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a b s t r a c t

This paper presents model predictive controller (MPC) applied to the temperature control of real build-
ing. Conventional control strategies of a building heating system such as weather-compensated control
cannot make use of the energy supplied to a building (e.g. solar gain in case of sunny day). Moreover
dropout of outside temperature can lead to underheating of a building. Presented predictive controller
eywords:
ptimal control
ubspace identification
odel predictive control

osts effectiveness

uses both weather forecast and thermal model of a building to inside temperature control. By this, it can
utilize thermal capacity of a building and minimize energy consumption. It can also maintain inside tem-
perature at desired level independent of outside weather conditions. Nevertheless, proper identification
of the building model is crucial. The models of multiple input multiple output systems (MIMO) can be
identified by means of subspace methods. Oftentimes, the measured data used for identification are not
satisfactory and need special treatment. During the 2009/2010 heating season, the controller was tested

ding a
on a large university buil

. Introduction

According to the U.S. Energy Information Administration, in
005, buildings accounted for 39% of total energy usage, 12% of the
otal water consumption, 68% of total electricity consumption, and
8% of the carbon dioxide emissions in the U.S.A. [1]. Although the
nergy efficiency of systems and components for heating, ventilat-
ng, and air conditioning (HVAC) has improved considerably over
ecent years, there is still potential for substantial improvements.
his article deals with an advanced control technique, that can pro-
ide significant energy savings in comparison with conventional,
on-predictive techniques.

Widely used control strategy of water heating systems is the
eather-compensated control. This feedforward control can lead

o poor energy management or reduced thermal comfort even if
roperly set up, because it utilizes current outside temperatures
nly. Weather conditions, however, can change dramatically in few
ours; and due to the heat accumulation in large buildings, it can

ead to underheating or overheating of the building easily.
During recent years, significant advances have been done for the
VAC control systems [2–6]. For instance, continuous adaptation
f control parameters, optimal start–stop algorithms, optimiza-
ion of energy loads shifting [7], or inclusion of free heat gains in
he control algorithm are particular improvements of the build-
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nd achieved savings of 17–24% compared to the present controller.
© 2010 Elsevier B.V. All rights reserved.

ing heating system [8]. Some new concepts have been verified by
simulations [9,10], nevertheless they are still waiting for real oper-
ations. The model predictive control, [11–15] (MPC) presented in
this article introduces a different approach to the heating system
control design. As the outside temperature is one of the most influ-
ential quantity for the building heating system, weather forecast is
employed in the predictive controller. It enables to predict inside
temperature trends according to the selected control strategy. The
aims of the control can be expressed in natural form as thermal
comfort and economy trade off. Unfortunately, this concept has
some drawbacks, such as extensive computational requirements or
necessity of a mathematical model of the physical system (building
in this case).

All these issues are discussed in detail in following sections,
which are organized as follows. Section 2 compares the current con-
trol techniques with MPC. Section 3 introduces model predictive
control concept more in detail and explains the mathematical back-
ground of this technique. This section also addresses new modified
zone model predictive controller. Problem of the model identifi-
cation is discussed as well. Application results are summarized in
Section 4. Remarks to future development are outlined in Section
5. The last section concludes the work.

List of abbreviations used throughout the article is mentioned
in Table 1.
2. Current heating control strategies

Let us briefly compare the major state-of-the-art heating
control techniques – on–off room temperature control, weather-

dx.doi.org/10.1016/j.enbuild.2010.10.022
http://www.sciencedirect.com/science/journal/03787788
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Table 1
Notation.

Abbrev. Meaning

ARX Auto-regressive model with external inputs
ARMAX Auto-regressive, moving average model with external inputs
CTU Czech Technical University in Prague
HVAC Heating, ventilation and air-conditioning systems
MIMO Multiple-input, multiple-output systems
MPC Model predictive control
OE Output error model
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practitioners in heating control are rather conservative in their
field, they can accept new method, such as MPC, if performed in
small, consecutive steps, which helps them to get acquainted with
its principles.
PID Proportional – integrative – derivative controller
SISO Single-input, single-output systems
WC Weather-compensated control

ompensated control, and PID [8] control – with the proposed
pplication of MPC.

