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Low energy buildings have attracted lots of attention in recent years. Most of the research is focused on
the building construction or alternative energy sources. In contrary, this paper presents a general meth-
odology of minimizing energy consumption using current energy sources and minimal retrofitting, but
instead making use of advanced control techniques. We focus on the analysis of energy savings that
can be achieved in a building heating system by applying model predictive control (MPC) and using
weather predictions. The basic formulation of MPC is described with emphasis on the building control
application and tested in a two months experiment performed on a real building in Prague, Czech
Republic.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Buildings account for 20–40% of the total final energy consump-
tion and its amount has been increasing at a rate 0.5–5% per annum
in developed countries [1]. Thanks to developments in the field of
mechanical and civil engineering, building energy demands can be
reduced significantly. Unfortunately, most of the conventional en-
ergy reduction solutions require considerable additional invest-
ments. In contrast, energy savings with minimal additional cost
can be achieved by improvement of building automation system
(BAS). In today’s buildings not only heating, ventilation and air
conditioning (HVAC) systems can be automatically controlled but
also blind positioning and lighting systems can be operated by
the BAS [2,3].

The paper focuses on methods that are based on the formula-
tion of the building control as an optimization problem. The build-
ing physics are formulated in a mathematical model that is used
for the prediction of the future building behavior according to
the selected operation strategy and the weather and occupancy
forecasts. The aim is to design a control strategy, that minimizes
the energy consumption (or operational costs) while guaranteeing
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that all comfort requirements are met. An advanced control tech-
nique usually denoted as Model Predictive Control (MPC) is de-
scribed in the paper.

A comprehensive overview of the literature related to predictive
building control can be found on the web site of the OptiControl
project1. The key principle of MPC used for building control is the
efficient use of the thermal mass or thermal storage of a building.
A study presented in [4] was among the first papers which formu-
lated the control of the thermal storage as an optimization problem.
The control of a simple solar domestic hot water system considering
the weather forecast and two energy rates are discussed there. Some
early papers [5,6] deal with a least-cost cooling strategy using the
building mass as a thermal storage. An overview of the active use
of thermal building mass is given in [7], where a variable energy
price and the cost of the peak power are considered in the formula-
tion of the optimization problem. The controller that minimizes
cooling costs with respect to the time-varying electrical energy price
is presented also in [8]. The aim is to take advantage of night-time
electricity rates and to lower the ambient temperature while preco-
oling the chilled water tank. Experimental results of precooling are
presented in [9] where a more detailed building load model was
used. Predictive control of heating using the thermal mass is dis-
cussed in, e.g. [10,11]. Energy savings making use of MPC in relation
to different thermal comfort criteria is discussed in [12].
1 www.opticontrol.ethz.ch.
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Besides the energy minimization, predictive control can also
contribute to energy peak reductions [13,14]. Energy peak reduc-
tion can significantly lower the costs of the building operation
and initial cost of mechanical parts if considered in the building de-
sign. Current grid load and energy peak reduction was considered
in [15]. Predictive control used for the sizing of heating systems for
discontinuously occupied buildings is discussed in [16], where the
model is decoupled into four simple RC models which enable mod-
eling of the contribution of outdoor air temperature, solar radia-
tion, and internal gains separately.

As mentioned, MPC is not the only technique that can be used
for optimal building control. There were numerous attempts to uti-
lize advanced control techniques that are well-known in industrial
process control also for building control [17]. We briefly mention
some of recently published alternative solutions to optimal build-
ing control. The general dynamic programming problem for the
control of a borehole thermal energy storage system is solved in
[18]. The aim was to guarantee the delivery of heat or cold all-
year-around while minimizing the operational costs. A reinforce-
ment learning technique used for a building thermal storage con-
trol is outlined in [19,20]. The real building experiment provided
only 8.3% cost savings because the thermal storage has been only
partially utilized by the learning control strategy. In [21], a set of
fuzzy rules was used to cut down the time needed for tuning the
supervisory controller. Genetic algorithms and simulated anneal-
ing were used for optimal control of cooling in [22]. The objective
was to design economically optimal the use of natural ventilation,
fan-driven ventilation, and mechanical air conditioning with re-
spect to indoor temperature requirements. The unmanageable
number of possible control sequences is reduced by consideration
of practical issues based on physical insight.

