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Abstract
The use of artificial neural networks in various applications related with energy management in buildings has been increasing significantly over

the recent years. In this paper the design of inside air temperature predictive neural network models, to be used for predictive control of air-

conditioned systems, is discussed.

The use of multi-objective genetic algorithms for designing off-line radial basis function neural network models is detailed. The performance of

these data-driven models is compared, favourably, with a multi-node physically based model. Climate and environmental data from a secondary

school located in the south of Portugal, collected by a remote data acquisition system, are used to generate the models. By using a sliding window

adaptive methodology, the good results obtained off-line are extended throughout the whole year. The use of long-range predictive models for air-

conditioning systems control is demonstrated, in simulations, achieving a good temperature regulation with important energy savings.

# 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The use of artificial neural networks in various applications

related with energy management in buildings has been

increasing significantly over the recent years. Artificial neural

networks (ANNs) have been applied, for instance, in renewable

energy systems (see for instance the review in Ref. [1] and the

references within Ref. [2]), in heating, ventilation and air

conditioning (HVAC) control methodologies [3–9], and in

forecasting energy consumption [10].

Of special interest to this area is the use of ANNs for

forecasting the room(s) air temperature as a function of both

forecasted weather parameters (mainly solar radiation and air

temperature) and actuator (heating, ventilating, cooling) state

or manipulated variables, and the subsequent use of these mid/

long-range prediction models for a more efficient temperature

control, both in terms of regulation and energy consumption.

Estimating the inside air temperature inside buildings is a

complicated task, which can be tackled with two different

classes of models: physical or white-box models, and data-
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driven or black-box models. Both can be viewed as a non-linear

dynamical system and use as inputs weather parameters and

actuators manipulated variables, and as output the predicted

room temperature.

Physical models are based on energy and mass balance

integral–differential equations. This physical model philosophy

permits to study and evaluate the thermal efficiency of building

constructions. The building simulation is important not only in

the before-project, but also in the after-project phase, in the

evaluation and improvement of the thermal solution. Never-

theless, in this kind of model is important, before the final

simulation phase, to validate the numerical model using,

normally, the experimental results obtained in real situation.

This physical model can be used in Winter and Summer

conditions studies being considered the occupation cycle,

external and internal windows shading devices, submersed

ducts, natural and forced ventilation, heating and air-

conditioning systems, collectors systems used to heat the

water, radiant panels in the floor, wall or ceiling, among others.

Once the parameters of the model have been determined, they

remain fixed afterwards. The development time of such a type

of model for a medium-size building is usually a very time-

consuming task, and a complete simulation in a modern

Personal Computer (PC) usually takes days of computational
ENB-2012; No of Pages 13
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time. This physical model calculates not only the temperature

of the air inside the different compartments and ducts system,

the several windows glasses, the different interior bodies

(furniture, curtains, . . .) located inside spaces and the several

slices of the building main bodies (doors, walls, ground, roofs,

ceilings, . . .) and ducts systems, but also the water vapour mass

inside spaces, ducts systems and in the interior surfaces and the

mass of contaminants inside spaces and ducts system. It also

calculates the real distribution of incident solar radiation in the

internal and external surfaces, the view factors between

different interior surfaces in each space, the radiative heat

exchange between internal surfaces, the radiative heat

exchange between the building external surfaces and the

surrounding bodies, the glasses radiative coefficients, the heat

and mass transfer coefficients by convection between the

surfaces and the air, the air relative humidity inside different

compartments, the mass transfer between different spaces and

between several spaces and the external environment and the

global thermal comfort level inside each space. Physical

models can be employed to provide forecasts of these inside

climate variables even before the actual building is built.

Black-box models, such as neural networks, depend

completely on experimental data and therefore can only be

developed after the actual building is built and measurements

are available. Typically, for each room in a building and for

each variable of interest a separate model must be designed.

Due to their universal approximation properties [11–13] neural

networks can approximate well the complex relationship

between the system inputs (in this case the weather parameters

and actuators manipulated variables) and the inside air

temperature. In this class of models the model parameters

are the number of neurons and the values of interconnection

weights, which do not have any physical meaning. As the

system to be modelled is dynamic, if external dynamic neural

models are employed, the number of lags and the determination

of which lags to be employed for the model inputs is also a task

to be solved during model development. Although model

development time depends on the designer expertize and on the

tools available, the construction time for this kind of models is

typically much less than for physical models. Once a model is

developed, a complete simulation takes a few minutes (in

contrast with a few days for physical models), which enables its

use for real-time control of HVAC systems. Additionally, in

contrast with physical models, neural networks can be made

adaptive, by changing their parameters as a function of the

actual performance that the models exhibit.

The role of these two different types of models is therefore

complementary, and not competing. While physical models can

be used in the phase of the project of buildings, and to assess the

consequences of possible buildings modifications, data-driven

models, such as neural networks, should be used for the on-line

control of HVAC systems.