The on–off room temperature control is the simplest type of
ontrol; the heating devices in a room are switched on and
ff (device state S) according to some room temperature error
et = trequired − troom) threshold, usually implemented as a suitable
ysteresis curve fon–off:

= fon–off(et) (1)

his is a very simple feedback control, which does not contain any
nformation about the dynamics of the building. The main advan-
age is its simplicity.

On the contrary, the weather-compensated control is a feedfor-
ard control, which also does not contain any information about

he building dynamics. The temperature of the heating medium,
uch as water (twater), is set according to the outside temperature
outside by means of predetermined heating curves fw-c, that is

water = fw-c(toutside) (2)

n spite of the lack of dynamics in the control, this is a long used and
roven control strategy; its advantage is its robustness and simple
uning.

PID control is one of the most favorite strategies of control engi-
eers [16,17]. It is a feedback control with some information about
he system dynamics, that is, the heating water temperature twater is
etermined according to the room temperature error et and “some”
istory:

water = fPID(et ,history) (3)

ID controllers are robust and allow accurate tuning, but they can-
ot reflect the outside temperature effects. This is the reason why
IDs in HVAC control are not as common as in other control appli-
ations.

Even though all the above controllers are easy to tune for single-
nput, single-output (SISO) systems, their tuning for multiple-input

ultiple-output (MIMO, sometimes called multidimensional) sys-
ems becomes very difficult or even impossible in practice. The PID
ontrol can be applied to MIMO systems only in very rare occasions,
n case of specially structured (input–output decoupled) systems.

We would therefore appreciate some control strategy, which
ould have a feedback (i.e. the room temperature error et is used),
se as much information as possible (the outside temperature

outside, the weather forecast tpredicted, and others x) and include
ome system dynamics (“history”) as well. This can be formalized
in the spirit of the above Eqs. (1)–(3) – as

water = fMPC(et, toutside, tpredicted, x,history) (4)
hese requirements are satisfied by a so-called model (based) pre-
ictive controller (MPC), which is specially suitable for systems
ith multiple inputs and multiple outputs, which is very typi-

al for heating systems. Its main drawbacks are high demands
Fig. 1. The building of the Czech Technical University in Prague that was used for
MPC application.

for computational resources and non-trivial mathematical back-
ground, especially in the “Model” part of the controller.

3. Model predictive control

3.1. State of the art

Model (based) predictive control (MPC) is a method of advanced
control originated in late seventies and early eighties in the process
industries (oil refineries, chemical plants, etc.) [11]. The MPC is not
a single strategy, but a vast class of control methods with the model
of the process explicitly expressed trying to obtain control signal
by minimizing objective function subject to (in general) some con-
straints [18]. The minimization is performed in an iterative manner
on some finite optimization horizon to acquire N step ahead pre-
diction of control signal that leads to minimum criterion subject to
all constraints. This, however, carries lots of drawbacks such as no
feedback, no robustness, and no stability guarantee. Many of these
drawbacks can be overcome by applying so-called receding hori-
zon, i.e. at each iteration only the first step of the control strategy is
implemented and the control signal is calculated again, thus, in fact,
the prediction horizon keeps being shifted forward. Stability of the
constrained receding horizon has been discussed in Refs. [13,14],
or yet another approach using robust control design approach [15].

There were several attempts made to utilize predictive control
concept in HVAC in the last decade [19,9,20,21,10]. Complex view
into area of optimal building control gives the project OptiControl.1

Besides its own results, it also provides a wide range of references to
the related articles. Another project worth to mention is the predic-
tive networked building control that deals with predictive control
of the thermal energy storage on the campus of the UC-Berkeley.2

Most of the articles devoted to the HVAC predictive control con-
clude results just by numerical simulations. On the contrary, this
article describes MPC being tested on the real eight-floor building
(see Fig. 1).

