compensated control, can lead to poor energy management
or reduced thermal comfort even if properly set up, because
it utilizes current outside temperatures only. In case of sharp
change of weather, there is an improper control action due
to the energy accumulation in large buildings, resulting in
over- or underheating of the building. Even though HVAC
control systems have been improved significantly during
recent years, predictive controller described in [3] introduces
a different approach to the heating system control design.
There is, however, a crucial condition for the successful
control, that is, properly identified model of the system.
Model identification can be performed by variety of methods,
physical modeling or statistical approach among others.

This paper presents subspace identification methods as a
tool for identification of MIMO systems. These methods
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originally emerged as a conjunction of linear algebra, geom-
etry and system theory and compared to the classical identifi-
cation methods [4], they provide user with several advantages
such as numerical robustness, natural extension to MIMO
systems, etc. There are, however, also some drawbacks,
e.g. lack of satisfactory number of data samples, proper
order of excitation or strong noise contamination can lead
to poor identification results. Black-box identification, such
as subspace identification methods, rely only on experimental
data, that is, they may result in biased models [5].

Prior information can significantly improve identification
results, however, current algorithms are not able to provide
satisfactory results for MIMO systems. Previous works made
use of Bayesian framework [5] but did not present method
which would treat MIMO system in a satisfactory manner.
This paper, in contrary, presents a new algorithm of incorpo-
ration prior information, which is built-in directly into system
matrices B and D and does not make use of the covariance
matrix. Proposed algorithm enables treating MIMO systems
in a natural way using state-space approach.

The paper is organized as follows: Section II provides
an insight into the building-up of the matrices used in
subspace algorithms and formulates the general identifica-
tion algorithm. Section III describes incorporation of prior
information (PI) in subspace identification framework and
shows two special cases of PI, knowledge of static gain and
input-output feedthrough. Section IV presents identification
results of previously described algorithms. The objective of
the identification was creation of proper model (in sense
of fit and controllability) of a real, eight-floor building.
Future development is outlined in Section V and the paper
is concluded with Section VI.

II. SUBSPACE IDENTIFICATION

A. Problem Statement

The objective of the subspace algorithm is to find a linear,
time invariant, discrete time model in an innovative form

x(k + 1) = Ax(k) +Bu(k) +Ke(k)

y(k) = Cx(k) +Du(k) + e(k), (1)

based on given measurements of the input u(k) ∈ Rm and
the output y(k) ∈ Rl generated by an unknown stochastic
system of order n, which is equivalent to the well-known
stochastic model

x(k + 1) = Ax(k) +Bu(k) + w(k)

y(k) = Cx(k) +Du(k) + v(k), (2)



with covariance matrices Q, S and R of process and mea-
surement noise sequences as follows:

cov(w, v) = (3)

E

([
w(p)
v(p)

] [
wT (q) vT (q)

])
=

[
Q S
ST R

]
δpq ≥ 0,

and with A, B, C, and D denoting system matrices and K
and e in (1) are Kalman gain – derived from the Algebraic
Riccati Equation (ARE) [6], and white noise sequence,
respectively.

Loosely speaking, the objective of the algorithm is to
determine the system order n and to find the matrices A,
B, C, D and K.

B. Matrices Used in Subspace Algorithm

Notation and building-up of the matrices as follows further
on were adopted as in [7]. Upper index d denotes determin-
istic subsystem, while the upper index s denotes stochastic
subsystem.

1) Data Matrices: Input block Hankel matrix is built-up
from input data as follows:

U0|2i−1 =



u0 u1 u2 · · · uj−1

u1 u2 u3 · · · uj
...

...
...

. . .
...

ui−1 ui ui+1 · · · ui+j−2

ui ui+1 ui+2 · · · ui+j−1

ui+1 ui+2 ui+3 · · · ui+j

...
...

...
. . .

...
u2i−1 u2i u2i+1 · · · u2i+j−2


, (4)

which can be rewritten as(
U0|i−1

Ui|2i−1

)
=

(
Up

Uf

)
(5)

with matrix Up containing the past inputs and Uf containing
the future inputs. The same logic holds for outputs y(k) and
noise e(k). Change of indices in (5) results in(

U0|i

Ui+1|2i−1

)
=

(
U+
p

U−f

)
. (6)

Input and output Hankel matrices can be grouped as follows:

Wp =

(
Up

Yp

)
, W+

p =

(
U+
p

Y +
p

)
. (7)

2) System Related Matrices: Extended (i > n) observabil-
ity (Γi) and reversed extended controllability (∆i) matrices
for deterministic and stochastic subsystems, respectively are
defined as follows:

Γi =


C
CA

...
CAi−1

 (8)

∆d
i =

(
Ai−1B Ai−2B . . . AB B

)
(9)

∆s
i =

(
Ai−1K Ai−2K . . . AK K

)
(10)

The lower block triangular Toeplitz matrix for determin-
istic and stochastic subsystem, respectively are defined as

Hd
i =


D 0 . . . 0
CB D . . . 0
CAB CB . . . 0

...
...