The main focus of this paper is the design of neural network

models for temperature prediction inside buildings. This

involves, in a first stage, finding the best structure of the

model—the number of neurons and the number and determina-

tion of input lags, and the estimation of the network parameters.
The model structure will be determined using a multi-objective

genetic algorithm (MOGA), while parameter estimation will be

performed by the application of the Levenberg–Marquardt

algorithm, exploiting the linear–non-linear separability of the

model parameters. In a second stage, the off-line determined

neural model will be adapted on-line, through the use of a

sliding-window based algorithm. The performance of the

neural model will be compared with a physical model using as a

test case data collected from a public secondary scholar

building situated in the south of Portugal. A preliminary

example of the use of predictive neural models for the control of

an air-conditioned system will be shown, illustrating both the

better regulation and the energy savings obtained.

The layout of the paper is as follows: Section 2 describes the

experimental setup. Section 3 explains the physical model

developed and shows results obtained with this model. Section

4 introduces the neural networks employed, radial basis

functions, and discusses the parameter estimation algorithm

employed. Section 5 addresses the use of multi-objective

genetic algorithms for topology determination and input

selection and illustrates the results obtained in the off-line

training phase. A comparison between neural models and

physical models is also presented in this section. Adaptive

models are addressed in Section 7. The use of neural models for

the control of an air-conditioned system is discussed in Section

8. The paper ends with conclusions and a description of future

work.

2. Experimental setup

The data set used came from a remote data acquisition

system implemented in a secondary school building (Escola

EB2/3 of Estoı́) located in the south region of Portugal, the

Algarve, where in 90% of the year the sky is clear.

The purpose of this data acquisition system is to collect

environmental information from inside and outside the

secondary school. The outdoor equipment consists of a

meteorological station composed of an Environdata data-logger,

and air temperature, air humidity, solar radiation, wind speed and

direction sensors. Indoors sensors were placed in strategic rooms

of the building. Sensors for air temperature, air humidity, state of

the doors and windows (open/closed), air-conditioners power

consumption, water flow and water temperature (in the kitchen

and in the gymnasium bathrooms) were installed. The layout of

the school and the localization of the sensors are shown in Fig. 1.

The state of the doors and windows are digital readings and are

denoted as ‘D’ in this figure.

A computer composed by an AMD Athlon 2 GHz processor,

with 512 MB of RAM and 80 GB of disk collects locally all the

sensory information. The sampling rate for all variables is

1 min. Five data-loggers were used. Two of them (the nearest to

the PC) communicate with it via RS-232; the others, located

further apart, employ the TCP/IP Ethernet network available in

the school. As the gymnasium is located in a different building,

and the Ethernet network does not reach this building,

communication of the water flow and temperature of the

gymnasium bathrooms is performed by radio frequency.
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Fig. 1. School layout and sensor localization.
The data stored in the school PC is automatic transferred,

hourly, via Internet, to a data server located in the Centre for

Intelligent Systems, in the University of Algarve. This data

server stores all the data and makes it available for the users via

a WEB interface. This interface enables the user to select the

relevant sensors, the time duration of the readings and the data

format. A more detailed description of the remote data

acquisition system can be found in Ref. [14].

3. Physical model

The multi-nodal building thermal behaviour physical model

(please see further details in Refs. [15,16]) that works in

transient conditions, is based in energy and mass balance

integral equations. The energy balance integral equations are

developed for the air inside the several compartments and ducts

system, the different windows glasses, the interior bodies

located inside the several spaces and the different slices of

building main bodies and ducts system. The mass balance

integral equations are developed for the water vapour (inside

the several spaces, ducts system and in the interior surfaces of

the windows glasses and interior and main bodies) and air

contaminants (inside the several spaces and ducts system). For

the resolution of this system of equations the Runge–Kutta–

Fehlberg method with error control is used.

The physical model considers the conductive, convective,

radiative and mass transfer phenomena. The conduction is

verified in the building main bodies (door, ceiling, ground, wall,

etc.) and ducts system (air or water transport) slices. In the

convection the natural, forced and mixed phenomena are
considered, while in the radiation, verified inside and outside

the building, the short-wave (the real distribution of direct solar

radiation in external and internal surfaces) and long-wave (heat

exchange between the building external surfaces and the

surrounding surfaces and heat exchange between the internal

surfaces of each space) phenomena are taken into account. In

the radiative calculus the shading effect caused by the

surrounding surfaces and by the internal surfaces are also

considered.