3.2. Principles

We will now briefly describe the basic ideas lying behind the
MPC. To be more illustrative, we will take the course of the MPC
implementation in our own project; even though the experienced
1 http://www.opticontrol.ethz.ch.
2 http://sites.google.com/site/mpclaboratory/research/predictive-networked-

building-control-1.

http://www.opticontrol.ethz.ch
http://sites.google.com/site/mpclaboratory/research/predictive-networked-building-control-1
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Having a well working control, such as weather-compensated
ontrol of a building, it is often unwise to change it to something
ovel, but unproven. However, it can be very advantageous to pro-
ide a “tool” that would enhance the possibilities of the existing
ystem. A mathematical model can be such a “tool”, allowing the
ystem operators to predict the behavior of the building. If the
odel is accurate enough (e.g. as a one-day predictor), another fea-

ure can be added—the operator can experiment with the model
nd try some “what if” scenarios. The next step is obviously imple-
entation of an algorithm that proposes the best scenarios; it is

till a “tool”, the model and algorithm are not involved in the con-
rol loop. That would be the last step – after the operator begins to
rust the algorithm, he begins to ask for the closer of the control
oop incorporating what we call model predictive control.

To be more precise, the first step is to find a dynamic model P

= P(u, t) (5)

here y is the output, u is the input (both can be vectors) and t
s time. Inputs u may be entered by the operator in the beginning,
uch that he can see the expected behavior of the system, as seen
n outputs y. The next step is finding the optimal inputs u automat-
cally. This can be achieved by introducing an optimality criterion
(y, u, t), wherein the control demands are described in the language
f mathematics. Substituting from (5), the optimal control inputs
an be found by computing

optimal = min
u

J(P(u, t), u, t) (6)

ubject to “some” constraints. This very basic idea will now be
iscussed more in detail.

.3. Model identification

One of the crucial contributors to the quality of the control is
well identified model which will be later on used for control in
PC algorithm. There are several completely different approaches

o system identification (see e.g. [22,23]). Some of them use knowl-
dge of system physics, while others exploit statistical data, such as
rey-box [24,25] (some prior information such as system structure
s known in advance) or black-box identification. Grey box methods
sing models such as ARX, ARMAX, OE and others are well estab-

ished among the practitioners as well as theoreticians. There is,
owever, a significant problem, when multiple input multiple out-
ut (MIMO) systems are considered. The standard input–output

dentification methods are not capable of dealing with such a

odel, thus one has to either reformulate the problem to several

ingle-output cases, or to use state-space identification methods,
uch as subspace methods. The first approach, including computer
odeling of the building, as well as comparison of ARMAX model

nd subspace methods, was briefly described in [26].

U0|2i−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 u1 u2 ··· u j−1
u1 u2 u3 ··· u j
...

...
...

. . .
...

ui−1 ui ui+1 ··· ui+ j−2

ui ui+1 ui+2 ··· ui+ j−1
ui+1 ui+2 ui+3 ··· ui+ j
...

...
...

. . .
...

u2i−1 u2i u2i+1 ··· u2i+ j−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Y0|2i−
ldings 43 (2011) 564–572

The main difference between classical and subspace identifica-
tion can be seen in Fig. 2 (see Ref. [27]). Given the sequence of input
and output data, u(k) and y(k), respectively, do:

• Classical approach. Find system matrices, then estimate the sys-
tem states, which often leads to high order models that have to
be reduced thereafter.

• Subspace approach. Use orthogonal and oblique projections
to find Kalman state sequence, then obtain the system matri-
ces using least squares method. Here we introduce the
latter—subspace identification methods.

The objective of the subspace algorithm is to find a linear, time
invariant, discrete time model in an innovative form:

x(k + 1) = Ax(k) + Bu(k) + Ke(k)

y(k) = Cx(k) + Du(k) + e(k),
(7)

based on given measurements of the input u(k) ∈Rm and the output
y(k) ∈Rl generated by an unknown stochastic system of order n,
which is equivalent to the well-known stochastic model:

x(k + 1) = Ax(k) + Bu(k) + w(k)

y(k) = Cx(k) + Du(k) + v(k),
(8)

with covariance matrices Q, S and R of process and measurement
noise sequences as follows:

cov(w, v) = E

([
w(p)

v(p)

][
wT (q) vT (q)

])
=

[
Q S

ST R

]
ıpq ≥ 0, (9)

and with A, B, C, and D denoting system matrices and K and e in (7)
is Kalman gain – derived from the Algebraic Riccati Equation (ARE)
[28], and white noise sequence, respectively. Loosely speaking, the
objective of the algorithm is to determine the system order n and
to find the matrices A, B, C, D and K.