. . .
...

CAi−2B CAi−3B . . . D

 , (11)

Hs
i =


I 0 . . . 0
CK I . . . 0
CAK CK . . . 0

...
...

. . .
...

CAi−2K CAi−3K . . . I

 , (12)

and Kalman state sequence as a sequence generated by a
bank of non-steady state Kalman filters [8], working in
parallel on each other of the columns of the matrix Wp.

C. General Algorithm

The entry point to the algorithm are input-output equations
as follows:

Yp = ΓiXp +Hd
i Up +Hs

i Ep

Yf = ΓiXf +Hd
i Uf +Hs

i Ef

Xf = AiXp + ∆d
iUp + ∆s

iEp. (13)

Oblique projection as described in [9], [7] is the main tool
used in subspace methods. It is defined as follows:

Oi = Yf /
Uf

Wp, (14)

or, equivalently,

Oi = Yf
(
WT

p UT
f

)(WpW
T
p WpU

T
f

UfW
T
p UfU

T
f

)†(
Il×l

0

)
Wp,

(15)
where l is a number of outputs and (•)† is Moore-Penrose
pseudoinverse. It has been shown ([7]), that

Oi = ΓiX̃i, (16)

where X̃i is Kalman filter state sequence. The order of
the system can be determined from analysis of singular
values obtained using singular value decomposition (SVD) of
W1OiW2, where Wi are weighting matrices of appropriate
size and determine resulting state space basis as well as
importance of particular element of Oi. This decomposition
also yields extended observability matrix Γi and Kalman
filter states X̃i.

Algorithm continues from either Γi or X̃i in a slightly
different manner depending on particular subspace identifi-
cation algorithm, however, both ways lead to a computation
of system matrices A and C using least squares method.

Computation of system matrices B and D is the next step,
such that matrices A and C acquired in previous step. Dif-
ferent approaches for matrices determination are addressed
in detail in [7]. This step is crucial for the incorporation of
the prior information and will be discussed in detail in the
following section.



The algorithm concludes with computation of Kalman gain
matrix K in a standard way using state and output noise
covariance matrices (3) which are computed from residuals
of the previous computations.

III. INCORPORATION OF PRIOR INFORMATION

Prior information (PI) is a good tool for improvement of
identification results. Its incorporation can be considered as a
bridge between classical identification approaches ([4]) based
on time response of unknown system on e.g. step or impulse
response, and statistical based identification methods. System
properties such as steady state gain, settling time, asymp-
totic stability, dominant time constants, smoothness of step
response etc. can be used in classical approach to determine
the unknown system. The question is, how to involve at least
some of these properties into statistical based identification,
and in particular, into 4SID methods.

Several methods dealing with above problem have been
proposed. They can be generally classified into four groups.

1) Bayesian framework: This method can be character-
ized as a natural way for incorporation of PI because it allows
inference of prior estimate of unknowns system parameters
with information retrieved from measured data. Resulting
posterior conditional probability function can be obtained
using Bayesian rule ([10])

p(θ|y) ∝ l(θ|y)p(θ),

where p(θ) is prior probability density function of parameters
and l(θ|y) the likelihood function for measured data.

Although many satisfactory results were proposed for in-
corporation of PI into ARX or ARMAX model identification
([10]), similar strategies do not work well for the class of
4SID methods. This problem is treated in [5], but favorable
results are given only for multiple input single output (MISO)
systems, because presented algorithm ([11]), based on struc-
tured weighted lower rank approximation (SWLRA), does
not exist for MIMO systems.

2) Direct incorporation of system properties into 4SID
algorithms: The following section tries to sketch out iden-
tification algorithm in simplified way. The incorporation of
all conceivable kinds of PI is shown.

• Computation of extended observability matrix and state
vector sequence

W1OiW2 = ΓiXi.

Different 4SID algorithms make use of different rules
for computation of these matrices ([7]).

• Computation of system matrices A and C based on Γi

using least squares method.
• Determination of matrices B and D and possible incor-

poration of prior information in this step. Solution will
be addressed in Section III-A.

• Kalman gain computation.