3.1. Input data

The model employs the building geometry, the construction

materials and other conditions. In the three-dimensional

geometry the compartments are defined through the introduc-

tion of involving bodies: building main bodies and windows

glasses bodies. These bodies, with complex geometry, are

associated to the boundary of two compartments or of a

compartment and the external environment. As the main bodies

are divided in several slices, in order to simulate the thermal

stratification verified in these bodies, it is also necessary to

identify the slices thickness. Inside each compartment it is

important to introduce the more relevant interior bodies. The

materials thermal proprieties are introduced for the main

bodies, windows glasses and interior bodies. It is also necessary

to introduce the external environmental and geographical

conditions, the simulation initial conditions, the heat load

released by the human bodies, heating and air-conditioning

systems (and other internal sources), the occupation cycle, the

occupants clothing and activity level, the air recirculation, the
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Fig. 2. Scheme of grid generation used by the physical model for the first floor.
air exchanges between compartments, the air exchange

between each compartment and the external environment,

and the internal mass generation and its intensity.

3.2. Grid generation

In the modern school building analyzed, with three floor

levels, divided in 97 compartments, 1277 building main bodies

and 211 window glasses were considered. In relation to the

main bodies all existing external bodies that promote shading

effect were also taken into account. The grid generation used

the numerical simulation is presented in Fig. 2, for the first

floor. This numerical grid, used in the internal and external

direct solar radiation determination, was spaced 30 cm in both

directions.

3.3. Winter validation and simulation

The validation and simulation is done in a typical Winter day

(18 January 2004). During this study the sky was clear, the

doors and windows were closed and the air-conditioning

systems were off and the air mean renovation values inside each

compartment by infiltration were obtained experimentally

using the tracer gas concentration done in several compart-

ments. The external environment inputs data were measured

experimentally and the numerical model is built by 12,479

integral equations.

This simulation is divided in two parts. In the first one, used

to validate the physical model, the air temperature numerical

values are compared to the experimental values, while in the

second one, after the numerical model validation, a real

situation will be simulated. The occupation cycle, namely the

teachers and students presence in the several spaces during all

18th January day will be taken into account. In this last situation

a statistical study was performed, using different kinds of

information, to evaluate the most realist occupations cycle in

the different spaces of this school.

Results related with the air temperature evolution are

presented in Fig. 3. In this figure the numerical values (with and

without occupation) are depicted as continuous lines and the
predicted data as points. In Fig. 3(a) the air temperature

evolution in compartments with windows turned South is

presented, in Fig. 3(b) with windows turned North, in Fig. 3(c)

with windows turned Southeast and, finally, and in Fig. 3(d)

with windows turned Southwest.

In conclusion, it was verified that the model reproduces well

the experimental values. In general, the difference between

numerical and experimental air temperature values is lower

than 2 8C, a maximum difference of 4 8C was verified in the

compartments with windows turned South, only during some

hours in the afternoon. The lowest air temperature values were

verified for compartments with windows turned North, while

the highest values are verified for compartments with windows

turned South.

In real situations, where the occupation cycle is considered,

each compartment is characterized by an evolution of students

and teachers during the day. Fig. 3 also shows the evolution of

air temperature with occupation. In this statistical study lessons

with 90 min and breaks with 15 min were assumed. In the

compartments AN1 (see Fig. 3(a)) and SE (see Fig. 3(b)), used

as classrooms, occupations of 24 students and 1 teacher (25

occupants) during the lessons (between 8:30 and 10:00 a.m.,

10:15 and 11:45 a.m., 12:00 and 13:30 p.m., 13:45 and

15:15 p.m., 15:30 and 17:00 p.m., and 17:15 and 18:45 p.m.)

and no occupation in the breaks were considered. In the

compartment SA (see Fig. 3(c)), used as secretariat, 5

occupants between 8:30 a.m. and 18:45 p.m. were assumed,

while for compartment AU (see Fig. 3(d)), used as an

auditorium, an occupation of 90 persons during the lessons

and none in the breaks was considered.

It was verified that the occupation cycle increases the air

temperature level, the increase depending on the number of

occupants. This value of the increasing of the air temperature is

very important in the selection of the possible installation of

heating system, during the Winter conditions, or air-condition-

ing system, in Summer conditions. Nevertheless, the option

about the climatization system to be installed in the different

compartments is associated not only with the air temperature

values but also with the thermal comfort level, that also depends

on the air velocity and relative humidity, the radiant
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Fig. 3. Air temperature evolution in compartments with windows turned: (a) South, (b) North, (c) Southeast and (d) Southwest.

Fig. 4. A RBF network.
temperature and the clothing and activity levels. This topic will

be analyzed in future works.

4. RBF neural network overview

Radial basis function (RBF) neural networks are composed

of three functionally distinct layers. The input layer is simply a

set of sensory units. The second layer is a hidden layer of

sufficient dimension which performs a non-linear transforma-

tion of the input space to a hidden-unit space. The third and final

layer performs a linear transformation from the hidden-unit

space to the output space.

The topology of a RBF neural network is presented in Fig. 4.