3.3.1. Data matrices for subspace algorithm
The following matrices are necessary to form for subspace

algorithm. Notation was adapted as in Ref. [27]. Upper index d
denotes deterministic subsystem, while the upper index s denotes
stochastic subsystem. Two kinds of matrices are used for subspace
algorithm, data and system related matrices.

• Data matrices. Input and output block Hankel matrix are formed
from input and output data as follows:

1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

y0 y1 y2 ··· y j−1
y1 y2 y3 ··· y j
...

...
...

. . .
...

yi−1 yi yi+1 ··· yi+ j−2

yi yi+1 yi+2 ··· yi+ j−1
yi+1 yi+2 yi+3 ··· yi+ j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

,

⎜⎜⎝
...

...
...

. . .
...

y2i−1 y2i y2i+1 ··· y2i+ j−2

⎟⎟⎠
(10)
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Subspace Classical

Least squares Kalman filter

•
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f

Kalman statesA,B,C,D,K

Fig. 2. Comparison between classical and subspace identification methods.

which can be written in shorten form as follows:(
U0|i−1

Ui|2i−1

)
=

(
Up

Uf

)
(

Y0|i−1

Yi|2i−1

)
=

(
Yp

Yf

)
,

(11)

where matrices Up and Uf represent past and future inputs,
respectively. Outputs y(k) and noise e(k) related matrices can be
formed in similar manner. Grouped data matrix consisting of past
input and past output data is formed as follows:

Wp = W0|i−1 =
(

U0|i−1

Y0|i−1

)
.

System related matrices. Extended (i > n) observability (�i) and
reversed extended controllability (�i) matrices for deterministic
and stochastic subsystems, respectively are defined as follows:

�i =

⎛
⎜⎜⎜⎜⎝

C

CA

...

CAi−1

⎞
⎟⎟⎟⎟⎠ (12)

�d
i =

(
Ai−1B Ai−2B . . . AB B

)
(13)

�s
i =

(
Ai−1K Ai−2K . . . AK K

)
(14)

Algorithm also uses lower block triangular Toeplitz matrix for
deterministic and stochastic subsystem, respectively:

Hd
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0

...
...

...
...

...

CAi−2B CAi−3B CAi−4B . . . D

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Hs
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 . . . 0

CK I 0 . . . 0

CAK CK I . . . 0

...
...

...
...

...

CAi−2K CAi−3K CAi−4K . . . I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

.3.2. Subspace algorithm
The entry point to the algorithm are input–output equations as

ollows:
Yp = �iXp + Hd
i
Up + Hs

i
Ep

Yf = �iXf + Hd
i
Uf + Hs

i
Ef

Xf = AiXp + �d
i
Up + �s

i
Ep.

(16)
dings 43 (2011) 564–572 567

Oblique projection as described in Refs. [29,27] is the main tool
used in subspace methods is defined as follows:

Oi = Yf /
Uf

Wp. (17)

The order of the system can be determined from analysis of sin-
gular values obtained using singular value decomposition (SVD) of
W1OiW2, where Wi are weighting matrices of particular size and
determine resulting state space basis. It has been shown [27], that
Oi = �iX̃i, where X̃i is Kalman filter state sequence. This factoriza-
tion also yields extended observability matrix �i and Kalman filter
states X̃i.

Algorithm continues from either �i or X̃i in a slightly different
manner depending on particular subspace identification algorithm,
however, both ways lead to a computation of system matrices A and
C using least squares method.

Computation of system matrices B and D follows subject to
matrices A and C computed in previous step. Different approaches
for matrices determination are addressed in detail in Ref. [27].