The increased popularity of MPC usage for building control in
recent years is indisputable, however, most of the results are based
on the simulations or short time experiments. In this paper, we
provide a detailed description of an MPC implementation on a real
building and we analyze results from two months of operation. The
paper is organized as follows. The predictive control strategy is
presented in Section 2. Section 3 is devoted to modeling with stress
on statistical modeling. A detailed case-study is discussed in Sec-
tion 4. The Section 5 concludes the paper.
2. Model predictive control

The Building Automation System (BAS) aims at controlling heat-
ing, cooling, ventilation, blind positioning, and electric lighting, of a
building such that the temperature, CO2 and luminance levels in
rooms or building zones stay within the desired comfort ranges.
One typically divides the control hierarchy into two levels: the
low-level controller which typically operates at the room-level
and is used to track a specified setpoint, and a high-level controller
which is done for the whole building and determines the setpoints
for the low-level controllers. The article focuses on the usage of
Model Predictive Control (MPC), which is used as high-level
controller.
2.1. MPC strategy

MPC is a method for constrained control which originated in the
late seventies and early eighties in the process industries (oil refin-
eries, chemical plants, etc.) (see, e.g. [23–26]). MPC is not a single
strategy, but a class of control methods with the model of the pro-
cess explicitly expressed in order to obtain a control signal by min-
imizing an objective function subject to some constraints. In
building control one would aim at optimizing the energy use or
cost subject to comfort constraints.
During each sampling interval, a finite-horizon optimal control
problem is formulated and solved over a finite future window. The
result is a trajectory of inputs and states into the future satisfying
the dynamics and constraints of the building while optimizing
some given criteria. In terms of building control, this means that
at the current point in time, a heating/cooling, etc. plan is formu-
lated for the next several hours to days, based on predictions of
the upcoming weather conditions. Predictions of any other distur-
bances (e.g., internal gains), time-dependencies of the control
costs (e.g., dynamic electricity prices), or of the constraints
(e.g., thermal comfort range) can be readily included in the
optimization.

The first step of the control plan is applied to the building, set-
ting all the heating, cooling and ventilation elements, then the pro-
cess moves one step forward and the procedure is repeated at the
next time instant. This receding horizon approach is what intro-
duces feedback into the system, since the new optimal control
problem solved at the beginning of the next time interval will be
a function of the new state at that point in time and hence of
any disturbances that have acted on the building.

Fig. 1 summarizes the basic MPC control scheme. As time-vary-
ing design parameters, the energy price, the comfort criteria, as
well as predictions of the weather and occupancy are input to
the MPC controller. One can see that the modeling and design ef-
fort consist of specifying a dynamic model of the building, as well
as constraints of the control problem and a cost function that
encapsulates the desired behavior. In each sampling interval, these
components are combined and converted into an optimization
problem depending on the MPC framework chosen. A generic
framework is given by the following finite-horizon optimization
problem:

Problem 1.

min
u0 ;...;uN�1

XN�1

k¼0

lkðxk;ukÞ Cost function ð1Þ

s:t:
x0 ¼ x Current state ð2Þ
xkþ1 ¼ f ðxk;ukÞ Dynamics ð3Þ
ðxk;ukÞ 2 Xk �Uk Constraints ð4Þ

where xk 2 Rn is the state, uk 2 Rm is the control input, k is the time
step, Xk and Uk denote the constraints sets of the state and inputs
respectively and are explained below. We now detail each of the
four components in the above MPC formulation and discuss how
they affect the system and the resulting optimization problem.
Please note that this is not a comprehensive overview of MPC for-
mulations, but rather a collection of formulations, which are fre-
quently used or reasonable in the field of building control. For a
more comprehensive overview on MPC formulations, the reader is
referred, e.g. to [27].
2.1.1. Cost function
The cost function generally serves two purposes:

� Stability. It is common to choose the structure of the cost func-
tion such that the optimal cost forms a Lyapunov function for
the closed loop system, and hence will guarantee stability. In
practice, this requirement is generally relaxed for stable sys-
tems with slow dynamics, such as buildings, which leaves the
designer free to select the cost strictly on a performance basis.
� Performance target. The cost is generally, but not always, used

to specify a preference for one behavior over another, e.g., min-
imum energy or maximum comfort.
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Fig. 1. Basic principle of model predictive control for buildings.
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Generally, the main goal is to minimize energy cost while
respecting comfort constraints, which can be formalized by the fol-
lowing cost function:

lkðxk;ukÞ ¼ ðyk � yr;kÞ
T Qkðyk � yr;kÞ þ Rkuk; ð5Þ

where Qk and Rk are time-varying matrices of appropriate size and
yr,k the reference signal at time k. The trade-off between precision of
reference tracking and energy consumption is expressed by propor-
tion of the matrices Qk and Rk. The reference tracking is expressed as
a quadratic form because it significantly penalizes larger deviations
from the reference. The energy bill is usually an affine function of a
total amount of consumed energy. Therefore, the control cost is
weighted linearly. The function Eq. (5) is not the only cost function
applicable to building control. There could be, for example, peak en-
ergy demand penalization included in the energy bill that can be ex-
pressed by L1 norm of control inputs in the cost function. Detailed
description of the cost function used in the Prague building is given
in Section 4.3, for alternative formulations see [28].

2.1.2. Current state
The system model is initialized to the measured/estimated cur-

rent state of the building and all future (control) predictions begin
from this initial state x. Depending on what the state of the build-
ing is describing, it might not be possible to measure everything di-
rectly. In this case, a Kalman filter can be used to estimate the
current state of the building and the estimate is used as initial
state.

2.1.3. Dynamics
The controller model, i.e. the mathematical description of the

building dynamics is a critical piece of the MPC controller. For
the work presented in this paper we restrict ourselves to linear
dynamics

xkþ1 ¼ Axk þ Buk: ð6Þ

This is the most common model type and the only one that will re-
sult in a convex and easily solvable optimization problem.

2.1.4. Constraints
The ability to specify constraints in the MPC formulation and to

have the optimization routine handle them directly is the key
strength of the MPC approach. There can be constraints on the
states or the output, as well as on the input. When explaining dif-
ferent forms of constraints in the following we will do it for input
constraints only, but everything applies for state and output con-
straints alike. Linear constraints are the most common type of con-
straint, which are used to place upper/lower bounds on system
variables
umin;k 6 uk 6 umax;k; ð7Þ

or generally formulated as

Gkuk 6 gk: ð8Þ

The constraints can be constant, given by physical or logical limita-
tions. For instance, valve cannot be open more that 100% or temper-
ature of heating water cannot exceed some predefined level. The
constraints can be also time-varying, e.g. to account for different
comfort constraints during day-time and night-time. In general
case, the constraints can be a function of state variables or inputs
as discussed in Section 4.3. This class of constraints can also be used
to approximate any convex constraint to an arbitrary degree of
accuracy. Linear constraints also result in the simplest optimization
problems. Furthermore, one might want to constrain the rate of
change, which is done by imposing a constraint of the form

juk � uk�1j 6 Dumax : ð9Þ
3. Modeling

Modeling of the building requires insight both into control engi-
neering as well as into HVAC engineering. Moreover, it is also the
most time demanding part of designing the MPC setup.

Two approaches to building modeling are outlined in this sec-
tion. Both of them come from so-called RC modeling. The aim is
to provide insight into these techniques with emphasis on their
applicability for MPC. Largely used computer aided modeling tools
(e.g. TRNSYS, EnergyPlus, ESP-r, etc.) are not considered here, as
they result in complex models which cannot be readily used for
control purposes.

When large measurement data sets are available, a purely sta-
tistical approach for creation of a building model is preferred. A
large number of System Identification methods exists (a survey is
listed in, e.g. [29]), however, only a few of them have the capability
of identification of multiple-input multiple-output (MIMO) sys-
tems, which are considered in case of building control. For identi-
fication of linear MIMO models, subspace identification methods
are often used [29–31] and have been suggested for identification
of building models as in [32].

Alternatively to the statistical approach, especially if there is a
lack of data or some knowledge of building physics is present,
the RC modeling can be used.