The output is given by:

ŷðx;w;C;sÞ ¼
Xn

i¼1

wi’iðx; ci;siÞ ¼ wðx;C;sÞw; (1)

where n is the number of neurons, wi the linear parameters, ci

the center vector and si is the spread value for the ith neuron,

and the non-linear function of the hidden neurons is:

’iðx; ci;siÞ ¼ e�jjx�cijj2=2s2
i ; ’0 ¼ 1; (2)

where jj jj denotes the Euclidean norm.
For a specified number of neurons, and for a determined set

of inputs (off-line), training a RBF network means to determine

the value of w, ci and si, such that (3) is minimized:

FðX;w;C;sÞ ¼ jjyðXÞ � ŷðX;w;C;sÞjj2

2
: (3)

In the last equation, y denotes the actual output vector of the

system which is being modelled, subject to the input data X.

Please note, that in contrast with (1) and (2), (3) is now applied

to a set of input patterns, and not to a single input pattern.
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As the model output is a linear combination of the outputs of

the hidden layer, (3) can be given as:

FðX;w;C;sÞ ¼ jjyðXÞ � wðX;C;sÞwjj2

2
: (4)

Computing the global optimum value (w�) of the linear para-

meters w with respect to the non-linear parameters C and s as a

least-squares solution:

w� ¼ ’þðX;C;sÞyðXÞ; (5)

where ‘‘+’’ denotes a pseudo-inverse, and replacing (5) in (4),

the training criterion to determine the non-linear parameters C
and s is:

CðX;C;sÞ ¼ jjyðXÞ � ’ðX;C;sÞ’þðX;C;sÞyðXÞjj2

2
; (6)

which is now independent of the linear parameters w. To

minimize (6) the Levenberg–Marquardt method [17,18] is used.

The hidden layer function centre positions are initialized by a

clustering procedure known as the optimal adaptive k-means

algorithm (OAKM) [19].

The initial spreads of the neuron activation functions are

determined [20] using

si ¼
dmaxffiffiffiffiffiffi

2p
p ; i ¼ 1; . . . ; n; (7)

where dmax is the maximum distance between the centers

determined by the OAKM. The termination criterion used is

the early stopping method that ends the training at the point of

best performance in a test set. Further details concerning the

training method can be found in Ref. [21].

5. Multi-objective genetic algorithm for structure

determination and input selection

The procedure described in the preceding section for

parameter estimation assumes that the network topology

(number of neurons) is fixed and that the relevant inputs have

been identified. Moreover, as the system to be modelled has

dynamics, the number of input delayed terms and the actual

lags for each input variable have to be determined.

The input variables considered in this phase of study are:

inside air temperature (Ti), outside solar radiation (Ro), air

temperature (To) and relative humidity (Ho). If T is the maximum

number of model inputs, considering 4 input variables and 15 for

the maximum lag for each variable, then T = 4 � 15 = 60. If the

number of model inputs is restricted to the interval [2, 30] and the

number of neurons (n) to the interval [3, 10], the number of

possible model combinations is in the order of 5 E18!

As it is not feasible to fully explore such a model space, a

sub-optimal solution is obtained through the use of genetic

algorithms. A genetic algorithm (GA) is an evolutionary

computing approach in which a population-based search is
performed by employing operators, such as selection,

crossover and mutation. One of the advantages of GAs over

other techniques is that they can be easily formulated as multi-

objective optimizers providing a diverse set of solutions

which meet a number of possibly conflicting objectives in a

single run of the algorithm [22]. Each chromosome in the

population represents a RBF model and is codified as a vector

of integers, the first denoting the number of neurons, and the

other integers entries to a matrix containing the admissible

lagged terms for each input variable. For a detailed

description of the application of multi-objective genetic

algorithm to the design of radial basis function models please

consult [23].

One MOGA run spans 100 generations. The population at

each generation is composed of 100 RBF neural network

candidate models. The objectives can be classified into three

groups: model complexity, model performance and model

validity. Regarding model complexity, the Euclidean norm of

the RBF neural network linear weights (jjwjj) and the number of

non-linear parameters (NNLP) were employed. NNLP is

calculated as follows:

NNLP ¼ ðnþ 1Þd; (8)

where n is the number of centres and d is the number of

model inputs. For the performance objectives the statistic

indicator root mean square error (RMSE) and the maximum

error (ME) on the training (tr), test (te) and validation (va)

data sets were employed. Correlation-based validity tests [24]

are used as model validation objectives. The following tests

are used:

ReeðtÞ ¼ dðtÞ
RueðtÞ ¼ 0; 8 t
Ru20 eðtÞ ¼ 0; 8 t
Ru20 e2ðtÞ ¼ 0; 8 t
ReðeuÞðtÞ ¼ 0; t� 0

Re2e2ðtÞ ¼ dðtÞ
RðyeÞe2ðtÞ ¼ kdðtÞ
RðyeÞu2ðtÞ ¼ 0; 8 t

(9)

If the normalized correlation functions (9) lie within the 95%

confidence bands at 1:96=
ffiffiffiffi
N

p
, N being the size of the data

vectors, the model is considered adequate.