The algorithm concludes with computation of Kalman gain
matrix K in a standard way using state and output noise covariance
matrices (9) which are computed from residuals of the previous
computations.

The model structure used in MPC is the state-space model (7)
identified by subspace identification (described in Section 3.3) from
measured data. The application of the model will become apparent
later in this section.

3.4. Predictive controller

3.4.1. MPC strategy
The MPC strategy comprises two basic steps:

• The future outputs are predicted in an open-loop manner using
the model provided information about past inputs, outputs and
future signals, which are to be calculated. The future control
signals are calculated by optimizing the objective function, i.e.
chosen criterion, which is usually in the form of quadratic func-
tion. The criterion constituents can be as follows:
- errors between the predicted signal and the reference trajectory

yr(k);
- control effort;
- rate of change in control signals.

• The first component of the optimal control sequence u(k) is sent
to the system, whilst the rest of the sequence is disposed. At the
next time instant, new output y(k + 1) is measured and the control
sequence is recalculated, first component u(k + 1) is applied to
the system and the rest is disposed. This principle is repeated ad
infinitum (receding horizon).

The reference trajectory yr(k), room temperature in our case,
is known prior, as a schedule. The major advantage of MPC is
the ability of computing the outputs y(k) and corresponding input
signals u(k) in advance, that is, it is possible to avoid sudden
changes in control signal and undesired effects of delays in system
response.

Standard formulation of criterion for MPC is as follows:

J =
N−1∑
k=0

q(k)(y(k) − yr(k))2 + r(k)u(k)2, (18)
where q(k) is weight for difference between system output y(k) and
reference yr(k) at time instant k, while r(k) is the weight of the dis-
placement of control signal u(k). If the future desired output value
is known in advance, then this criterion leads to such an optimal
system input, which minimizes weighted square of y(k) − yr(k). By
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ntirely negative errors makes predictive controller to follow accurately the upper
art of reference trajectory. When step down of desired value occurs, the system
utput drops to the reference value with a minimum control effort.

his, the area delimited by the system output below desired value
s same as the area above it. This is depicted in Fig. 3 by line marked

ith circles. Such a behavior is satisfactory for most of the common
ontrol problems but not for temperature control of a building. The
im of the control is to adhere the upper desired value from its
eginning to its end. Resulting behavior of the output is delineated

n Fig. 3 by line with crosses.
This unusual problem can be solved by several approaches:

The intuitive method is to use dynamic weights q(k) and r(k)
at time, i.e. to make them time-dependant. These weights then
depend on the shape of the reference trajectory – if there is a
step-up/down on a prediction horizon, then weight q(k) is set to
be greater than r(k) for k when the reference trajectory is on upper
level, whilst q(k) < r(k) for the rest of k on prediction horizon. This
simple procedure ends if there exists more reference trajectory
levels than two (but in this case is the best way how to solve such
a problem).
The second approach is as follows: In the minimization of the
criterion (18) the reference trajectory yr can be substituted with
“artificial” reference w, which can be some approximation from
the actual output y to real reference yr. This can be done using
following convex combination [30]:

w(k) = y(k)

w(k + i) = ˛w(k + i − 1) + (1 − ˛)yr(k + i),
(19)

where i = 1 . . . N and ˛ ∈ 〈0;1〉 is a parameter, that determines the
smoothness (and speed) of the approaching of the real output to
the real reference. (19) can be also restated as follows:

w(k) = y(k)

w(k + i) = ˛r(k + i) − ˛i(y(k) − yr(k)).
(20)

Making use of artificial reference may be very helpful in the case
of number of “steps” in reference trajectory with need of its pre-
cise tracking by the actual output.
Completely different way is to reformulate the part of criterion
(18), which refer to the desired value error. If y(k) < yr(k) then
weight the square of this difference using q(k), otherwise the error

is not weighted. This can be treaded by using the concept of zone
control (also called funnel MPC) [18] where the reference error
is not weighted in a specified interval while the weighting out is
made in a common way. The lower bound of the interval is in our
case desired value, whilst the upper bound is not specified due to
the fact, that the building naturally tends to underheat providing
the weighted output. Such a method can be used for tracking of
reference trajectory with arbitrary number of levels.
ldings 43 (2011) 564–572

The last approach will be discussed in detail.