3.1. RC modeling

The principle of the thermal dynamics modeling can easily be
described by a small example as given in Fig. 2. The room can be
thought of as a network of first-order systems, where the nodes



Fig. 2. RC modeling is based on the description of heat transmission between nodes
that are representing temperatures. The figure captures example with two rooms
where, #R1 and #R2 are the temperatures in the room R1 and R2, respectively, #0 is
the outside temperature, #SW is the temperature of the supply water used for floor
heating, CR1 denotes the thermal capacity of the room R1. Resistances are
representing the thermal resistances between the nodes.
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are the system states and these represent the room temperature or
the temperatures in the walls, floor or ceiling. Then the heat trans-
fer rate is given by

dQ
dt
¼ Kie � ð#e � #iÞ

) dQ
d#i|{z}

Ci

� d#i

dt
¼ Kie � ð#e � #iÞ; ð10Þ

where t denotes the time, #i and #e are the temperatures in nodes i
and e, respectively, Q is thermal energy, and Ci denotes the thermal
capacitance of node i. The total heat transmission coefficient Kie is
computed as

1
Kie
¼ 1

Ki
þ 1

Ke
; ð11Þ

where the heat transmission coefficients Ki and Ke depend on the
materials of i and e as well as on the cross sectional area of the heat
transmission. For each node, i.e. state, such a differential equation
as in Eq. (10) is formulated. The actuators are direct inputs to the
node, which means that their input is added. The modeling of illu-
mination and CO2 concentration is omitted here for brevity, for
more details on RC modeling see [28].

The model parameters (e.g. Kie or Ci in Eq. (10)) can be deter-
mined in two ways: by reading from construction plans or by sta-
tistical estimation, which is described in the next sections.

3.1.1. Construction plan
Thermal capacities, resistances and other unknown parameters

are determined from the construction plan according to the mate-
rials used and their tabular values. Simulations of the acquired
model are then required to validate the model accuracy. If the
model does not correspond to the measured data, parameter
adjustment is necessary.

3.1.2. Statistical estimation
In this approach it is assumed that measurements are corrupted

by noise, therefore, the model is extended by a stochastic compo-
nent. The resulting stochastic differential or difference equations
are used for estimation with Maximum Likelihood (ML) or Maxi-
mum a Posteriori (MAP) methods to get the desired parameters
from a measured data set. Also in this case tabular values of the
parameters can be used as initial guess, however, they do not need
to be specified as accurately as in the previous case, because they
will be updated. Software tools for dealing with statistical estima-
tion are described for example in [33–35], some of them provide
functionality to certify the resulting model validity using statistical
hypothesis tests.

Following the statistical based estimation procedure is a special
case of the ML method and can provide a fast way how to identify a
discrete-time model of the continuous-time system
_xðtÞ ¼ AxðtÞ þ BuðtÞ þwðtÞ from input/output data where the full
state is known (i.e. the state of the system corresponds to the sys-
tem outputs); A 2 Rn�n, B 2 Rn�m, u(t) 2 Rm is considered to be the
control input while wðtÞ 2 Rn �Nð0;RÞ is the process noise. The
system model can be identified using following statistical
procedure:

The first step is discretization of the continuous model as de-
scribed above with sampling period Ts. Discrete-time model will
be then the result from the identification procedure.

Ad ¼ eATs ¼ I þ ATs þ
A2T2

s

2
þ . . . � I þ ATs

Bd ¼
Z Ts

0
eAsdsB �

Z Ts

0
IdsB ¼ TsB:

The presented discretization (in this case the simplest one –
zero-order hold) preserves the structure of the system matrices A
and B, so that an element of the discrete-time matrices (say, adi;j

)
corresponds to the element of the continuous-time matrices at
the same position (ai,j). Therefore, we can then readily estimate
the unknown parameters of the discrete-time model, as will be de-
scribed below.