During the MOGA optimization each individual in the

population is trained, with the data belonging to the training set,

for one-step-ahead prediction using the Levenberg–Marquardt

method presented in the last section. The training is terminated

using the early stopping criteria in the test set. The RBF neural

network trained with this procedure is subsequently evaluated

in the validation set.

Different models were designed for several rooms of the

building, where sensors were located. In this example the room

denoted as AN1 in Fig. 1 is used. All the data taken were

acquired during no activity, that is, without people or equipment

that could change the inside environment.
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Fig. 5. Normalized training data.

Table 2

Input lags

Ti Ro To Ho

N1 1–4, 6, 8–10, 14 6, 8, 11, 14, 15 3, 4, 7 –

N2 1, 2, 7, 9, 10, 13, 15 8, 12, 13, 15 12, 14 11

N3 1–3, 5, 9, 10, 15 11–13, 15 10, 14, 15 11

N4 1, 2, 4, 5, 9, 10, 13, 15 11–15 10, 12–14 11

N5 1–4, 6–8, 14, 15 8, 11–15 3, 5, 7, 12, 15 –
The data set is composed of:

training set—10 days (22–31 December 2003), 2880 points;

test set—3 days (2–4 January 2004), 864 points;

validation set—1 day (4 January 2004), 288 points;

comparison set—1 day (18 January 2004), 288 points.

The aim of the comparison set is to compare the results obtained

with the neural model with the ones obtained with the physical

model. The sampling rate used was 5 min, which means that

five samples acquired with 1 min sampling rate are averaged,

before training is performed. The data set is afterwards pre-

processed, scaling the data between [�1, 1]. Fig. 5 shows the

normalized training data set.

The MOGA parameters employed are shown in Table 1.

The use of the complexity objectives were considered as the

most important ones in order not to obtain badly conditioned

models and complex networks. The complexity goals used are

sufficiently large to give some freedom to the MOGA

optimization process. Four MOGA runs were processed. The

results of each run were analyzed and the goals for the

subsequent goals were adjusted. The final goals and priorities

are also shown in Table 1.

According to the goals and preferences set, five models were

obtained in the preferable set. The results are summarized in

Tables 2–4.
Table 1

MOGA parameters and objectives

MOGA parameters MOGA objective

Objective

Chromosome length 31 RMSEtr

Number of individuals 100 RMSEte

Number of generations 100 RMSEva

Proportion of random immigrants (%) 10 MEtr

Selective pressure 2 MEte

Crossover rate 0.7 MEva

Survival rate 0.5 jjwjj
Number of neurons interval [3, 10] NNLP

Maximum number of inputs 30

Maximum lag 15
From Table 2 is possible to verify that the model structure in

the preferable set is highly based in the inside temperature

inputs.

All the goals related with performance and complexities

were met (underlined in Table 3), except the one related with

the maximum error in the training set.

The correlation tests for validation (Table 4) did not achieve

the proposed goals due to the great non-linearity of the problem.

The NN selected from the preferable set was N1, as it was the

one who achieved the minimum value (underlined in the table)

in five out of the eight tests.

Fig. 6 shows the outputs of the N1 model and the physical

model in the comparison set. The RMSE for the neural

network and the physical model were 0.0493 and 0.1777,

respectively, which means that the RBF model is 3.5 better

than the physical model. The error distribution (Fig. 7)

shows that the RBF network model generates error

centred in 0, while in the physical model a bias is evident.

It should be pointed out that, to perform a fair comparison

between the models, the RBF model used, as lagged inputs

for the internal temperature, values fed back from the model

output and not from the measured temperature, as employed

for training. This is also the reason why outside relative

air humidity was employed and not inside relative air

humidity.

The model presented so far was designed with data

belonging to periods where no activity was present. At a

second stage, the same room (a classroom) was considered, but

with data belonging to periods where the building was

occupied, and where the door and windows were open and

closed. Specifically data between 1 and 5 March 2004 and

between 8 and 12 March 2004 were used as training data,
s

Goal Priority Objective Goal Priority

0.006 2 Ree 0.036 1

0.004 2 Re2e2 0.036 1

0.035 2 RðyeÞe2 0.036 1

0.07 1 RðyeÞu2 0.036 1

0.03 1 Rue 0.036 1

0.1 1 R
u20 e2 0.036 1

50 3 R
u20 e 0.036 1

500 3 Re(eu) 0.036 1
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Table 3