3.4.2. MPC problem formulation
For a given linear, time invariant, discrete-time deterministic

model

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
(21)

find the optimal control sequence on the horizon of prediction
(length N) by minimizing the objective function

J =
N−1∑
k=0

q(k)(y(k) − z(k))2 + r(k)u(k)2, (22)

subject to

umin ≤ u(k) ≤ umax

yr(k) ≤ z(k)

�max ≥ |u(k) − u(k − 1)|
(23)

where constraints umin, umax are the minimum and maximum val-
ues of the control signal, yr(k) is desired value, thus lower bound
for z(k) and �max is a maximum rate of change of the control signal.

The objective function J (in (22)) can be rewritten into a matrix
form (denoted without specification of a time instant)

J = (y − z)T Q (y − z) + uT Ru, (24)

where Q and R are weighting matrices of output error and control
effort, respectively. The trajectory of the output is given as:⎡
⎢⎢⎣

y(0)
y(1)

...
y(N − 1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

C
CA
...

CAN−1

⎤
⎥⎥⎦ x(0)

+

⎡
⎢⎢⎣

D
CB D
...

. . .
CAN−2B . . . CB D

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u(0)
u(1)

...
u(N − 1)

⎤
⎥⎥⎦ , (25)

i.e.

y = �x(0) + Hu, (26)

where � is extended observability matrix and H is a matrix of
impulse responses. Let ỹ = �x(0), then using (26), we can rewrite
(24) as follows:

J = (ỹ + Hu − z)T Q (ỹ + Hu − z) + uT Ru. (27)

Minimization of such an objective function is a nonlinear pro-
gramming problem, which can be readily rewritten into quadratic
programming problem

J =
[

uT zT
][

HT QH + R −HT Q
−QH Q

][
u
z

]
+

+2
[

ỹT QH −ỹT Q
][

u
z

]
+ ỹT Q ỹ (28)

This yields the optimization problem min u,zJ, which can be effec-

tively solved using some of the computer algebra systems. The
resulting problem has (m + p) · T variables which is a greater dimen-
sion compared to the classical one (described by criterion (18)) with
m · T variables, where m and p are number of inputs and outputs
respectively.
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side temperature, whilst the lower compares reference tracking
for weather-compensated and predictive controllers. It can be seen,
that the predictive controller heats in advance in order to perform
optimal reference tracking, that is, inside comfort, and minimum
energy consumption. Two last subfigures compare the efficiency
Fig. 4. Simplified scheme of the ceiling radiant heating system.

. Application

The methods described in the previous sections were tested
hrough December 2009 and January 2010 and the the real run
f control application using proposed control strategy started in
ebruary 2010 at the building of the Czech Technical University in
rague. As of February 2010 the whole building consisting of 7 con-
rol blocks is controlled by presented MPC algorithm. All algorithms
ere implemented in Scilab.3

.1. Description of the building

The building of the Czech Technical University in Prague uses a
Crittall” type ceiling radiant heating and cooling system. The “Crit-
all” system, invented in 1927 by R.G. Crittall and J.L. Musgrave [31],
as a favorite heating system in the Czech Republic during 1960s

or large buildings. In this system, the heating (or cooling) beams
re embedded into the concrete ceiling. The control of individual
ooms is very complicated due to the technical state of the con-
rol elements in all rooms. The control is therefore carried out for
ne entire building block, i.e. the same control effort is applied to
ll rooms of the building block. There are two (out of seven control
locks) building blocks with the same construction and orientation.
herefore, this situation is ideal for comparison of different control
trategies, as depicted in Fig. 5.

A simplified scheme of the ceiling radiant heating system is illus-
rated in Fig. 4. The source of heat is a vapor–liquid heat exchanger,
hich supplies the heating water to the water container. A mix-

ng occurs here, and the water is supplied to the respective heating
ircuits. An accurate temperature control of the heating water for
espective circuits is achieved by a three-port valve with a servo
rive. The heating water is then supplied to the respective ceil-

ng beams. There is one measurement point in a reference room
or every circuit. The setpoint of the control valve is therefore
he control variable for the ceiling radiant heating system in each
ircuit.