The data matrices for identification have the following
structure:

XkþN
k ¼ ðxk; xkþ1; . . . ; xkþNÞ

UkþN
k ¼ ðuk;ukþ1; . . . ;ukþNÞ

EkþN
k ¼ ðek; ekþ1; . . . ; ekþNÞ;

where ek is white zero mean Gaussian noise with an approximate
covariance T2

s R. The estimation of the parameters hi within the sys-
tem matrices (see Eq. (13)) then can be formulated into the least-
squares framework as follows:

XN
1 ¼ AdXN�1

0 þ BdUN�1
0 þ EN�1

0 ¼ ½Ad Bd�
XN�1

0

UN�1
0

" #
þ EN�1

0

vec XN
1 ¼

XN�1
0

UN�1
0

" #
	 In�n

 !T

vec ½Ad Bd� þ vec EN�1
0 ;

where (vec �) is vectorization of a matrix and (� 	 �) is a Kronecker
product of two matrices. In this equation structure, we can add ex-
tra lines into the regressors matrix as well as the left-hand side vec-
tor for the structure of the matrices A and B to be preserved. Then,
the unknown parameters are estimated using weighted least-
squares with higher weights on the rows with constraints of the
matrices structure.

4. Case study

The presented MPC scheme of Problem 1 was applied to the
building heating system of the Czech Technical University (CTU)
in Prague, see Fig. 3. MPC was applied there from January 2010
and was operational until the end of heating season in mid-March
2010.

4.1. Description of the building

As can be seen from Fig. 3, the CTU building is composed of four
five-floor blocks, three eight-floors blocks and four-level interme-
diary parts among the respective blocks. All the blocks have the



Fig. 3. The building of CTU in Prague.
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same construction and way of use. This provides us with the
unique opportunity to compare different control techniques
under the same weather conditions, since we can use different con-
trollers in different blocks at the same time. The south part of the
building was insulated two years ago and therefore we can
evaluate effectiveness of MPC depending on the insulation level
as well.

The CTU building uses a Crittall [36] type ceiling radiant heating
and cooling system. In this system, the heating (or cooling) beams
are embedded into the concrete ceiling that enables the utilization
of the thermal capacity of the building. The heating system scheme
of one building block is depicted in Fig. 4. The required tempera-
ture of supply water is achieved by mixing hot water from a heat
exchanger with return water in a three point valve. The three point
valve is operated by a low-level controller that maintains the sup-
ply water temperature at the setpoint determined by the high-le-
vel controller. In case of the CTU building, a PID controller was
used as a low-level controller. For each heating circuit, there is
one reference room temperature measurement. A detailed descrip-
tion of the heating system is given in [37].
4.2. Modeling of the building block

We consider a building with two heating circuits and two refer-
ence rooms, each related to one circuit as depicted above. The dif-
ferential equations describing the system are as follows:
Fig. 4. Simplified scheme of the ceiling radiant heating system.
� _#n ¼
1

CrRw
ð#n � #oÞ þ

1
CrRr

ð#n � #sÞ þ
1

CrRrwr
ð#n � #rwnÞ

� _#s ¼
1

CrRw
ð#s � #oÞ þ

1
CrRr

ð#s � #nÞ þ
1

CrRrwr
ð#s � #rwsÞ

� _#rwn ¼
1

CrwRrwr
ð#rwn � #nÞ þ

1
CrwRrw

ð#rwn � #swnÞ

� _#rws ¼
1

CrwRrwr
ð#rws � #sÞ þ

1
CrwRrw

ð#rws � #swsÞ ð12Þ

The meaning of the variables and coefficients is explained in Table
1.

Considering the system state as xT = [#s#rws#n#rwn]T and the in-
put vector as uT = [#o#sws#swn]T, the state-space model can be for-
mulated in the following way:

_x¼

� 1
Cr Rw
� 1

Cr Rr
� 1

Cr Rrwr

1
Cr Rrwr

1
Cr Rr

0
1

CrwRrwr
� 1

CrwRrw
� 1

CrwRrwr
0 0

1
Cr Rr

0 � 1
Cr Rw
� 1

Cr Rr
� 1

Cr Rrwr

1
Cr Rrwr

0 0 1
CrwRrwr

� 1
CrwRrwr

� 1
Cr Rrw

2
6664

3
7775x

þ

1
Cr Rw

0 0
0 1

CrwRz 0
1

Cr Rw
0 0

0 0 1
CrwRz

2
6664

3
7775u:

ð13Þ

Finally, the parameters of this predefined system structure are esti-
mated according to the procedure described in Section 3.1 whereas,
in this case, the discrete-time system matrices have the following
structure:
Table 1
Notation of the variables and coefficients used in the equations describing a building
block.