Performance and complexity results

RMSEtr RMSEte RMSEva MEtr MEte MEva jjwjj NNLP d

N1 0.006 0.004 0.034 0.075 0.026 0.072 4.66 144 17

N2 0.006 0.004 0.032 0.071 0.024 0.085 8.44 135 14

N3 0.006 0.004 0.034 0.075 0.021 0.083 5.32 128 15

N4 0.006 0.004 0.030 0.073 0.022 0.070 6.21 171 18

N5 0.006 0.004 0.033 0.071 0.028 0.110 6.23 126 20

Table 4

Validity tests

Ree Re2e2 RðyeÞe2 RðyeÞu2 Rue R
u20 e2 R

u20 e Re(eu)

N1 0.060 0.239 0.107 0.070 0.113 0.314 0.072 0.068

N2 0.088 0.258 0.133 0.067 0.105 0.314 0.076 0.120

N3 0.083 0.239 0.138 0.084 0.117 0.310 0.085 0.093

N4 0.075 0.243 0.130 0.084 0.114 0.311 0.089 0.091

N5 0.113 0.269 0.140 0.079 0.122 0.329 0.081 0.120
between 15 and 20 March 2004 as test data, and between 23 and

28 March 2004 as validation data. Inside air relative humidity

was used instead of outside relative air humidity. The following

variables were added to the set of input variables: door state, D

(open—1/closed—0); windows state, W [0–3] (0 being all

windows closed and 3 all the three windows open), wind

direction and velocity.

A similar design procedure was conducted for this data with

the objectives shown in Table 5.

The chosen model (out of 10 models in the preferential set)

had the input vector presented in Table 6. Please note that the

sampling time used here was 15 min, as experiments conducted

with 5, 10 and 15 min presented similar results. As it can be

seen, the wind components were not considered as relevant by

multi-objective genetic algorithm.

Tables 7 and 8 presents the results obtained by the chosen

model.

As expected, the results obtained for the period where the

building is fully functioning are slightly worse than in the
Fig. 6. Model outputs and target for the comparison set.
previous case, where all windows and doors were closed and the

building was not occupied. Still the results obtained are very

satisfactory.

6. Adaptive model

Neural networks are non-linear models which need, for a

satisfactory performance, that the data used for the training

process covers all the range of its inputs and outputs, and that

there is a uniform coverage of data within this range. For the

case at hand, as the models described before were trained with

data belonging to the Winter and to the Spring period, a

satisfactory performance of these models, say, in Summer

should not be expected.

To illustrate this, the model developed with data from March

was executed with data from April to August. The results are

presented in Fig. 8.

As it can be seen the error is small in April (where the

weather data does not differ significantly from the data used for
Fig. 7. Error distribution.
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Table 5

MOGA objectives

Objective RMSEtr RMSEte MEte jjwjj NNLP Ree Re2e2 RðyeÞe2

Goal 0.02 0.02 0.15 50 500 0.07 0.07 0.07

Priority 2 2 1 1 1 1 1 1

Objective RðyeÞe2 RðyeÞu2 Rue R
u20 e2 R

u20 e Re(eu)

Goal 0.07 0.07 0.07 0.07 0.07 0.07

Priority 1 1 1 1 1 1
training, March) and deteriorates when the summer period

arrives.

However, one of the big advantages of neural networks is

that they can be made adaptive, by changing their parameters

according to the current performance. There are two main

classes of adaptive algorithms: ones that just adapt the linear

parameters, keeping the non-linear structure fixed, and others

that adapt all the network parameters. Here the latter approach

is followed. In terms of the amount of data used for computing

the update, the algorithms can also be classified into those that

perform this update with just the current data sample, and those

that use for that a sliding window. The former are essentially

recursive implementations of off-line algorithms while in the

latter case the off-line algorithms can be employed directly,

with minor modifications. The approach followed here is the

latter, the use of the off-line training method described in

Section 4, to a sliding window of data.

The following modifications were introduced to the off-line

algorithm:

The data used for training, in instant k, are stored in a

sliding window which is also updated in each instant, using a

FIFO policy—the current pair input-target data replaces the

oldest pair stored in the window.

The initial values of the network parameters, for instant k,

are the final values of the optimization conducted in instant
Table 7

Performance and complexity results

RMSEtr 0.02

RMSEte 0.02

RMSEva 0.03

MEte 0.11

MEva 0.14

jjwjj 13.8

NNLP 81

d 26

n 3

Table 6

Input lags

Ti 1, 2, 10, 16, 17

Ro 1, 2, 4, 6–8, 10

To 11, 12, 16

Hi 8, 9

W 1, 2, 6, 8, 14, 19, 21

D 1, 2
k � 1. The initial value of the regularization parameter of the

Levenberg–Marquardt method is the final value of the last

optimization. This is justified as abrupt changes, from

instant to instant, are not expected. In the first instant the

network parameters are initialized with values obtained

from an off-line training procedure and the regularization

parameter is initialized to 1. In this example the model

determined with data from March was used as the initial

model.