.2. Description of the model

The ceiling radiant heating system was modeled by a discrete-
ime linear time invariant stochastic model. We can consider this

odel as a Kalman filter giving an estimate of x̂(k) and ŷ(k). Outside
emperature prediction and heating water temperature were used
s the model inputs. Prediction of outside temperature is composed
f two values Tmax and Tmin defining a confidence interval. The out-
uts of the model are estimates of inside temperature T̂in and of
3 Open source scientific software package for numerical computations
http://www.scilab.org/).
dings 43 (2011) 564–572 569

return water4 T̂rw . This can be formalized according to (21) as

x̂(k + 1) = Ax̂(k) + B

⎡
⎣ Tmin(k)

Tmax(k)

Thw(k)

⎤
⎦ + K(y(k) − Cx̂(k))

[
T̂in(k)

T̂rw(k)

]
= Cx̂(k) + D

⎡
⎣ Tmin(k)

Tmax(k)

Thw(k)

⎤
⎦ ,

(29)

where Thw is temperature of the heating water and Tin denotes the
inside temperature. System matrices A, B, C and D are to be identi-
fied using subspace methods as was described in Section 3.3.2. The
state x̂(k) has no physical interpretation, when identified by means
of the subspace identification. System order is determined by the
identification algorithm. Modeling of the heating system of the CTU
building is discussed in detail in Ref. [32].

4.3. Results

We have employed two methods of estimating the savings
achieved on the building, based on comparison with a finely tuned
weather-compensated controller (which also took weather fore-
cast into account).

The first one was a cross-comparison of energy consumption
in particular building blocks based on the difference between the
heating and return water temperatures (this is directly propor-
tional to the heat consumption provided that the pumps have a
constant flow). In the period from mid-February to the end of the
heating season (end of March), the overall savings reached 17–24%,
depending on the particular building block.

The second method was based on comparison of calorime-
ter measurements for the entire building for MPC and said
weather-compensated control. The measurements were normal-
ized by outside temperatures and ambient temperature set-points
to achieve reliable results. For said period of measurement, MPC
achieved 29% savings according to this method.

It should be noted that the heating and return water tempera-
ture is being measured by standard industrial thermometers, which
suffer from measurement errors, such as noise or offset. This intro-
duces some uncertainty into the results. On the other hand, the
calorimeters are installed by the heat provider, so we expect them
to be well calibrated (or, at least, they do not measure less than the
actual heat); heat payments are also based on the calorimeters. So
in the terms of finances, the money savings of were also 29% (there
is a flat rate on heat for the building).

Measurement of thermal comfort is always difficult and highly
individual. As there are some 1500 employees and 8000 students
in the building and there are always some people who complain
about the ambient temperature, we decided to take the number of
complains as the thermal comfort measure. To achieve objective
results, the building occupants were not told about the new heat-
ing strategy. Under such conditions, the change in the number of
complains was insignificant during the test period.

The results are depicted in Fig. 5. The upper part shows out-
4 It is crucial to model return water as an output because it gives a significant
information about energy accumulated in the building, moreover it represents the
interconnection between heating water and room temperature. Omitting the return
water would lead to significant lost of information.

http://www.scilab.org/
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ig. 5. Different control strategies: comparison of weather-compensated (WC) a
ontrolled by MPC.

f control measured by energy consumption. The efficiency of the
redictive control was superior to the weather-compensated con-
roller, even if the active heating was necessary.

As mentioned before, the building has up to 12 hour heating
elay. During weekends, the building cools down and classical heat-

ng has to be launched approximately one day before Monday 8 am,
epending on the outside temperature.

. Remarks to future development

Subspace identification methods represent black-box approach
o the system modeling. This, alongside with its advantages carries
lso some drawbacks:
The system might not be excited enough [22], i.e. the input of
the system does not excite the system on satisfactory number
of frequencies, thus identification algorithms lack considerable
amount of information.
dictive control (MPC) of heating water temperature and the room temperature

• User may have knowledge of some key feature or characteris-
tics of the physical essence of the system, which is “lost” in the
number of data.