Notation Description

Rw Outside wall heat resistance
Rrwr Return water-to-room transition resistance
Rr Room-to-room transition resistance
Rrw Return water resistance
Crw Thermal capacity of return water
Cr Thermal capacity of room
#o Outside temperature (from weather forecast)
#n Reference room temperature – north side
#s Reference room temperature – south side
#rwn Return water temperature – north side
#rws Return water temperature – south side
#swn Supply water temperature – north side
#sws Supply water temperature – south side
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Ad ¼

h1 h2 h3 0

h4 h5 0 0

h3 0 h1 h2

0 0 h4 h5

2
66664

3
77775; Bd ¼

h6 0 0

0 h7 0

h6 0 0

0 0 h7

2
66664

3
77775
Validation of the identified model was carried out by compari-
son of open loop simulation with verification data set collected
during Christmas 2009 (see Fig. 5). The merit of the proposed iden-
tification method can be especially seen in well identified trends of
heating-up and cooling down.

4.3. Description of the controller

4.3.1. Control objectives
There are several requirements to be fulfilled:

4.3.1.1. Comfort requirements. The reference trajectory yr,k, room
temperature in our case, is known a priori, as a schedule. The major
advantage of MPC is the ability of computing the outputs and cor-
responding input signals in advance, that is, it is possible to avoid
sudden changes in the control signal and undesired effects of de-
lays in the system response.

The schedule defines two minimal levels of the room tempera-
ture – during the day, the desired temperature is 22 �C while at
night and during weekends there is a setback to 19 �C. One solution
how to deal with minimal temperature requirement is to use refer-
ence tracking with dynamic cost which is difficult to tune and does
not provide possibility for extension to more than two minimal
temperature levels [16]. Another solution is to use it as a con-
straint. This can lead to infeasible problem in some situations.
Moreover, there is a tolerance in proposed comfort criterion and
therefore it can be useful to slightly violate comfort requirements
if it results in considerable energy reduction. Thus, we proposed
an alternative MPC problem formulation – the displacement below
the reference trajectory is penalized in the criterion. Note, that the
2-norm was used for the weighting of the tracking error – for more
accurate performance.

4.3.1.2. Minimization of energy consumption. As the return
water circulates in the heating system (see Fig. 4), the energy
consumed by the heating-up of the building is linearly dependent
on the positive difference between heating #sw and return
water #rw temperatures entering/exiting the three port valve in
Fig. 4.

Thus, the 1-norm of weighted inputs is to be minimized.

4.3.2. MPC problem formulation
At first, the given system from Section 4.2 is partitioned as

follows:
 17.5
 18

 18.5
 19

 19.5
 20

 20.5
 21

 21.5
 22

 0  5  1

T i
n 

[°C
]

tim

Fig. 5. Validation of model respons
xkþ1 ¼ Axk þ Buk

yk ¼ Cxk þ Duk

zk ¼ Vxk þWuk;

where yk stands for outputs with reference signal (e.g. #in,k), whilst
zk represents the input-output differences – in our case
zk = #sw,k � #rw,k.

The requirements (see Section 4.3.1) for the weighting of the
particular variables can be carried out by adding the slack variables
ak and bk which are of same dimension as yk and zk, respectively.
The resulting optimization problem can be written as follows:

J ¼ min
ak ;bk ;uk

XN�1

k¼0

aT
k Qak þ Rbk

yr;k � yk � ak 6 0; ak P 0

zk � bk 6 0; bk P 0
umin 6 uk 6 umax

juk � uk�1j 6 Dumax

ð14Þ

yk ¼ CAkx0 þ
Pk�1

i¼0
CAk�i�1Bui þ Duk

zk ¼ VAkx0 þ
Pk�1

i¼0
VAk�i�1Bui þWuk:

Q and R stand for the weighting matrices of appropriate dimensions.
The weighting matrices are constant because there is a flat rate for
energy and the minimal room temperature defined by yr,k has to be
maintained over whole the day with the same importance. Each
building block requires different amount of energy for maintaining
the same comfort therefore the proportion of the weighting matri-
ces Q and R had to be tuned-up for each block separately. The phys-
ical limits of the heating system are expressed by constants umin,
umax and Dumax . The lower limit for heating water temperature umin

was set to 20 �C, the upper limit for heating water temperature umax

was set to 55 �C and the maximum rate of change of the input signal
Dumax that prevents the heating system from heat shocks was set to
20 �C/20 min. The temperature of supply water is controlled by the
three point valve. Therefore, the lower limit umin is not, in fact, a
constant value but it is given as minimum of return water temper-
ature and hot water from the heat exchanger. However, this can be
neglected because just lower comfort limit is maintained and deliv-
ery of warmer supply water than predicted do not result in comfort
criteria violation.

Eq. (14) can be readily rewritten into a quadratic programming
(QP) problem and solved using a standard QP solver.

The prediction horizon N was chosen to be two days (the system
was sampled with a sampling period of 20 min, i.e. N = 144) which
is a trade-off between accuracy of the weather prediction and a
sufficient length of the prediction horizon.
0  15  20
e [days]
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Model response
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Fig. 6. Heating curve and MPC energy requirements profile.
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4.4. Technical setup description

The building was operated by RcWare2 BAS system. The RcWare
system provides data from several weather forecasting servers. In
case of the CTU building, weather forecast from National Oceanic
and Atmospheric Administration3 was used. The MPC was imple-
mented in Scilab4. The optimization problem was solved by means
of Scilab internal linear quadratic programming solver. The compu-
tation time was in average 21 s on a PC with Intel Core2 DUO CPU
2.5 GHz. Setpoints for supply water temperature were periodically
computed by the following sequence

1. Retrieve the current state #swn, #sws, #rwn, #rws, #n, #s from BAS
2. Generate reference room temperature yr,k, k 2 0, . . . ,N � 1

according to BAS setting
3. Download weather forecast #o,k, k 2 0, . . . ,N � 1
4. Execute MPC scripts in Scilab
5. Apply new setpoints for #swn, #sws into BAS

Because of network communication and interaction between
different environments, it was necessary to handle potential fail-
ures. In such cases, BAS switched to a backup strategy based on a
heating curve and sent a SMS to the operator.
4.5. Investigations setup

Evaluation of the energy savings achieved by different control
strategies is a complicated task. The weather conditions change
all the time, as well as the number and behavior of the building
occupants. Single comparisons of results are affected by these dis-
turbances, therefore two independent comparisons of the real
building experiment will be presented.

The first comparison denoted as cross comparison uses almost
similar building blocks B1 and B2

5. The cross comparison had two
phases, each lasted for a week. In the first week, block B1 was con-
trolled by the heating curve and block B2 by MPC. The other week,
the control strategies were switched. The advantage of the cross
comparison is compensation of the majority of disturbances because
both building blocks are exposed to the same weather conditions.

The second comparison is based on the utilization of so-called
heating degree days (HDD) for the normalization of the building
energy consumption. HDD is a quantitative index designed to re-
flect the demand for energy needed to heat a building. There are
several methods of HDD computation. In this paper, the outside
2 http://www.rcware.eu.
3 http://www.noaa.gov.
4 http://www.scilab.org.
5 Block B1 uses slightly more energy than block B2, it can be seen in Table 3. This

fact was considered in the cross comparison.
temperature is subtracted from the required room temperature
and this number is summed over the analyzed time period

HDD ¼
XTend

k¼Tbegin

yr;k � #o;k; ð15Þ

where Tbegin, Tend denote the beginning and the end of the measured
period, respectively. The method is not precise, especially when
outside weather conditions differ a lot. In order to minimize the
negative effect of different weather conditions time periods with
similar average outside temperature were selected for the
comparison.