As there is no test set to terminate the optimization, the

early stopping method cannot be employed. Instead, a set of

termination criteria, which must be simultaneously satisfied,

is used. In (10) tf denotes the user-defined precision, in terms

of significant digits in the training criterion, v is the vector of

the non-linear parameters (in this case the centers and the

spreads) and g is the gradient vector for criterion C. Here, a

value of 0.01 was used for tf.

Ck�1 � Ck < tfð1 þ CkÞ
jjvk�1 � vkjj<

ffiffiffiffi
tf

p ð1 þ jjvkjjÞ
jjgkjj �

ffiffiffiffi
tf

3
p ð1 þ CkÞ

(10)

A common problem found in adaptive models is that, in many

cases, the adapted model ‘‘forgets’’ what it has learned pre-

viously and becomes tuned to just the most recent data. This

phenomenon is related with the size of the sliding window. An

experiment was conducted, experimenting three different win-

dow sizes: 1 day of data, 3 days and 8 days. The data employed

covered the months of April–August 2004. Table 9 summarizes

the results.

In Table 9, Ta denotes the RMSE obtained for all data with

the on-line adaptive model, Tf the RMSE obtained for all data

with the fixed model obtained in the last instant, N̄i the average

number of the optimization iterations and C̄t is the average
Table 8

Validity tests

Ree 0.056

Re2e2 0.043

RðyeÞe2 0.074

RðyeÞu2 0.132

Rue 0.081

R
u20 e2 0.421

R
u20 e 0.113

Re(eu) 0.076
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Fig. 8. Evolution of the error. Adaptive model vs. fixed model.
computational time, per instant. As it can be seen by analyzing

Ta, all three window sizes achieve a similar result using on-line

adaptation, but the model obtained using a window size of 8

days achieves a value for Tf very similar to Ta, and one order of

magnitude smaller than with a window size of 1 day. This

indicates that the ‘‘forgetting problem’’ is much more severe

with smaller window sizes. On average, the adaptation algo-

rithm just computes one iteration per sampling instant in all

cases considered. The average computing time, per sampling

instant, using a 1333 MHz Athlon AMD PC, is just around

43 ms for an 8 days window.

Using a window size of 8 days, the evolution of the error in

the 5 months under study is shown in Fig. 8. Comparing with

the fixed model it is clear that with this adaptive scheme, a very

good constant performance can be obtained, throughout the

year. The RMSE for the fixed model is 0.208, while for the

adaptive model is 0.013.

To enable a more detailed inspection of the results, Fig. 9

shows the predicted and measured temperature, for a typical

week in 25–30 of May, for the fixed model and the adaptive

model.

7. Control of an air-conditioned system

Finally, the use of predictive models for the control of an air-

conditioned system is illustrated using a very simple

simulation. The chosen room was the school library, identified

as BB in Fig. 1, which has two air-conditioned systems. As it is

the case in the majority of secondary school buildings in

Portugal, only a few rooms have air-conditioned systems,

which are manually controlled via the device remote control.

The remote data acquisition system described in Section 2 only

monitored the power consumption of the air conditioners

(which enables to detect the on/off state of the systems), and

there was no control or record of the reference temperature set

by the users. As there was not the possibility of automatically

controlling the air-conditioned systems at this time, the aim of
Table 9

Results with different window sizes

Window size (days) Ta Tf N̄i C̄t ðmsÞ

1 0.014 0.193 1.0001 8.3

3 0.012 0.059 1.0001 16.5

8 0.013 0.018 1.0069 42.9
this simulation example is to shown that even with a very

simple and naı̈ve anticipative on/off control strategy, energy

savings and better temperature regulation could be achieved

with long-range predictive models.

As the air temperature depends in this case also on the air

conditioners state and their reference temperature, these

variables should also be used as inputs to the neural model.

Therefore, the state –ACi– (0—off, 1—on) and the reference

temperature (RTi) of each device were considered as input

variables. As the reference temperature is not measured, it was

indirectly inferred as the steady state temperature of the room,

when the air conditioners were working. Additional input

variables considered were the inside air temperature (Ti) and

relative humidity (Hi), and the outside solar radiation (Ro) and

air temperature (To). The variable that will be estimated is the

room air temperature which, in this case, is the average of the

readings of the two air temperature sensors located in the room.

The model is to be used not for 1-step-ahead prediction, as in

the previous cases, but for long-range prediction (an horizon h

of 96 steps ahead in the future was considered, with a sampling

time of 5 min).

Fig. 10 illustrates that this long-range prediction is achieved

as a sequence of a sequence of one-step-ahead predictions. At

instant k, the delayed values of the inside air temperature used

as inputs to the neural model are whether past measured values

or estimated values, if the time stamp related with the particular

input is less or equal k, or greater than k, respectively. If this

approach would be used in practice, the same reasoning should

apply to the outside solar radiation and air temperature, and to

the inside air relative humidity, which is also dependent on the

inside air temperature.