• Natural character of the data might pose considerable statistical
problem.

One of the most important aspects of the identification is
the persistency of the excitation or the excitation itself. Data
gathered from the measurement lack some important physical
characteristics of the building. One of the possible approaches
how to deal with this weak point is generation of artificial
data that already contains desired properties. There is also
another possibility, more expensive though—specially proposed
experiment. It was decided to perform an experiment on real

building in through late December 2009 and early January 2010.
The comparison of model identification results is depicted in
Fig. 6.

It is obvious, that experimental data significantly improved the
identification fit. Yet another approach (and much cheaper) how to
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Fig. 6. Validation of model identifie

eal with lack of data quality is prior information and its incorpo-
ation to the subspace algorithm. Current methods [33] proposed
lgorithm how to incorporate PI into the algorithm using Bayesian
ramework. This algorithm makes use of Structured Weighted
ower Rank Approximation (SWLRA) [34] to decompose the projec-
ion matrix in order to save special structure, thus keep PI. However,
his approach is able to deal with single input single output (SISO)
nd single input multiple output (MISO) systems only.

Future development of the identification algorithm will try to
emedy the above-mentioned problems. Speaking generally, there
everal approaches to this problem:

Bayesian framework. This approach requires extension to SWLRA
algorithm to effectively solve MIMO systems.
Incorporation of PI into subspace algorithm. This approach requires
such an computation in subspace identification procedure which
enables direct incorporation of PI into system matrices. This
approach is the topic of ongoing research.
Spectral identification methods. In robust control, analysis in fre-
quency domain is very popular. The prior information could be
incorporated by means of user-defined “filters”. This methodol-
ogy is also topic of current research.
Artificial data. Generation of data with desired properties is yet
another approach. The user incorporates required properties and
the knowledge of the physical essence into artificial data which
are then used for regular identification. This approach, however,
does not explicitly say, how to choose the ratio between artifi-
cial and measured data and, therefore, it is only of experimental
nature.

In this paper, we treated only predictions of outside temperature
ecause it has dominant influence out of all disturbances affecting
he inside temperature. There are, however, other energy sources
like sun intensity, occupancy of the building, etc.). Taking them
nto account would provide better MPC performance as well as
urther savings.

. Conclusion

Predictive control proved to have a great potential in the area of
uilding heating control. The results from real operation on a large
niversity building are very promissing and proved the supremacy
f predictive controller over a well tuned weather-compensated
ontrol, with the savings of 17–24%. The MPC implementation dis-
ussed in the present paper is able to track the desired temperature
ery accurately, thus maintaining the heating comfort of the build-
ng.

However, the MPC strategy requires some extra effort. The
rucial part of the controller is the mathematical model of the
uilding. This is not possible by traditional system identification

echniques based on statistical identification, as the building data
sually do not have the desired statistical properties. On the other
and, finding first principle models is time consuming and not suit-
ble for commercial application. We have shown that a proper
dentification experiment can provide data suitable for statistical

[

[

 15  20

[days]

data before and after experiment.

identification, with the help of certain modifications of the standard
identification algorithms. Numerical issues of the identification
process must be treated very carefully, especially for large-scale
systems.

Fortunately, once an appropriate model is found, the MPC tun-
ing is very intuitive and desired properties of the control system
can be achieved in a short term. The energy peaks are reduced and
the controller does not make fast changes to the control input of the
system, which also saves the lifetime of the equipment and reduces
the peak energy demands. If desired, it also enables to take differ-
ent energy prices into account by introducing time-variable tuning
parameters into the optimization criterion.

Finally, the decision whether to implement the MPC or not
depends largely on the return time of the investments. Even though
this largely depends on air temperatures and sunshine during the
heating season, the return time for our building is estimated to 2
years. As the identification effort does not really depend on the
size of the building, this time will be shorter for large buildings
with expensive heating and longer for small buildings with cheap
heating.
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