3) Artificial data: Generation of data with desired proper-
ties is yet another approach how to deal with the weak point
of 4SID, its black-box character (and associated statistical
problems). Such data can contain trends that represent system
in a decoupled form (connection of particular input to
particular output etc.). As the ratio between artificial and
measured data is unknown, the only way how to address
this problem is trial and error method.

4) Frequency domain identification methods: Yet another
approach for system identification is use of frequency domain
methods. It was shown ([12]) that this approach leads to
maximum likelihood formulation of the frequency domain
estimation problem. Even though there were some proposals
([13]) how to incorporate prior information into identification
algorithm, it is still an open problem and a topic of ongoing
research.

In the following incorporation of prior information will be
addressed:

A. Knowledge of Static Gain

Subspace identification process consists of several parts.
Each of them corresponds to a particular property of resulting
system. Matrix A contains dynamics of states, while matrix
C transfers dynamics to the outputs. Therefore, the system
input/output structure is influenced mainly by determination
of matrices B and D, with A and C fixed. Hence, the key
idea is to involve prior information about steady state gain
into latter matrices.

Let matrices A and C have already been computed by
some 4SID algorithm (e.g. [7]). Knowledge of these matrices
can be exploited to compute such matrices B and D, that
lead to desired steady state behavior. This is possible thanks
to the fact, that the sum of elements of impulse response is
equal to the steady state:

D + CB + CAB + CA2B + . . . = G, (17)(
Il×l

∑∞
k=0 CA

k
)(D

B

)
= G, (18)

where G is a matrix of steady state gains (gij is a steady
state gain from the j-th input to i-th output)

G =


g11 g12 . . . g1m

g21 g22 . . . g2m

...
...

. . .
...

glx1 gl2 . . . glm

 . (19)

In case of asymptotically stable matrix A, the following holds
(Neumann series convergency theorem [14]):

(In×n −A)−1 =

∞∑
k=0

Ak. (20)

Finally, we get resulting formula, which represents the addi-
tional set of constraints that have to be fulfilled:(

Il×l C(In×n −A)−1
)︸ ︷︷ ︸

Γs

(
D
B

)
= G, (21)



Consider any 4SID algorithm that computes matrices B and
D after A and C being already computed. The computation
is performed using least squares method as follows:

B,D = arg min
B,D

{∣∣∣∣∣∣∣∣M − L(DB
)∣∣∣∣∣∣∣∣

F

}
, (22)

where || • ||F denotes Frobenius norm, and M and L are
appropriate size matrices defined in [7]. It must be said in
this place, that these matrices are defined differently for each
4SID algorithm.

Incorporating constraints (21) can be done in two possible
ways:

• Solve least squares problem with equality constraints

B,D = arg min
B,D

{∣∣∣∣∣∣∣∣M − L(DB
)∣∣∣∣∣∣∣∣

F

: Γs

(
D
B

)
= G

}
.

(23)
• Solve weighted least squares problem

B,D = arg min
B,D

{∣∣∣∣∣∣∣∣(MG
)
−
(
L
Γs

)(
D
B

)∣∣∣∣∣∣∣∣
F,W

}
,

(24)
where W is user-defined weighting matrix that guaran-
tees the desired steady state behavior. Particular input-
output channel can be selected by appropriate choosing
of W .

Computation of matrices B and D in some 4SID algo-
rithms is based on vectorization and Kronecker product, that
is:

B,D = arg min
B,D

{∣∣∣∣∣∣∣∣vecM − L vec
(
D
B

)∣∣∣∣∣∣∣∣
F

}
. (25)

Using vectorization and Kronecker product, the set of equal-
ity constraints (21) can be expressed in following manner:

(Im×m ⊗ Γs)vec
(
D
B

)
= vecG , (26)

which can be readily included in either (23) or (24).

B. Knowledge of input-output feedthrough

Oftentimes in industrial applications, the input-output
feedthrough of the system to be identified is known in
advance. In fact, it is not a rare phenomenon, that there is no
input-output feedthrough present in the system, that is, the
system matrix D is equal to zero. This will be treated in the
following:

Consider again (22), the computation of matrices B and D,
that is, the very last step of subspace identification algorithm
as proposed in [7]. Matrix D can be forced to be zero by a
computation of (22) or (25) using modified matrix L by the
elimination of the columns corresponding to matrix D. The
set of omitted columns differs for two distinct algorithms:

1) Without Kronecker product: Solution to this problem is
given by omitting first l columns of matrix L in (22), where
l corresponds to the number of outputs.

Fig. 1. Simplified scheme of model identification setup.

2) With Kronecker product: This situation is more compli-
cated than in the first case due to vectorization and Kronecker
product, nevertheless the selection of columns of L1 is
determined by indexes in set I , given as:

I = {k(l + n)− n+ 1, k(l + n)− n+ 2, . . . k(l + n),
(27)

where k = 1, 2, . . .m.