Because the heating water flow is constant, the sum of differ-
ence between the supply water temperature and the return water
temperature can be used as energy consumption measure (denoted
as ECM)

ECM ¼
XTend

k¼Tbegin

ð#sws;k � #rws;kÞ þ ð#swn;k � #rwn;kÞ: ð16Þ
4.6. Results from real implementation

The Crittall heating system utilizes the building mass as a ther-
mal storage. When the building was operated by a heating curve,
the concrete construction was preheated during the night and
the heating system was switched off in the morning. The strategy
realized by MPC was different; the MPC preheated the concrete
mainly at night but it did not switch off the heating during the
day. The beneficial side effect of MPC strategy was a significant en-
ergy peak reduction as can be seen at Fig. 6. The aim of the energy
peak reduction was not explicitly expressed in the problem formu-
lation, it was just a result of the optimization process.

The cross comparison results are summarized in Table 2.
According to this comparison, MPC saved approximately 16% of en-
ergy in both weeks.

The results from HDD based comparison are in Table 3. It can be
seen, that the non-insulated block B3 required nearly twice as
much energy as the insulated blocks B1 and B2. The relative savings
were more significant at insulated building blocks B1 (28.74%) and
B2 (26.83%). Nevertheless, at the block B3the relative savings were
more than 17% even if there was a significant increase of the room
temperature. The absolute MPC savings were larger at the non-
insulated block B3.

The average outside temperature during the cross comparison
was �2.3 �C, while during the comparison based on HDD was
3.4 �C. In case of lower outside temperatures, the energy has to
be continuously supplied to the building and the active usage of
building heat accumulation is limited. This could be the reason
why saving estimation based on the cross comparison is lower
than savings estimation based on HDD.

http://www.rcware.eu
http://www.noaa.gov
http://www.scilab.org


Table 2
Comparison of heating curve (HC) and model predictive control (MPC) strategies using similar building blocks B1 and B2.

B1 B2

Mean #o (�C) Control Mean #s, #n (�C) Control Mean #s, #n (�C) MPC savings (%)

1st week �3.4 HC 21.4 MPC 21.1 15.54
2nd week �1.3 MPC 21.4 HC 20.9 16.94

Table 3
Heating degree days based comparison. The ratio ECM/HDDexpresses normalized energy demands for heating.

Block-control ECM/HDD Mean #o(�C) Mean #s, #n(�C) Days compared Relative MPC savings (%)

B1-HC 0.906 3.8 21.6 84 28.74
B1-MPC 0.645 3.2 21.8 49

B2-HC 0.813 4.0 21.7 85 26.83
B2-MPC 0.595 3.0 21.7 49

B3-HC 1.532 3.8 20.9 84 17.67
B3-MPC 1.262 3.2 21.9 49
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5. Conclusion

It was shown that the energy savings potential for using MPC
with weather predictions for the investigated building heating sys-
tem were between 15% and 28% depending on various factors,
mainly insulation level and outside temperature. This is consistent
with results achieved in large scale simulations done in scope of
the Opticontrol project ([28] chapter 8). The real building applica-
tion results are very encouraging, nevertheless, two issues have to
be mentioned. First, each building is unique and the MPC saving
potential is dependent on many factors as HVAC system, building
construction or weather conditions to name a few. Second, the
complete cost benefit analysis should not include just energy sav-
ings but also the cost of the MPC implementation, i.e. foremost the
modeling effort, that presents the most time consuming part and
MPC integration into a BAS. In contrast to the current building con-
trol techniques, MPC is based on a non trivial mathematical back-
ground that complicates its usage in practice. But its contribution
to reduction of a building operation cost is so significant that it is
expected that it will become a common solution for so-called intel-
ligent buildings in a few years.
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[37] Široký J, Prívara S, Ferkl L. Model predictive control of building heating system.

In Proceedings of 10th rehva world congress. Clima; 2010.

http://dx.doi.org/10.1016/j.compchemeng.2003.10.003
http://dx.doi.org/10.1016/j.compchemeng.2003.10.003

	Experimental analysis of model predictive control for an energy efficient  building heating system
	Introduction
	Model predictive control
	MPC strategy
	Cost function
	Current state
	Dynamics
	Constraints


	Modeling
	RC modeling
	Construction plan
	Statistical estimation


	Case study
	Description of the building
	Modeling of the building block
	Description of the controller
	Control objectives
	Comfort requirements
	Minimization of energy consumption

	MPC problem formulation

	Technical setup description
	Investigations setup
	Results from real implementation

	Conclusion
	Acknowledgment
	References