Neural networks can be designed with multi-objective

generic algorithm for this purpose (please see Ref. [25] for

details), but for the purpose of this simple example measured

data was used.

The data set used in this example is composed of:

training data—1 to 7 June 2004;

test data—8 to 14 June 2004;

validation data—14–21 June 2004.

The training data was used, as before, by the Levenberg–M-

arquardt algorithm to estimate the model parameters, and the

test data for early stopping. The priority of the performance

objectives used for MOGA was related with the intended use
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Fig. 9. Adaptive model vs. fixed model.
of the model. Two high-priority objectives were employed:

MRMSEp, which is the maximum of the RMSEs obtained for

each prediction horizon, over the training and test samples,

and MRMSEk, which is the maximum of the RMSEs obtained

for each step-ahead prediction, over the training and test

samples.

The MOGA objectives were set as expressed in Table 10. A

value of infinity in the goal and a priority of 0 means that the
Fig. 10. Long-range air te
objective is simply optimized, and not treated as a restriction to

be met.

The inputs of the chosen model and the results are presented

in Table 11. Tables 12 and 13 present the results obtained by the

chosen model.

This model was subsequently used for a very simple

anticipative on/off control. The library working hours were

from 8 to 16 h. It was assumed that the inside air temperature,
mperature prediction.
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Table 10

MOGA objectives

Objective RMSEtr RMSEte MRMSEp MRMSEk MEtr MEte jjwjj NNLP

Goal Infinity Infinity 0.01 0.01 Infinity Infinity 30 500

Priority 0 0 2 2 0 0 3 3

Objective Ree Re2e2 RðyeÞe2 RðyeÞu2 Rue R
u20 e2 R

u20 e Re(eu)

Goal 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039

Priority 1 1 1 1 1 1 1 1

Table 11

Input lags

Ti 6

Ro 1, 2, 5, 6, 9, 10

To 1, 3, 8, 11, 14

Hi 5, 10, 13, 14

AC1 5

AC2 5

RT1 1

RT2 2–5

Table 12

Performance and complexity results

RMSEtr 0.0077

RMSEte 0.0110

MRMSEp 0.0248

MRMSEk 0.0300

MEtr 0.0573

MEte 0.0654

jjwjj 4.8

NNLP 240

d 23

n 10

Fig. 11. Simulation for 15 June.
during the working period for each day, should be regulated

within an interval of +1 and �0.7 8C around the average

measured temperature for that particular day. In order to do that,

in each sampling instant the air temperature is forecasted

30 min in the future. If within this prediction horizon it is

forecasted that the temperature exceeds the high limit, then the

two air-conditioned systems are turned on. If, on the other hand,

it is predicted that the temperature will be less than the low

limit, then the two systems are turned off. This very simple

strategy was chosen just to validate the predictive model and

should not be envisaged as a control methodology, which

should be predictive control.
Table 13

Validity tests

Ree 0.8811

Re2e2 0.7538

RðyeÞe2 0.0609

RðyeÞu2 0.1994

Rue 0.1919

R
u20 e2 0.3912

R
u20 e 0.1963

Re(eu) 0.8765
Figs. 11 and 12 show simulations of this control strategy for

the days 15 and 24 June. The real periods of the manual

operation of the air conditioners are marked in the figures, as

well as the measured temperature.

As it can be seen, the temperature is regulated within the

specified limits, and with important savings in energy.

Extending this simulation through all the working days of
Fig. 12. Simulation for 24 June.
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June, using this simple methodology, a 27% reduction of the

use of the air conditioners was verified, with the temperature

staying within the specified limits, for the whole working period

(which obviously does not happen with manual control).

8. Conclusions and future work

In this paper the use of neural networks for air temperature

prediction inside buildings was discussed. It was shown that by

using multi-objective genetic algorithms for the off-line design

of radial basis function neural networks, the neural models can

achieve better results than state-of-the-art physical models. By

using a sliding window adaptive methodology, the good results

obtained off-line can be extended throughout the whole year.

The use of long-range predictive models for air-conditioning

systems control has been demonstrated, in simulations,

achieving a good temperature regulation with important energy

savings.

Future work will address the control aspect. First, multi-

objective genetic algorithm will be used for designing long-

range prediction models of the outside solar energy and air

temperature, in the lines of Ref. [25]. Then the commercial

remote controllers will be replaced by computer-controlled

remote controllers, so that the air-conditioning systems can be

computer-controlled. With this scheme, richer data can be

acquired for improving the long-range inside air temperature

model, designed together with the long-range inside relative air

humidity model (please see Ref. [25]). Finally, these models,

adapted on-line as described in this paper, will be used in a

predictive control strategy, weighting temperature regulation

with energy spending, applied during the building working

periods.
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