IV. IDENTIFICATION RESULTS

Proposed algorithms were implemented in Scilab2 and
then applied to data gathered from HVAC system of the
building of the Czech Technical University in Prague. The
simplified scheme of one building block consisting of three
inputs (outside temperature, heating water 1, heating water 2)
and four outputs (room temperature 1, return water 1, room
temperature 2, return water 2) is depicted in Fig. 1.

Data from such an industrial environment do not always
have sufficient quality, they suffer from strong noise con-
tamination, occurrence of outliers, low excitation, etc. In
our case, there is a strong multi-collinearity present in the
data, that is, the conventional control strategies, which have
been used for maintenance of desired temperature levels,
drive both courses (north and south course, as well) of
heating water, so that return waters and room temperatures
had similar behavior and were strongly correlated. Black-
box identification approach was not able to carry out this
problem. Prior information about system structure i.e. steady
state gain or/and no presence of input-output feedthrough had
to be incorporated to get desired results. This can be seen
in Fig. 2, where the step responses of models identified by
different 4SID approaches are shown. Prior knowledge about

2Open source scientific software package for numerical computations
(http://www.scilab.org/)
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Fig. 2. Comparison of step responses of systems identified using different algorithms. There is significant improvement in identification results using
prior information about steady state gain (dashed lines).

steady state gain was in this case selected as follows:

G =


0.5 0.75 0.15
0 0.9 0

0.5 0.15 0.75
0 0 0.9

 .

These 4SID methods come, in general, from robust com-
bined deterministic and stochastic algorithm as introduced
in [7]:
• 4SID – version without changes.
• 4SID+PI – Steady state gain was included using (26).

Matrix D is not set to zero.
• 4SID-D – Matrix D is set to zero but steady state gain

is not included.
• 4SID-D+PI – Both types of PI information, i.e. zero D

and steady state gain are incorporated.
The same models were verified against validation data by
open-loop simulation, see Fig. 3. Both figures prove the
superiority of the identification algorithm with PI included.
Identification results can be summed-up as follows:
• Zero D matrix. There is almost no difference in results

between robust combined algorithm (full matrix D) and
algorithm with zero D matrix. This is useful especially
in cases, when nonzero matrix D has no physical
meaning in many industrial applications.

• Prior information in matrices B and D. The incor-
poration of known static gain into identification al-
gorithm has different consequences for deterministic
and stochastic (in sense of system with noise) algo-
rithms. In case of deterministic algorithm, the prior
information is able to substitute the lack of information
caused by noise (no presence of Kalman filter) and
significantly improves identification results. In many
cases, it is even not possible to identify system with
noise using deterministic algorithm without knowledge
of prior information due to the insufficient information
and noise contamination and this can be rectified using
prior information. In case of stochastic algorithm, the
differences in fit between algorithm with and without
prior information is not major, however, the incorpora-
tion of prior information enables creation of the model
which has properties equivalent to real physical system
and is valid for control.

• Sensitivity of true value of PI. The price for the better
identification performance in case of PI incorporation
must be paid by greater sensitivity to the changes in
parameters, that is, even the slight change in parameters
aggravates identification results (in sense of fit). The im-
portance of prior information in respective parameters
can be decided by weighting matrix in (24).
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Fig. 3. Comparison of different identification strategies: open-loop simulation.

V. FUTURE DEVELOPMENT

As mentioned in Section III there is no properly working
SWLRA algorithm for MIMO systems. This is still a topic
of ongoing research. In case of successful solving of this
problem, the prior information could be incorporated by
means of Bayesian network as proposed by [5] even to
MIMO systems. Yet another approach was presented in this
article via direct incorporation PI into system matrices B
and D. There is, however, PI of certain type (e.g. dynamics)
which could be incorporated directly into matrices A or C,
however, this approach is still unknown and topic of possible
research as well.

VI. CONCLUSIONS

The proposed algorithm presents incorporation of PI into
the subspace identification methods. The incorporation is
performed directly into system matrices B and D, thus
enables certain type of prior information, e.g. static gain. The
incorporated PI is able to significantly improve identification
results and substitute the lack of information in input-output
data. Moreover, it notably improves model for control pur-
poses by approaching to physical system structure. However,
the quality of identification is sensitive to the accuracy of
prior estimate of parameters. The constructed model has
been used for temperature control in real operation of the 8-
floor building of the Czech Technical University in Prague.
The predictive control with model identified using algorithm
proposed in this paper proved to save 23% of energy required
by the weather-compensated controller.
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